JPS6064242A - Corrosion judging device - Google Patents

Corrosion judging device

Info

Publication number
JPS6064242A
JPS6064242A JP17219783A JP17219783A JPS6064242A JP S6064242 A JPS6064242 A JP S6064242A JP 17219783 A JP17219783 A JP 17219783A JP 17219783 A JP17219783 A JP 17219783A JP S6064242 A JPS6064242 A JP S6064242A
Authority
JP
Japan
Prior art keywords
metal piece
potential
current
sample
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17219783A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Masayuki Suzuki
雅行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17219783A priority Critical patent/JPS6064242A/en
Publication of JPS6064242A publication Critical patent/JPS6064242A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To measure the transfer function of a corrosion reaction circuit network over a broad frequency range, by imparting electric charge to a sample in a corrosive liquid, measuring the polarized potential and current, performing the frequency analysis of the output, and obtaining the phase difference. CONSTITUTION:A sample metal piece 1, a reference electrode 2, and a counter electrode 4 are immersed in a corrosive liquid 4. Electric charge is imparted to the sample metal piece 1 from a charge imparting part 5 through the counter electrode 3. The current, which flows from the charge imparting part 5 to the metal piece 1, is detected by a current detecting part 7 and converted into a potential signal. The potential response of the metal piece is detected by a potential detecting part 6. Fourier transform of these signals is performed in a high speed Fourier transform part 8, the impedance at each frequency and the phase difference of the current and the potential are computed, and a transfer function is outputted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、腐食判定装置に関し、更に詳しくは、試料
金属片を作用電析として、この電極に電荷を付与した際
の電流波形と高速フーリエ変換を施したこの電極の応答
電位波形とからこの電極の伝達関数をめることにより腐
食を判定する腐食判定装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a corrosion determination device, and more specifically, the present invention relates to a corrosion determination device, and more specifically, a current waveform and fast Fourier transform when a sample metal piece is subjected to active electrodeposition and an electric charge is applied to this electrode. The present invention relates to a corrosion determination device that determines corrosion by calculating the transfer function of this electrode from the response potential waveform of this electrode that has been subjected to.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

腐食の進行している金属の表面を調べることは腐食の性
質・速度などを知る上で必要なことである。この目的の
ため、従来より腐食反応系を電気的等価回路に置換し、
その回路網の伝達関数を吟る工夫がなされてきた。
Examining the surface of metals where corrosion is progressing is necessary to know the nature and rate of corrosion. For this purpose, we replaced the conventional corrosion reaction system with an electrical equivalent circuit.
Efforts have been made to examine the transfer function of the circuit network.

腐食反応系回路網の伝達関数をめるためには。To find the transfer function of the corrosion reaction system network.

腐食反応系へある周波数の、電気的刺激を与え、この刺
激に対する応答をめるという作業を刺激周波数全順次変
化させながら行なう必要がある。このため腐食反応系伝
達関数を広い周波数範囲で正確にめるためには非常に多
くの時間と労力を要していた。
It is necessary to apply electrical stimulation at a certain frequency to the corrosion reaction system and observe the response to this stimulation while sequentially changing the stimulation frequency. For this reason, it takes a great deal of time and effort to accurately determine the corrosion reaction system transfer function over a wide frequency range.

そこで、この作業を行々うのに必要とされる労力を軽減
する目的で全自動の測定器も考案され、市販されている
が一つの腐食反応系伝達関数を測定するためには、1時
間和度の時間を要するという欠点がある。
Therefore, in order to reduce the labor required to carry out this work, a fully automatic measuring device was devised, and although it is commercially available, it takes about 1 hour to measure one corrosion reaction system transfer function. The disadvantage is that it takes time to prepare.

そのため、従来け2,3の特定の周波数での測定より腐
食反応系回路網伝達関数のうち腐食速度に関する項のみ
を判定することにより測定時間の短縮を行ない、実用に
供していたが、腐食形態を知ることができないため、異
常な腐食速度が観測された時に原因を判定することがで
きない欠点がある。
Therefore, the measurement time has been shortened by determining only the term related to the corrosion rate of the corrosion reaction system network transfer function compared to the conventional measurement at a specific frequency of 2 or 3, which has been put into practical use. This has the disadvantage that it is not possible to determine the cause when an abnormal corrosion rate is observed.

上述の如〈従来の測定法によれば広い周波数範囲に亘る
腐食反応糸の伝達関数を得ることと、測定時、13の短
縮とは相反する条件であった。
As mentioned above, according to the conventional measurement method, obtaining a transfer function of the corrosion reaction yarn over a wide frequency range and shortening the number of points during measurement are contradictory conditions.

そのため、短時間に広い周波数範囲に亘る伝達関数を得
ることのできる測定装置の開発が望まれていた。
Therefore, it has been desired to develop a measuring device that can obtain a transfer function over a wide frequency range in a short time.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みなされたものであシ、その目
的は短時間に広い周波数範囲に亘る腐食反応系回路網の
伝達関数を1llll 定し得る腐食判定装置に得るこ
とにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a corrosion determination device capable of determining the transfer function of a corrosion reaction circuit network over a wide frequency range in a short period of time.

〔発明の概要〕 本発明は腐食性液体中に浸漬された試料金属片に電荷を
付与する電荷付布部と、この科料金属片の分極電位の時
間変化を開回路状態で検出する電位検出部と、電荷付与
部から試料金属片へ流れる電流を検出し電圧イご号へ変
換する’i1f流検出部と、電位検出部および電流検出
部の出力を周波数解析し、試料金属片の伝達関数をめる
高速7−りエ変換部とを具備した腐食判定装置に関し電
圧付与部として少なくともその立ち上が9部以外で連続
である電圧パルス発生器又は、その立ち上がり部以外で
連続である電流パルス発生器を用いることを特徴とする
ものである。
[Summary of the Invention] The present invention provides a charged cloth part that applies an electric charge to a sample metal piece immersed in a corrosive liquid, and a potential detection part that detects a temporal change in the polarization potential of the sample metal piece in an open circuit state. Then, the 'i1f flow detection section detects the current flowing from the charge applying section to the sample metal piece and converts it into a voltage signal, and the outputs of the potential detection section and the current detection section are frequency-analyzed to determine the transfer function of the sample metal piece. A voltage pulse generator that is continuous at least at a part other than the rising part, or a current pulse generator that is continuous at a part other than the rising part, as a voltage applying part for a corrosion determination apparatus equipped with a high-speed 7-RIE conversion part. It is characterized by the use of a container.

つまり本発明装商、では揮々の周波数成分を含む刺激信
号に対する回路網の応答を一度測定し、その後に、刺激
信号及び応答全7−リエ変換によシ各種周波数に分離し
各周波数に於けるインピーダンス及び電流と電位の位相
差を計算することによシ一度の測定で多数回の従来法の
測定を行なったのと同一の結果を得ることができるよう
になる。
In other words, in the present invention, the response of a circuit network to a stimulus signal containing volatile frequency components is measured once, and then the stimulus signal and response are separated into various frequencies by a total 7-lier transform, and each frequency is By calculating the impedance and the phase difference between the current and the potential, it becomes possible to obtain the same result in a single measurement as in multiple conventional measurements.

一般に任意の時間領域の連続関数r (t)に対してフ
ーリエ変換(式(1))を施して得られる複素関数F(
ω)はその変数として周波数ωを含んだF(ω)=J”
 f(t)(cos ωt−j sin ωt)dt−
(1)周波数領域の関数となり、その絶対値IF(ω)
1を振幅項、父、 Arr (F(ω))を移相項と呼
んでいる。したがって、任意の回路網へ刺激を与えた時
の電流及び電位応答に対して、それぞれ式(1)の演n
kωを順次変化させながら行うことにより、各周波数に
於ける電流及び電位の振幅項及び移相項をすめ、次いで
、電流及び電位の振幅項の比よりインピーダンス金、又
移相項の差より位相差をめることができこの結果、伝達
関数を得ることができる。
In general, a complex function F(
ω) includes frequency ω as its variable F(ω)=J”
f(t)(cos ωt-j sin ωt)dt-
(1) It becomes a function in the frequency domain, and its absolute value IF(ω)
1 is called the amplitude term and the father, and Arr (F(ω)) is called the phase shift term. Therefore, for the current and potential responses when a stimulus is applied to an arbitrary circuit network, the expression n of equation (1) is
By sequentially changing kω, the amplitude term and phase shift term of the current and potential at each frequency are calculated, and then the impedance is calculated from the ratio of the amplitude terms of the current and the potential, and the phase is calculated from the difference between the phase shift terms. The phase difference can be calculated, and as a result, a transfer function can be obtained.

この作業を腐食反応系へ対し、行なう装置構成例を第1
図に示す。試料金属片1は腐食を検知したい測定対象物
であり、参照電極2及び対極3と腐食性液体4にて電気
的4通がとられている。この試料金属片】へ電荷付与部
5より電荷が対極を通じて付与される。その時に電荷付
与部5より試料金属片1へ流れる電流は電流検出部7に
より検出され電位信号に変換される。又、試イ3:)金
属片109“6位応答(d電位検出部61てより倹用さ
れる。
An example of the equipment configuration for performing this work on a corrosion reaction system is shown in the first example.
As shown in the figure. A sample metal piece 1 is an object to be measured whose corrosion is to be detected, and four electrical connections are made using a reference electrode 2, a counter electrode 3, and a corrosive liquid 4. A charge is applied to this sample metal piece from the charge applying section 5 through the counter electrode. At this time, the current flowing from the charge applying section 5 to the sample metal piece 1 is detected by the current detecting section 7 and converted into a potential signal. Also, trial 3:) Metal piece 109's 6th response (d is used more sparingly by the potential detection unit 61).

電荷付与部5からは少なくとも立ち上がり部を除いて連
株な電圧パルスを試料金属片1に与えて、電位応答を測
定する。高速フーリエ変換部8では、これらの信号に対
してフーリエ変換を施し試料金属片1の各種周波数に於
けるインピーダンス及び位相差を計算し、伝そ’l r
iA数として出力する。
A continuous voltage pulse is applied from the charge applying unit 5 to the sample metal piece 1 except for at least the rising portion, and the potential response is measured. The fast Fourier transform section 8 performs Fourier transform on these signals, calculates the impedance and phase difference of the sample metal piece 1 at various frequencies, and transmits them.
Output as iA number.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第2図に立ち上がり部にのみ不連続点を持つ電流パルス
を出力するために、 iR:、荷付力部5として、12
ヒツト・ハイナ’) −O力’)7ター9 、 H&)
MIO。
Embodiment 1 In order to output a current pulse having a discontinuous point only in the rising part as shown in FIG.
Hit Haina') -O force') 7ter 9, H &)
M.I.O.

】0ビツトD/Aコンバータ11及び電圧−電流変換器
12を使用した回路構成例を示す。この構成においては
、スイッチ14を押すと制御回路13が動作し、12ビ
ツト・バイナリ−・カウンター9がカウント動作を開始
する。RjlJM 10は12ピント・バイナリ−・カ
ウンター9の出力に応じ10ビツトのデジタル出力を1
0ピツ) D/Aコンバータ11へ送シ式(2)で示さ
れる E=exp(−x)−exp(−X/2)−=(2)電
圧Eを電圧−電流変換器12へ出方させる。式(2)に
おいて×は[)MIQの出方値である。電圧−電流変換
器12は式(2)で示される1oピツ) D/Aコンバ
ータ11の出力を電流値に変換し試料金属片lへ与える
An example of a circuit configuration using a 0-bit D/A converter 11 and a voltage-current converter 12 is shown. In this configuration, when switch 14 is pressed, control circuit 13 operates and 12-bit binary counter 9 starts counting. RjlJM 10 outputs 10-bit digital output according to the output of 12-pin binary counter 9.
0 pits) Send the voltage E to the D/A converter 11 E=exp(-x)-exp(-X/2)-=(2) Shown by formula (2) let In equation (2), x is the output value of [)MIQ. The voltage-current converter 12 converts the output of the D/A converter 11 into a current value as shown by equation (2) and applies it to the sample metal piece l.

この回路構成にょシ第3図に示す等価回路(い9.4μ
F几=9.65にΩ)を測定した結果をナイキスト線図
として第4図に示す。図中破線で示す半円が第3図等価
回路より算出される計算値である。本測定を行なうのに
要した時間は測定開始からフーリエ変換終了までで6秒
であった。又、本測定と同一の測定を従来のソーラトロ
ン125o型にて行なったところ約1時間を必要とした
This circuit configuration is equivalent to the equivalent circuit shown in Figure 3 (9.4μ
The results of measuring F=9.65Ω) are shown in FIG. 4 as a Nyquist diagram. The semicircle indicated by the broken line in the figure is the calculated value calculated from the equivalent circuit in FIG. The time required to perform this measurement was 6 seconds from the start of the measurement to the end of the Fourier transformation. Furthermore, when the same measurement as this measurement was performed using a conventional Solartron 125o model, it required about 1 hour.

実施例2 第5図に電荷付与部5として正弦波の一部を使用した不
連続点を持たない電圧パルス発生器を使用した回路構成
例を示す。電圧パルスは第6図に示すように正弦波の一
周期をその最小値が0 (V)又、その量大値がE [
:V:]となるようにオオフセラをかけたもので不連続
を持たないパルスである。
Embodiment 2 FIG. 5 shows an example of a circuit configuration using a voltage pulse generator that uses a part of a sine wave and has no discontinuous points as the charge applying section 5. As shown in Fig. 6, the voltage pulse has a minimum value of 0 (V) and a maximum value of E [
:V:], and is a pulse with no discontinuity.

この回路構成によシ自動車用スリーコート塗装綱を測定
した結果を第7図に示す。本法により測定された341
にΩと0.25NF及び710にΩと2.0μFは、そ
れぞれ塗膜の値及び塗膜下腐食の値と考えると適切な値
であシ、本発明が実際の腐食系へ適用可能であることが
わかった。
Figure 7 shows the results of measurements made on a three-coat coated steel for automobiles using this circuit configuration. 341 measured by this method
Ω and 0.25 NF and 710 Ω and 2.0 μF are appropriate values when considering the values of the coating film and corrosion under the coating, respectively, and the present invention is applicable to actual corrosion systems. I understand.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、腐食反応系の広い周波数範囲に亘る伝
達関数測定を迅速かつ簡便に行なえるようになり、工業
上伝達関数測定による腐食モニタリングが容易に行なえ
る様になった。
According to the present invention, it has become possible to quickly and easily measure the transfer function of a corrosion reaction system over a wide frequency range, and it has become possible to easily carry out corrosion monitoring by measuring the transfer function in an industrial setting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示す回路構成を示す図、第
2図は本発明装置の回路構成例を示す図、第3図は実施
例1にて測定対象とした等価回路を示す図、第4図は実
施例1により得たナイキスト線図、第5図は本発明装置
の回路構成を示す図。 第6図は実施例2にて電荷付与パルスとして使用された
電圧パルスを示す図、第7図は実施例2により得たナイ
キスト線図。 1・・・試料金属片、2・・・参照電極、3・対極、4
・腐食性液体、5 電荷付与部、6・・・電位検出部。 7・電流検出部、8 高速フーリエ変換装置。 9・・・12ビツト・バイナリ−・カウンター、10・
・・ROM、11−10ビツトD/Aコンバータ、12
 電圧−電流変換器、13・制御回路、14・・スイッ
チ、15・電流増幅用バッファーアンプ。
FIG. 1 is a diagram showing a circuit configuration showing the basic configuration of the present invention, FIG. 2 is a diagram showing an example of the circuit configuration of the device of the present invention, and FIG. 3 is a diagram showing an equivalent circuit as a measurement target in Example 1. , FIG. 4 is a Nyquist diagram obtained in Example 1, and FIG. 5 is a diagram showing the circuit configuration of the device of the present invention. FIG. 6 is a diagram showing a voltage pulse used as a charge imparting pulse in Example 2, and FIG. 7 is a Nyquist diagram obtained in Example 2. 1... Sample metal piece, 2... Reference electrode, 3. Counter electrode, 4
- Corrosive liquid, 5 charge imparting section, 6... potential detection section. 7. Current detection section, 8. Fast Fourier transform device. 9...12-bit binary counter, 10...
・・ROM, 11-10 bit D/A converter, 12
Voltage-current converter, 13. Control circuit, 14. Switch, 15. Buffer amplifier for current amplification.

Claims (1)

【特許請求の範囲】[Claims] 腐食性液体中に浸漬された試料金属片に電荷を付与する
電荷付与部と、この試料金属片の分極電位の時間変化を
開回路状態で検出する電位検出部と、電荷付与部から試
料金属片へ流れる電流を検出し電圧信号へ変換する電流
検出部と、電位検出部および電流検出部の出力を周波数
解析し、試料金桶片の伝達関数をめる高速フーリエ変換
部とを具備したことを特徴とする腐食判定装置において
、電荷付与部として少なくともその立ち上がシ部以外で
連続である電圧または電流パルス発生器を用いたことを
特徴とする腐食判定装置。
A charge applying part applies an electric charge to a sample metal piece immersed in a corrosive liquid, a potential detection part detects a time change in the polarization potential of this sample metal piece in an open circuit state, and a charge applying part applies an electric charge to a sample metal piece. The present invention is equipped with a current detection section that detects the current flowing through the sample tube and converts it into a voltage signal, and a fast Fourier transform section that performs frequency analysis on the outputs of the potential detection section and the current detection section and calculates the transfer function of the sample tube piece. A corrosion determining device characterized in that a voltage or current pulse generator that is continuous at least at a portion other than a rising edge portion thereof is used as a charge applying portion.
JP17219783A 1983-09-20 1983-09-20 Corrosion judging device Pending JPS6064242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17219783A JPS6064242A (en) 1983-09-20 1983-09-20 Corrosion judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17219783A JPS6064242A (en) 1983-09-20 1983-09-20 Corrosion judging device

Publications (1)

Publication Number Publication Date
JPS6064242A true JPS6064242A (en) 1985-04-12

Family

ID=15937376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17219783A Pending JPS6064242A (en) 1983-09-20 1983-09-20 Corrosion judging device

Country Status (1)

Country Link
JP (1) JPS6064242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545113B2 (en) 2012-05-01 2020-01-28 Isis Innovation Limited Electrochemical detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545113B2 (en) 2012-05-01 2020-01-28 Isis Innovation Limited Electrochemical detection method

Similar Documents

Publication Publication Date Title
JP2004191373A (en) Electronic battery tester
US4006404A (en) Pulsed plasma probe
CN101179988A (en) Acupuncture point position evaluating apparatus
JPH0130430B2 (en)
US4940944A (en) Cathodic protection analyzer in which the fundamental and odd harmonics of a power line frequency are removed
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
JPS6064242A (en) Corrosion judging device
US3500188A (en) Method and means for measuring constriction resistance based on nonlinearity
CN114137470A (en) Bandwidth testing device and measuring method thereof
JPH1144715A (en) Measurement of insulating resistance of electronic part
US4038975A (en) Method of and apparatus for the detector of neoplasms and other morphologic changes in mucous membrane samples
JPS59208449A (en) Corrosion judging device
Bekirov et al. Real time processing of the phase shift and the frequency by voltage signal conversion into the sequence of rectangular pulses
JPH04109174A (en) Impedance measuring device
JP2000271101A (en) Body impedance measuring device
JPS5763461A (en) Device for testing watermeter
JP4138502B2 (en) Electrochemical impedance measuring method and electrochemical impedance measuring apparatus
JPS60236058A (en) Detecting method of corrosion speed under paint coated film
JPH10206370A (en) Corrosion rate measuring device for metal
JP2657228B2 (en) Metal corrosion diagnosis method and apparatus
Baranov et al. Measurement of the current transfer function for power transducers of current to voltage
HU177473B (en) Process and equipment for the determination of kinetic parameters of electrode processes in systems with high resistance
SU855553A1 (en) Method of determination of field effect relaxation time
SU769424A1 (en) Device for measuring electrode potentials under non-standard conditions of electrolysis
SU798626A1 (en) Method of measuring two-terminal network complex impedance component values