JPS60236058A - Detecting method of corrosion speed under paint coated film - Google Patents

Detecting method of corrosion speed under paint coated film

Info

Publication number
JPS60236058A
JPS60236058A JP9325184A JP9325184A JPS60236058A JP S60236058 A JPS60236058 A JP S60236058A JP 9325184 A JP9325184 A JP 9325184A JP 9325184 A JP9325184 A JP 9325184A JP S60236058 A JPS60236058 A JP S60236058A
Authority
JP
Japan
Prior art keywords
voltage
corrosion
white noise
transfer function
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9325184A
Other languages
Japanese (ja)
Inventor
Shigeyuki Kamine
加峯 茂行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9325184A priority Critical patent/JPS60236058A/en
Publication of JPS60236058A publication Critical patent/JPS60236058A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To measure quickly a corrosive reaction speed in a wide frequency range by deriving a transfer function of a measured voltage in case a white noise voltage is impressed, and obtaining a frequency characteristic of the transfer function and a constant of a Tafel's gradient of a corrosive reaction. CONSTITUTION:A voltage from a white noise generator 6 is impressed through an opposed pole 5 to a painting metallic piece placed in a corrosion system. In this case, a current flowing in the system is converted to a voltage value V1 by an I-V converting circuit consisting of an operational amplifier 7 and a standard resistance 8. The converted voltage V1 in this case is shown as the right expression by a voltage V2 of the white noise generator 6, an impedance Z of the corrosion system, and a resistance value Rstd of the standard resistance 8. Accordingly, a frequency characteristic of the impedance Z of the corrosion system can be obtained from a frequency characteristic of V2/V1. Subsequently, the transfer function V2/V1 is processed by a Fourier converter 9, and the frequency analysis is executed. This result is transferred to a computer 10, and a corrosion current and an instantaneous corrosion speed are derived from a Tafel's constant of the corrosive reaction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、塗膜下で生している腐食反応の反応速度を
正確、迅速、かつ自動的に検出するだめの方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a method for accurately, rapidly, and automatically detecting the reaction rate of a corrosion reaction occurring under a coating film.

[従来技術] 従来、腐食などの酸化還元系において、その系に外部か
ら電圧ηを印加した時の応答電流iは次式で表されるこ
とが知られている。
[Prior Art] Conventionally, in a redox system such as corrosion, it is known that the response current i when a voltage η is externally applied to the system is expressed by the following equation.

1=icorr−(exp (77/βa ) −ex
p (−η/βC)) ・・・・・・・・・(1)ただ
し、1corrは腐食電流、βa、βCは各々定数とし
てのアノード、カソードのターフエル勾配である。今、
分極ηが十分小さい(10〜20mV以下)場合には、
(1)式がηについてMac Laurin展開可能と
なり次式が得られる。
1=icorr-(exp (77/βa)-ex
p (-η/βC)) (1) However, 1 corr is the corrosion current, and βa and βC are constants of the anode and cathode turf gradients, respectively. now,
If the polarization η is sufficiently small (10 to 20 mV or less),
Equation (1) can be expanded with Mac Laurin with respect to η, and the following equation is obtained.

i=2.3 ・ 1corr ・77・ ((βa+β
C)/βa ・βC) ・ ・ ・ ・ ・ ・ ・ 
・ ・ ・ ・ ・ ・ ・(2)(2)式から i/77−2.3 ・ 1corr ・ ((βa+β
C)/βa ・ βcl −1/Rp ・ ・ ・ ・
 ・ ・ ・ ・ ・(31βa、βCは反応の種類が
決まれば定数となるので、この系は微少分極を与えた時
、抵抗挙動を示す。この抵抗を分極抵抗Rpと称し、腐
食電流、すなわち腐食速度に反比例した数値であるから
、この分極抵抗Rpによってその系の腐食速度を代表さ
せることができる。これが、1957年にS T F>
 RNとGEARYによって提唱された分極抵抗法の概
要である。
i=2.3 ・1corr ・77・ ((βa+β
C)/βa ・βC) ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・(2) From equation (2), i/77-2.3 ・ 1corr ・ ((βa+β
C)/βa ・βcl -1/Rp ・ ・ ・ ・
・ ・ ・ ・ ・(31βa, βC become constants once the type of reaction is determined, so this system exhibits resistance behavior when slight polarization is applied. This resistance is called polarization resistance Rp, and corrosion current, that is, corrosion Since the value is inversely proportional to the speed, this polarization resistance Rp can represent the corrosion rate of the system.
This is an overview of the polarization resistance method proposed by RN and Geary.

このように、腐食系の界面で生している腐食反応の電気
的挙動は、分極が小さい場合には、電気抵抗と等価であ
るが、これを計測するためにセル化すると、分極抵抗R
pの1と並列に電気二重層容量cpの2が、また直列に
溶液抵抗Rsの3が入り、セル全体の等価回路は第1図
のようになる。
In this way, the electrical behavior of the corrosion reaction occurring at the interface of the corrosion system is equivalent to the electrical resistance when the polarization is small, but when it is made into a cell to measure this, the polarization resistance R
Electric double layer capacitance cp 2 is placed in parallel with p 1, and solution resistance Rs 3 is placed in series, and the equivalent circuit of the entire cell is as shown in FIG.

この等価回路からRpだけを分離測定する方法としては
、パルスを印加し、その過渡現象からRp。
A method to separate and measure only Rp from this equivalent circuit is to apply a pulse and measure Rp from the transient phenomenon.

Cpを分離測定するクーロスタット法(例えば特公昭5
8−22697など)が提案されているが、塗膜下腐食
の評価に適用しようとした場合、次のような欠点により
実用に適さない。
Courostat method to separate and measure Cp (for example,
8-22697, etc.), but when trying to apply it to the evaluation of corrosion under the paint film, it is not suitable for practical use due to the following drawbacks.

■一般に塗膜系の場合、分極抵抗Rpが非常に大きくな
る(10ゝ〜102Ω・C♂)ため、過渡現象の時定数
が大きくなり計測精度が得られない。
(2) Generally, in the case of a coating system, the polarization resistance Rp is very large (10 to 102 Ω·C♂), so the time constant of transient phenomena becomes large and measurement accuracy cannot be obtained.

■印加電圧が理論上10〜20mV以内に限定C謔)と
なりS/N比が低い。
(2) The applied voltage is theoretically limited to within 10 to 20 mV, resulting in a low S/N ratio.

■計測に時間を要するため、腐食系の経時変化に追従で
きない場合がある。
■Since measurement takes time, it may not be possible to follow changes in the corrosion system over time.

■計測結果から腐食速度をめる計算に時間を要し、リア
ルタイムモニタリングができない。
■It takes time to calculate the corrosion rate from the measurement results, making real-time monitoring impossible.

また、別の手法としては交流インピーダンス法が提案さ
れている。すなわち、第1図の等価回路において、この
系の複素インピーダンスZはZ−(Rp/ <1 +;
Cp”Rr)+Rsl −j (ωcpRI)2/ (
1+ω’cpRp)l =Zr −jZX・・・・(4
) で表される。ωは角周波数である。ここで、この複素イ
ンビーダンスジの実部Zrと虚部Ziとの関係は(4)
式より次式で表される。
Furthermore, as another method, an AC impedance method has been proposed. That is, in the equivalent circuit of FIG. 1, the complex impedance Z of this system is Z-(Rp/<1 +;
Cp”Rr)+Rsl −j (ωcpRI)2/ (
1+ω'cpRp)l =Zr-jZX...(4
). ω is the angular frequency. Here, the relationship between the real part Zr and the imaginary part Zi of this complex impedance is (4)
From the formula, it is expressed as the following formula.

[ZR−(R3+Rp/2)l +ZI−(Rp/2f
・・・・(5) したがって、Zrと21を軸とする複素平面上にこの系
の周波数特性をブロソトシたナイスト線図は第2図のよ
うに半円状となり、ZR輪軸上2切片と半円の頂点の角
周波数ωmaxから、Rp。
[ZR-(R3+Rp/2)l +ZI-(Rp/2f
(5) Therefore, the Nyst diagram, which plots the frequency characteristics of this system on a complex plane with Zr and 21 as axes, has a semicircular shape as shown in Figure 2, and has two intercepts and a half on the ZR wheel axis. From the angular frequency ωmax of the apex of the circle, Rp.

Cp、Rsを分離してめることができる。計測方法とし
ては、リサージュによる方法、交流ブリッジによる方法
、ロックインアンプによる方法などが1に案されている
が、これらの方法も塗膜下腐食の評価に適用しようとし
た場合、次のような欠点を有するため実用的でない。
Cp and Rs can be separated. Measurement methods such as the Lissajous method, the AC bridge method, and the lock-in amplifier method are proposed in 1, but if these methods are to be applied to the evaluation of corrosion under the paint film, the following It is not practical due to its drawbacks.

■印加電圧が理論上10〜20mV以内に限定A / 
c虻)となりS/N比が低い。
■The applied voltage is theoretically limited to within 10 to 20 mV A/
c) and the S/N ratio is low.

■広範囲の周波数について1点ずつ計測を行わなければ
ならず、計測時間が長くなる。したがって、腐食系の経
時変化に追従できない場合がある。
■It is necessary to measure one point at a time over a wide range of frequencies, which increases the measurement time. Therefore, it may not be possible to follow changes in the corrosion system over time.

〔発明の概要〕[Summary of the invention]

5− この発明は、上記従来の欠点を除去するためになされた
ものであり、腐食系におかれた塗装金属片に、対極を介
してホワイトノイズを印加し、この時、系内に流れる電
流jを電流電圧変換回路によって電圧値に変換した後、
これと印加ホワイトノイズとの間の伝達関数をフーリエ
変換装置によりめ、得られた伝達関数の周波数特性と腐
食反応のターフエル勾配の定数から塗膜下で生じている
腐食反応の速度をめるものである。
5- This invention was made in order to eliminate the above-mentioned drawbacks of the conventional method. White noise is applied to a painted metal piece placed in a corrosive system via a counter electrode, and at this time, the current flowing in the system is After converting j into a voltage value by a current-voltage conversion circuit,
The transfer function between this and the applied white noise is determined by a Fourier transform device, and the rate of the corrosion reaction occurring under the paint film is calculated from the frequency characteristics of the obtained transfer function and the Terfel slope constant of the corrosion reaction. It is.

〔発明の実施例〕[Embodiments of the invention]

本発明の塗膜上腐食速度の検出方法の概要を第3図に示
す。腐食系におかれた塗装金属片4にプラチナ対極5を
介して分極電圧の絶対値1η1が20mvP−Pになる
ようにホワイトノイズジェネレータ6からの出力を印加
する。この時、系内に流れる電流iをFET入力型OP
アンプ7と標準抵抗Rstdの8からなる■−■(1M
、流電圧)変換回路によって電圧値Vlに変換する。こ
の時の変換電圧vIは、ワホイトノイズジエネレータ6
からの出力V2.腐食系のインビーダンスジ、6一 標準抵抗Rstdによって次式で表される。
FIG. 3 shows an outline of the method for detecting the corrosion rate on a paint film according to the present invention. The output from the white noise generator 6 is applied to the painted metal piece 4 placed in the corrosive system via the platinum counter electrode 5 so that the absolute value 1η1 of the polarization voltage becomes 20 mvP−P. At this time, the current i flowing in the system is connected to the FET input type OP
■-■ (1M
, current voltage) is converted into a voltage value Vl by a conversion circuit. The converted voltage vI at this time is the Wahite noise generator 6
Output from V2. The impedance resistance of the corrosion system is expressed by the following formula using 6-standard resistance Rstd.

V]=Rstd/Z・■2・・・・(6)今、求めたの
は腐食系のインピーダンスλであるから(6)式を変形
すると Z=Rstd−V2/V1・・・171が得られる。R
stdはスカラーの定数であるから、(7)式中Ω2/
◇1の周波数特性を得れば、2の周波数特性、すなわち
第2図のナイキスト線図を得ることができる。そのため
に</2及びVlの伝達関数Ω2/Ω1を高速フーリエ
変換装置9により処理し、周波数分析を行う。この結果
を、コンピュータ10に転送し、標準抵抗Rs tdと
の乗算、及び当該腐食反応のターフエル勾配の定数βa
、βCから腐食電流 tcorr、及び瞬間腐食速度を
める演算を行う。さらに、この結果を、グラフインクデ
ィスプレイ、プリンタ等に表示したり、フロッピーディ
スクに記録する。これらの周辺機器は第3図において1
1で示しである。
V]=Rstd/Z・■2...(6) What we have just found is the impedance λ of the corrosion system, so by transforming equation (6), we obtain Z=Rstd-V2/V1...171. It will be done. R
Since std is a scalar constant, Ω2/ in formula (7)
◇If the frequency characteristic 1 is obtained, the frequency characteristic 2, that is, the Nyquist diagram shown in FIG. 2 can be obtained. For this purpose, the transfer function Ω2/Ω1 of </2 and Vl is processed by the fast Fourier transform device 9, and frequency analysis is performed. This result is transferred to the computer 10, multiplied by the standard resistance Rs td, and the constant βa of the turf slope of the corrosion reaction.
, βC to calculate the corrosion current tcorr and the instantaneous corrosion rate. Furthermore, the results are displayed on a graph ink display, printer, etc., or recorded on a floppy disk. These peripheral devices are designated as 1 in Figure 3.
It is indicated by 1.

また、このコンピュータ10はGPIB(Genera
l Pur −pose Interface Bus
)により、高速フーリエ変換装置9、ホワイトノイズジ
ェネレータ6、周辺機器11と接続されており(第3図
中矢印)、自動制御による連続無人運転が可能になって
いる。
Further, this computer 10 is a GPIB (Genera
lPur-poseInterface Bus
), it is connected to the fast Fourier transform device 9, white noise generator 6, and peripheral equipment 11 (arrows in FIG. 3), making continuous unmanned operation possible through automatic control.

また、高速フーリエ変換装置のブロックダイヤグラムを
第4図に示す。◇2.◇1のアナログ入力はシグナルコ
ンディショナ12に入る。このシグナルコンディショナ
12には、信号レベル調整のためのプリアンプ及びアッ
テネータ、解析周波数帯域外の信号がサンプリング周波
数とのヘテロゲイン効果により、解析帯域内にゴースト
信号を折返すエリアジング現象を防止するためのアンチ
ェリアシングフィルタ、2信号入力を切り換えて入力す
るためのアナログマルチプレクサが含まれる。シグナル
コンディショナ12を通過した信号は次のA−D変換部
13でディジタル量に変換される。このA−D変換部に
はザンブルホールド回路、A−D変換器、バッファレジ
スタが含まれる。
Further, a block diagram of the fast Fourier transform device is shown in FIG. ◇2. ◇The analog input of 1 goes into the signal conditioner 12. This signal conditioner 12 includes a preamplifier and attenuator for signal level adjustment, and a preamplifier and an attenuator for preventing the aliasing phenomenon in which signals outside the analysis frequency band return ghost signals within the analysis band due to the hetero gain effect with the sampling frequency. It includes an antialiasing filter and an analog multiplexer for switching and inputting two signal inputs. The signal that has passed through the signal conditioner 12 is converted into a digital quantity by the next A/D converter 13. This A/D conversion section includes a Zumble hold circuit, an A/D converter, and a buffer register.

ディジタル化された信号は入力順にデータメモリ14内
に格納される。これを、ディジタルプロセンサ17がプ
ログラムメモリ16内に記憶されているプロセッシング
アルゴリズムに従って、高速フーリエ変換し、演算結果
をデータメモリ14内に再配置する。演算結果は、D−
A変換器、アナログフィルタ、出力アンプからなるD−
A変換部15を通じ、アナログ量として、X−Yブロッ
ク。
The digitized signals are stored in the data memory 14 in the order of input. The digital processor 17 performs fast Fourier transform on this according to the processing algorithm stored in the program memory 16, and relocates the calculation result in the data memory 14. The calculation result is D-
D- consists of A converter, analog filter, and output amplifier.
The X-Y block is converted into an analog quantity through the A converter 15.

シンクロスコープ等へ出力することもできるし、ディジ
タルプロセンサ17、GPIBポート18を経由、ディ
ジタル量として外部のコンピュータあるいは磁気ディス
ク等へ出力することもできる。
It can be outputted to a synchroscope or the like, or it can be outputted as a digital quantity to an external computer, magnetic disk, etc. via the digital processor 17 and GPIB port 18.

第4図中、矢印はデータの流れや、やり取り、及びプロ
グラムの流れを示す。
In FIG. 4, arrows indicate data flow, exchange, and program flow.

このシステムの特徴を次にあげる。The features of this system are listed below.

■腐食系セルからの信号受入口のr−v変換回路がFE
T入カタイブであるため、入力インピーダンスが高<(
10’Ω以上)、セルインピーダンスの高い塗n側系に
おいても正確な渭1定が可能である。
■The r-v conversion circuit at the signal reception port from the corrosion cell is FE.
Since it is a T input type, the input impedance is high <(
(10'Ω or more), accurate wave 1 constant is possible even in a coating n-side system with high cell impedance.

■A−D変換を行なっているためグイナミソクレンジが
広<(72dB)、微少信号と大信号と9− を同時に取り扱うことができる。
■Since A-D conversion is performed, the range is wide (72 dB), and it is possible to handle small signals, large signals, and 9-signals at the same time.

(3)ホワイトノイズのように解析帯域中にほぼ均一な
パワースペクトルを有する信号を印加し、ごの応答電流
と印加信号との間の伝達関数周波数特性を高速フーリエ
変換するという手法をとっているため、1回の測定時間
が非常にわずかですむ(1秒以内)。
(3) A method is used in which a signal with a nearly uniform power spectrum is applied within the analysis band, such as white noise, and the transfer function frequency characteristics between the response current and the applied signal are subjected to fast Fourier transform. Therefore, the time required for one measurement is extremely short (within 1 second).

■高速性利用して、多数回の測定結果を平均化するアベ
レージング処理を行えば、S/N比が非常に低い塗膜系
においても、正確、かつ迅速な測定が可能である。
(2) By taking advantage of high speed and performing averaging processing to average the results of multiple measurements, accurate and rapid measurements are possible even in coating systems with very low S/N ratios.

本システムを用いて連続無人運転にて測定した塗装金属
腐食系のインピーダンス変化を表すナイキスト線図を第
5図に示す。腐食系セルは、5pccにエポキシ樹脂2
8重量部、n−Buthyl化尿素樹脂20重量部、セ
ロソルブ26重量部、キシレン26重量部からなるクリ
ア塗料を浸漬塗装後、200“C]、 5分焼付硬化し
て得た25μmの膜厚を有する塗装金属片を3%−Na
c]溶液に浸漬し、プラチナ対極を設けるこ10− とにより形成した。第5図中、lhr後等はセル形成、
すなわち塗装金属片を3%−Nacl溶液に浸漬してか
らの時間を表す。1回あたりの測定時間は、アヘレージ
ング回数10回で15秒以内にとどまり、高速性が立証
された。また、測定結果は 5cant 1ebury
らがTFA(Transfer Function A
nalysis)法によって行った結果(ASTM 5
pec Tech Publ、727.187〜+97
 (1981)、)とよく一致しており、正確であるこ
とも立証された。
Figure 5 shows a Nyquist diagram showing impedance changes in a painted metal corrosion system measured using this system during continuous unmanned operation. Corrosion type cell has 5pcc of epoxy resin 2
A clear paint consisting of 8 parts by weight, 20 parts by weight of n-buthylated urea resin, 26 parts by weight of Cellosolve, and 26 parts by weight of xylene was applied by dip coating, and then baked and cured at 200"C] for 5 minutes to obtain a film thickness of 25 μm. Painted metal pieces with 3%-Na
c] It was formed by immersing it in a solution and providing a platinum counter electrode. In Figure 5, after lhr, cell formation, etc.
That is, it represents the time after the painted metal piece was immersed in a 3%-NaCl solution. The measurement time per measurement remained within 15 seconds after 10 aheraging cycles, demonstrating high speed. Also, the measurement result is 5cant 1ebury
Transfer Function A
The results obtained using the ASTM analysis method (ASTM 5
pec Tech Publ, 727.187~+97
(1981), ) and was also proven to be accurate.

(発明の効果〕 以上説明したとおり、この発明は腐食系におかれた塗装
金属片に、対極を介してホワイトノイズの電圧を印加し
7、この時系内に流れる電流iを電流電圧変換回路によ
って電圧値に変換した後、これと印加ホワイトノイズと
の間の伝達関数をフーリエ変換装)〃によりめ、得られ
た伝達関数の周波数特性と、当該腐食反応のターフエル
勾配の定数βa、βCにもとづき塗膜下で生じている腐
食反応の速度をめるようにしたので迅速かつ正確な検出
が可能となる。
(Effects of the Invention) As explained above, the present invention applies a white noise voltage to a painted metal piece placed in a corrosive system via a counter electrode 7, and converts the current i flowing in this time series into a current-voltage conversion circuit. After converting it into a voltage value by Since the speed of the corrosion reaction occurring under the paint film is increased, rapid and accurate detection is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は腐食系の界面で生じている腐食反応の電気的挙
動を計測するためにセル化されたセル全体の等価回路、
第2図は第1図の等価回路図における複素インピーダン
スの実部と虚部とを軸とする複素平面上の周波数特性を
プロットしたナイキスト線図、第3図はこの発明の塗膜
上腐食速度の検出方法の一実施例に適用される塗膜上腐
食速度の検出装置のブロック図、第4図は第3図の塗膜
上腐食速度の検出装置における高速フーリエ変換装置の
構成を示すブロック図、第5図はこの発明の塗膜上腐食
速度の検出方法で測定した塗装金属腐食系のインピーダ
ンス変化を表すナイキスト線図である。 4・・・塗装金属片、5・・・プラチナ対極、6・・・
ホワイトノイズジェネレータ、7・・・FET入力オペ
レーショナルアンプ、8・・・標準抵抗R3td、9・
・・高速フーリエ変換装置、10・・・コンピュータ、
11・・・周辺機器。 3− o!−〇 [^Uコ・ηOIX]IZ 33 手続補正書(自発) 2 発明の名称 塗膜上腐食速度の検出方法 3、補正をする者 名 称 (601)三菱電機株式会社 代表者片山仁八部 4、代理人 5、補正の対象 発明の詳細な説明、図面の1聞 6、補正の内容 (11明細書第4頁第15行目「Zは」とあるのを「之
は」と補正する。 (2)同書第4頁第18行目rjZIJとあるのをrj
Zijと補正する。 (3)同書第5頁第2行目r I Z R−(Rs +
 Rp/2) l” + Z l”=jとあるのを[(
Zr−(R8+Rp/2)l +Z +−Jと補正する
。 (4)同書第5貞第4行目1−ZrとZiを]とあるの
をrZrとZiを−1と補正する。 (5)同書第5頁第5行目「ナイスト1とあるのを「ナ
イキスト」と補正する。 (6)同書第5頁第6行目r Z Rjとあるのを[Z
rJと補正する。 (7)同書第6頁第19行目[ワホイト1とあるのを「
ホワイト」と補正する。 (8)同書第7頁第2行目「vJJとあるのを「91」
と補正する。 (9)同門第7頁第3行目「求めた」とあるのを請求め
たい」と補正する。 00)同書第7頁第20行目rPur−poseJとあ
るのをrPurposeJと補正する。 (1j)同書第8貞第18行目「バッファ」とあるのを
「バッファ」と補正する。 (/2)同書第9頁第8行目「プロセンサ」とあるのを
「プロセンサ」と補正する。 (/3)同書第9頁第16行目「10」とあるのを「1
0」と補正する。 (2Ll)同書第10頁第20行目rNa c I J
とあるのをrNaclJと補正する。 (/9)図面第2図、第5図を別紙のとおり補正する。 以上 宍) 第2図 Zr 第5図 Zr [X 10’n−cm’)
Figure 1 shows the equivalent circuit of the entire cell that was constructed to measure the electrical behavior of the corrosion reaction occurring at the interface of the corrosion system.
Figure 2 is a Nyquist diagram plotting the frequency characteristics on a complex plane centered on the real and imaginary parts of the complex impedance in the equivalent circuit diagram of Figure 1, and Figure 3 is a Nyquist diagram plotting the corrosion rate on the coating film of this invention. Fig. 4 is a block diagram showing the configuration of the fast Fourier transform device in the apparatus for detecting corrosion rate on a coating film shown in Fig. 3. , FIG. 5 is a Nyquist diagram showing the impedance change of a painted metal corrosion system measured by the method of detecting the corrosion rate on a paint film of the present invention. 4...Painted metal piece, 5...Platinum counter electrode, 6...
White noise generator, 7... FET input operational amplifier, 8... Standard resistor R3td, 9...
...Fast Fourier transform device, 10...Computer,
11...Peripheral equipment. 3-o! -〇 [^Uko・ηOIX] IZ 33 Procedural amendment (voluntary) 2 Name of invention Method for detecting corrosion rate on paint film 3 Name of person making the amendment (601) Mitsubishi Electric Corporation Representative Jinhachibe Katayama 4. Agent 5: Detailed explanation of the invention to be amended, 1st sentence of the drawings, 6. Contents of the amendment (11 Amend “Zwa” to “noha” on page 4, line 15 of the specification) (2) In the same book, page 4, line 18, replace rjZIJ with rj
Correct with Zij. (3) Same book, page 5, line 2 r I Z R-(Rs +
Rp/2) l” + Z l”=j [(
Correct as Zr-(R8+Rp/2)l +Z +-J. (4) In the same book, No. 5, line 4, 1-Zr and Zi] is corrected to rZr and Zi by -1. (5) Page 5, line 5 of the same book, ``Nyquist 1'' has been corrected to ``Nyquist''. (6) In the same book, page 5, line 6, replace r Z Rj with [Z
Correct with rJ. (7) Page 6, line 19 of the same book [Wahhoit 1]
"White" is corrected. (8) Page 7, line 2 of the same book, “vJJ” is “91”
and correct it. (9) Domon page 7, line 3, amend the phrase ``sought'' to read, ``I want to request.'' 00) In the same book, page 7, line 20, rPur-poseJ is corrected to rPurposeJ. (1j) In the 8th edition of the same book, line 18, "buffer" is corrected to "buffer." (/2) In the same book, page 9, line 8, "Prosensor" is corrected to "Prosensor". (/3) In the same book, page 9, line 16, replace “10” with “1”.
0”. (2Ll) Same book, page 10, line 20 rNa c I J
Correct it to rNaclJ. (/9) Figures 2 and 5 of the drawings will be corrected as shown in the attached sheet. Figure 2 Zr Figure 5 Zr [X 10'n-cm')

Claims (3)

【特許請求の範囲】[Claims] (1)腐食系におかれた塗装金属片に、対極を介してホ
ワイトノイズの電圧を印加し、この時、系内に流れる電
流を電流電圧変換回路によって電圧値に変換し、この値
と印加ホワイトノイズとの間の伝達関数をフーリエ変換
装置によりめ、得られた伝達関数の周波数特性と腐食反
応のターフエル勾配の定数とにもとづき塗膜下で生じて
いる腐食反応の速度をめるようにしたことを特徴とする
塗膜上腐食速度の検出方法。
(1) A white noise voltage is applied to the painted metal piece placed in the corroding system via the counter electrode, and at this time, the current flowing in the system is converted to a voltage value by a current-voltage conversion circuit, and this value and the applied voltage are The transfer function between the white noise and the white noise is determined by a Fourier transform device, and the rate of the corrosion reaction occurring under the paint film is calculated based on the frequency characteristics of the obtained transfer function and the constant of the Terfel slope of the corrosion reaction. A method for detecting corrosion rate on a paint film, characterized in that:
(2)印加ホワイトノイズの分極電圧の絶対値1ηlが
20mvP−P以内となるように設定されて成る特許請
求の範囲第1項記載の塗膜上腐食速度の検出方法。
(2) The method for detecting the corrosion rate on a paint film according to claim 1, wherein the absolute value 1ηl of the polarization voltage of the applied white noise is set to be within 20 mvP-P.
(3)電流電圧変換回路がFET入力型演算増幅器より
構成されて成る特許請求の範囲第1項記載の塗膜上腐食
速度の検出方法。
(3) The method for detecting corrosion rate on a coating film according to claim 1, wherein the current-voltage conversion circuit is comprised of an FET input type operational amplifier.
JP9325184A 1984-05-10 1984-05-10 Detecting method of corrosion speed under paint coated film Pending JPS60236058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325184A JPS60236058A (en) 1984-05-10 1984-05-10 Detecting method of corrosion speed under paint coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325184A JPS60236058A (en) 1984-05-10 1984-05-10 Detecting method of corrosion speed under paint coated film

Publications (1)

Publication Number Publication Date
JPS60236058A true JPS60236058A (en) 1985-11-22

Family

ID=14077284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325184A Pending JPS60236058A (en) 1984-05-10 1984-05-10 Detecting method of corrosion speed under paint coated film

Country Status (1)

Country Link
JP (1) JPS60236058A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287348A2 (en) * 1987-04-14 1988-10-19 Electric Power Research Institute, Inc In situ monitoring of corrosion rates of polarized or unpolarized metals
JP2012514741A (en) * 2009-01-02 2012-06-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Corrosion resistance evaluation device
EP2340608B1 (en) * 2008-10-22 2019-06-12 General Electric Technology GmbH Device and method for monitoring and/or analyzing rotors of electric machines in operation
JP2021500537A (en) * 2017-10-19 2021-01-07 サノフイSanofi Specimen measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287348A2 (en) * 1987-04-14 1988-10-19 Electric Power Research Institute, Inc In situ monitoring of corrosion rates of polarized or unpolarized metals
EP2340608B1 (en) * 2008-10-22 2019-06-12 General Electric Technology GmbH Device and method for monitoring and/or analyzing rotors of electric machines in operation
JP2012514741A (en) * 2009-01-02 2012-06-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Corrosion resistance evaluation device
JP2021500537A (en) * 2017-10-19 2021-01-07 サノフイSanofi Specimen measurement device
US11650179B2 (en) 2017-10-19 2023-05-16 Sanofi Analyte measurement device

Similar Documents

Publication Publication Date Title
Xiao et al. Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis
Hladky et al. Corrosion rates from impedance measurements: an introduction
Ferrero et al. A calibration procedure for a digital instrument for electric power quality measurement
Gusmano et al. Electrochemical noise resistance as a tool for corrosion rate prediction
Chechirlian et al. A specific aspect of impedance measurements in low conductivity media. Artefacts and their interpretations
US4808931A (en) Conductivity probe
CA2426908C (en) Corrosivity measurement device with temperature compensation
US5448178A (en) Transient technique to determine solution resistance for simple and accurate corrosion rate measurements
Bruun et al. The calibration of inclined hot-wire probes
US4488939A (en) Vapor corrosion rate monitoring method and apparatus
Aubrey et al. Kinematic and dynamic estimates from electromagnetic current meter data
JP3234339B2 (en) Power measuring apparatus and method
US20050212534A1 (en) Method and apparatus for monitoring corrosion
CN109541306A (en) A kind of harmonic wave harmonic detection method based on TLS-ESPRIT
Mansfeld et al. Recording and analysis of AC impedance data for corrosion studies
Angelini et al. An Arduino-based EIS with a logarithmic amplifier for corrosion monitoring
JPS60236058A (en) Detecting method of corrosion speed under paint coated film
JPS59132354A (en) Nondestructive cathode separation test method and device forpipe wrap coating
US3717566A (en) Corrosion ratemeter
Pilla et al. High Speed Non‐Faradaic Resistance Compensation in Potentiostatic Techniques
Serov et al. Features of application of frequency measurement technique based on spectral analysis for real electrical power networks
Beatty et al. Use of the complex exponential expansion as a signal representation for underwater acoustic calibration
Oldham et al. Exploring the low-frequency performance of thermal converters using circuit models and a digitally synthesized source
JP3173523B2 (en) Evaluation method for corrosion resistance of can materials
US3730869A (en) Corrosion ratemeter