JPS6064236A - Fluorescent-x-ray analyzing apparatus - Google Patents

Fluorescent-x-ray analyzing apparatus

Info

Publication number
JPS6064236A
JPS6064236A JP17338483A JP17338483A JPS6064236A JP S6064236 A JPS6064236 A JP S6064236A JP 17338483 A JP17338483 A JP 17338483A JP 17338483 A JP17338483 A JP 17338483A JP S6064236 A JPS6064236 A JP S6064236A
Authority
JP
Japan
Prior art keywords
rays
sample
ray
ray tube
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17338483A
Other languages
Japanese (ja)
Inventor
Shigemi Komatsu
小松 繁美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17338483A priority Critical patent/JPS6064236A/en
Publication of JPS6064236A publication Critical patent/JPS6064236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To broaden the measuring range of elements in a sample and to improve detecting sensitivity and analyzing accuracy, by using an alloy target for an X ray tube, obtaining a specified wavelength by a spectroscopic crystal plate, and thereafter projecting X rays on the sample. CONSTITUTION:An alloy of heavy metal is used as an anode target of an X ray tube 1. The generated primary X rays X1 are inputted to a spectroscopic crystal 3 at an angle theta through a solar slit 2, and only the specified wavelength is reflected. Then the spectroscopic X rays X2 can be set at an arbitrary wavelength by the angle theta. Thus a monochromatic color is formed. Then, the spectroscopic X rays X2, which are made to be the monochromatic color, are projected on a sample 6 through a solar slit 5. Elements in the sample are excited, and the characteristic X rays for each element is generated. Fluorescent X rays X3 are detected by a detector 8. Energy is divided by a system 9, and the qualities and quantities of many elements are determined. In this way, sensitivity is improved, background of the fluorescent X rays X3 become less at the same time, and the detecting limit is improved. Analyzing accuracy is also improved.

Description

【発明の詳細な説明】 この発明は螢光X線分析装置に関し、特に試料限界及び
分析精度の向上させるだめの、励起X線単色化の新規な
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluorescent X-ray analyzer, and more particularly to a novel improvement in monochromating excited X-rays to improve sample limits and analytical accuracy.

従来、螢光X線分析装置に使われているX線管は、ター
ゲットとして、w、 A J M O+ C”r Cr
rRh、などの高純度の金属を用いてX線を発生させて
いる。そのため励起X線は、ターゲット金属の特性X線
の他にコンプトン散乱など連続X線を含むため、バック
グランド除去として、X線管と試料間に二次ターゲット
をおき単色化したが、それでも、二次ターゲット金属の
特性X線かにα、β。
Conventionally, an X-ray tube used in a fluorescent X-ray analyzer has a target of w, A J M O+ C"r Cr
X-rays are generated using high-purity metals such as rRh. For this reason, the excited X-rays include continuous X-rays such as Compton scattering in addition to the characteristic X-rays of the target metal, so to remove the background, a secondary target was placed between the X-ray tube and the sample to make it monochromatic. Next Characteristics of target metal X-ray α, β.

Lα、β2M線など多ピークを含むこと、コンプトン散
乱などの連続X線を完全に除去できないととで、この二
次ターゲットを経たX線を試料に照射すると、二次ター
ゲット金属の特性X線により、試料中の測定元素の範囲
が制限されること、測定元素の最適励起条件にできなく
、バックグランドの影響によシ、検出感度が悪くなシ、
分析精度に影響するという欠点があった。まだX線管か
らの励起X線を分光結晶を介して単色化する方法があ折
精度がよくなかった。
Because it contains multiple peaks such as Lα and β2M rays, and continuous X-rays such as Compton scattering cannot be completely removed, when the sample is irradiated with X-rays that have passed through this secondary target, the characteristic X-rays of the secondary target metal , the range of measurement elements in the sample is limited, the optimum excitation conditions for the measurement elements cannot be achieved, the detection sensitivity is poor,
There was a drawback that it affected analysis accuracy. The method of monochromating the excited X-rays from an X-ray tube through a spectroscopic crystal did not have good folding accuracy.

この発明は、以上の欠点をなくすだめの極めて有効な手
段を提供することを目的とするもので、X線管のターゲ
ットを合金にすると共に、分光結晶を用いて励起X線を
選択的に単色化した後に試料に照射する螢光X線分析装
置を実現するものである。
The purpose of this invention is to provide an extremely effective means for eliminating the above-mentioned drawbacks.The purpose of this invention is to provide an extremely effective means for eliminating the above-mentioned drawbacks. The objective is to realize a fluorescent X-ray analyzer that irradiates the sample after it has been oxidized.

以下、図面と供にこの発明による螢光X線分析装置の好
適な実施例について詳細に説明する。
Hereinafter, preferred embodiments of the fluorescent X-ray analyzer according to the present invention will be described in detail with reference to the drawings.

図面において1は一次X線ビームX1を発生するX線管
、2はX紳ビームX、を平行X線束にするだめのンーラ
スハット、3は一次Xg!ビームXlが照射される分光
結晶であり、グラフアイ)!である。
In the drawing, 1 is an X-ray tube that generates the primary X-ray beam X1, 2 is a hat for converting the X-ray beam X into a parallel X-ray bundle, and 3 is the primary Xg! It is a spectroscopic crystal that is irradiated with beam Xl (Graphai)! It is.

この分光結晶から反射される分光X線ビームX2は、−
次X線ビームと分光結晶3の分光面とのなす角(入射角
0)、−次x Hx、の波長λと分光結晶の格子面間隔
dの間にブラックの条件nλ=2dSinθの満足する
ところがあり、その位置の波長λの分光X線の反射がお
こる。ブニオメータ4は、−次X線ビームx1と分光結
晶3の分光面とのなす角(入射角θ)を任意に変えられ
るよう、3aを中心として回転するようになっている。
The spectroscopic X-ray beam X2 reflected from this spectroscopic crystal is -
Black's condition nλ = 2dSinθ is satisfied between the wavelength λ of the -order x Hx, the angle formed by the order X-ray beam and the spectral surface of the spectrometer crystal 3 (incident angle 0), and the lattice spacing d of the spectrometer crystal. , and spectral X-rays of wavelength λ at that position are reflected. The buniometer 4 is configured to rotate around a center 3a so that the angle (incident angle θ) between the -order X-ray beam x1 and the spectral plane of the spectroscopic crystal 3 can be arbitrarily changed.

但し、分光X線ビームX2の反射は入射方向に対しては
2θの角度をもつことになるので、X#i!管1は分光
結晶よシも2倍の角度位置に位置するよう倍角回転をす
るようになっている。同時にこのブニオメーター4によ
シ、前述の2のソーラースリット、後に述べるソーラー
スリット5、コリメーター6も角度に応じて動くように
なっている。5は分光X線ビームx2を平行X線束にす
るだめのソーラースリット、6は分光X線ビームX2を
絞り込むだめのコリメーター、7はコリメーター6を介
した分光X線ビームX2が照射される試料、8は試料7
の各元素から励起される螢光X線x3を検出するための
検出器、9は検出器8からのX線信号8aをエネルギ分
別し表示するシステムである。
However, since the reflection of the spectral X-ray beam X2 has an angle of 2θ with respect to the incident direction, X#i! The tube 1 is designed to rotate at a double angle so that the spectroscopic crystal is also located at twice the angular position. At the same time, along with this buniometer 4, the solar slit 2 mentioned above, the solar slit 5 described later, and the collimator 6 also move according to the angle. 5 is a solar slit for converting the spectral X-ray beam x2 into a parallel X-ray flux, 6 is a collimator for narrowing down the spectral X-ray beam X2, and 7 is a sample irradiated with the spectral X-ray beam X2 via the collimator 6. , 8 is sample 7
A detector 9 is a system that separates the energy of the X-ray signal 8a from the detector 8 and displays it.

又、X線管1は第2図のように構成されておシ、陽極に
設けられたターゲット11と陰極側のフィラメント12
とから々っている。ターゲット11は重金属(W、 A
g、 Or、 Mo、 C!u、 Rh )の合金から
なっており、フィラメント12からの電子ビーム12a
が照射されると、各構成元素の特性X線及び連続X線か
らなる一次X線X1が発生するようになっている。
The X-ray tube 1 is constructed as shown in FIG. 2, and includes a target 11 provided on the anode and a filament 12 on the cathode side.
I'm confused. Target 11 is heavy metal (W, A
g, Or, Mo, C! u, Rh), and the electron beam 12a from the filament 12
When irradiated, primary X-rays X1 consisting of characteristic X-rays and continuous X-rays of each constituent element are generated.

次に動作について述べると、X線管10合金ターゲツト
として、Or−W−Agを用いた場合、−次XiX、は
図3に示すように、各合金の特性X線と連続X線の重な
ったスペクトルとなる。この−次X線X、がソーラース
リット2を通って、分光結晶6で角度θで入射して特定
波長のみを反射する。
Next, regarding the operation, when Or-W-Ag is used as the X-ray tube 10 alloy target, the -order Xi It becomes a spectrum. This -order X-ray X passes through the Solar slit 2, enters the spectroscopic crystal 6 at an angle θ, and reflects only a specific wavelength.

そのため分光X線X2は角度θにより任意の波長に設定
でき単色ができる。例えば図4は、入射角θを調整して
分光X線X2を3・ke9にピークをもっていったもの
である。(従来の二次ターゲット方式で3にθVの励起
X線を使おうとする場合、二次ターゲット金属としてA
gを用いて行なうと図5のスペクトルが得られる。この
為、−次ターゲット二次ターゲットの金属の特性X線や
連続X線が多く、このことが試料を励起する際に大きな
問題となっている。) 次に単色化した分光X線X2はソーラースリット5を通
り、試料6を照射し、試料中の元素を励起して各元素の
特性X線を発生させ、5i(Li)検出器8により螢光
X線X、を検出し、システム9でエネルギー分別を行な
って、最終的に図6のスペクトルが得られる。励起X線
が6に醇′のためAr以下の軽元素に対して、非常に励
起効率がよい。また重元素分析にはブニオメーター4を
用いて、分光結晶5への入射角度θを変え、分光X線X
2を変えて照射することができる。このようにして、多
元素の定性定量分析を行なうことができる。
Therefore, the spectral X-rays X2 can be set to any wavelength by adjusting the angle θ and can be monochromatic. For example, in FIG. 4, the incident angle θ is adjusted to bring the spectroscopic X-ray X2 to a peak at 3·ke9. (When trying to use θV excitation X-rays at 3 with the conventional secondary target method, A
If this is done using g, the spectrum shown in FIG. 5 will be obtained. For this reason, there are many characteristic X-rays and continuous X-rays of the metal of the -order target secondary target, which poses a big problem when exciting the sample. ) Next, the monochromatic spectral X-rays X2 pass through the solar slit 5, irradiate the sample 6, excite the elements in the sample, generate characteristic X-rays of each element, and are detected by the 5i (Li) detector 8. The system 9 detects the optical X-rays and performs energy separation to finally obtain the spectrum shown in FIG. Since the excitation X-rays are 60%, the excitation efficiency is very high for light elements below Ar. In addition, for heavy element analysis, a buniometer 4 is used to change the incident angle θ to the spectroscopic crystal 5, and the spectroscopic X-ray
It is possible to irradiate by changing 2. In this way, qualitative and quantitative analysis of multiple elements can be performed.

特にこの発明の装置を用いると、まずX線管で発生する
X線X、が低電流で強力な連続X線を放出できる。そし
てこの−次x 1m X、をプニオメーターで角度を変
えて分光結晶に入射することにょシ、単色化された分光
X線X2が任意のエネルギー取り出すことができ、この
分光x#llX2を試料7に照射することにより、試料
中の各元素の最高の励起条件で照射するため、感度がよ
くなることと、同時に分光X線x2は連続X線が11と
んどないため、螢光X 線X3のバックグランドが少な
くなり、検出限界もよくなる。検量線を用いた定量では
、今までと違い、共存元素による励起吸収効果や重複線
の影響を減少できるため、補正が少なく分析精度が向上
する。
In particular, when the device of this invention is used, the X-rays generated in the X-ray tube can emit powerful continuous X-rays with a low current. By changing the angle of this -order x 1m By irradiating, each element in the sample is irradiated under the best excitation conditions, which improves sensitivity. At the same time, since spectral X-rays Less ground and better detection limits. Unlike conventional methods, quantification using a calibration curve can reduce the effects of excitation and absorption due to coexisting elements and overlapping lines, resulting in fewer corrections and improved analytical accuracy.

以上述べたとおり、この発明によれば分光結晶板で特定
の波長にした後に試料に照射するように構成したので、
試料照射用のX線の波長を任章に選択でき、螢光X線分
析装置の定性、定量分析で、検出限界が向上し、分析精
度、確度も向上する効果を有する。
As described above, according to the present invention, the sample is irradiated after setting it to a specific wavelength using a spectroscopic crystal plate.
The wavelength of the X-rays for sample irradiation can be selected as desired, which has the effect of improving the detection limit and improving the analysis precision and accuracy in qualitative and quantitative analysis using a fluorescent X-ray analyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による螢光X線分析装置を示す全体構成
図、第2図はX線管を示す断面図、第5〜第6図は各状
態のX線のスペクトルを示す特性図である。 1・・・X線管 2・・・ソーラースリット6・・・分
光結晶 4・・・プニオメーター5・・・ソーラースリ
ット6・・・コリメーター7・・試料 8・・・5i(Li) 検出器+プリアンプ9・・・リ
ニアアンプ+多重波高弁別器+CRTX、・・・−次X
線 x2・・・分光X線X3・・・螢光X線 7a・・
・プリアンプ信号3a・・・プニオメーター回転軸 11・・・合金ターゲット 12・・・フィラメントX
1・・・−次X線 12a・・・電子ビームa1−・−
Ag−L線(L(Z、 2.984kev、 Lβ+ 
3.151key)a2=−Ag−に線(Kα、 22
.162key、 Kβ、 24.942kev)a3
・=W−L線(Lα、 8.396kev、 Li、9
.670key)a 4− W−M線(Mα、1.77
5key、Mβ21.855kev)a5・・−0r−
に線(Kα、 −5,41kev、 Kβ、 5.94
6kov)a6・・・コンプトン散乱 a7・・W−に線(’k(!、、59.う10kev、
にβ、67.233にθV)但し、励起電圧 50KV
の場合 図面4 分光X線スペクトル a8・・・単色ピーク a9・・・A g−1,線 a 10.・Rh−X線(Kα120.214kev、
 Kβ(22,721kev)ail・・・Ag−に線 α12・・・コンプトン散乱 a 15−Na−に線K(t 1.041 Kβ、1.
067 keva 14 ・−Mg−に線 Kα 1.
254 Kβ 1.297 keva 15 ・−A7
−に線 Kα、 1.487 I(β、1.555 k
eva16−8i−に線にα11.740にβ、1.8
32 keva 17・−P−に線にα、 2.015
 Kβ12゜136 keva 1a・= s−x疏に
α、 2.338 Kβ、2.464 keva 19
−= CL−に線にα、 2.622 Kβ、2.81
5 keva20・・・コンプトン散乱+トムソン散乱
以 上 出願人株式会社第二精工舎 代理人弁理士 最 上 務
Fig. 1 is an overall configuration diagram showing a fluorescent X-ray analyzer according to the present invention, Fig. 2 is a sectional view showing an X-ray tube, and Figs. 5 and 6 are characteristic diagrams showing spectra of X-rays in each state. be. 1... X-ray tube 2... Solar Slit 6... Spectroscopic crystal 4... Pniometer 5... Solar Slit 6... Collimator 7... Sample 8... 5i (Li) Detector +Preamplifier 9...Linear amplifier+Multiple wave height discriminator+CRTX,...-order X
Ray x2... Spectral X-ray X3... Fluorescent X-ray 7a...
・Preamplifier signal 3a... Pniometer rotating shaft 11... Alloy target 12... Filament X
1... -order X-ray 12a... electron beam a1--
Ag-L line (L(Z, 2.984kev, Lβ+
3.151key) a2=-Ag- line (Kα, 22
.. 162key, Kβ, 24.942kev) a3
・=W-L line (Lα, 8.396kev, Li, 9
.. 670key) a 4-WM line (Mα, 1.77
5key, Mβ21.855kev) a5...-0r-
line (Kα, -5,41kev, Kβ, 5.94
6kov) a6... Compton scattering a7... W- line ('k(,, 59. U10kev,
β to 67.233, θV to 67.233) However, excitation voltage is 50KV
In the case of Drawing 4 Spectral X-ray spectrum a8...monochromatic peak a9...A g-1, line a10.・Rh-X-ray (Kα120.214kev,
Kβ(22,721kev) ail...Ag- to line α12...Compton scattering a 15-Na- to line K(t 1.041 Kβ, 1.
067 keva 14 ・-Mg- line Kα 1.
254 Kβ 1.297 keva 15 ・-A7
- line Kα, 1.487 I(β, 1.555 k
eva16-8i- to α11.740 to β, 1.8
32 keva 17・-P- to line α, 2.015
Kβ12゜136 keva 1a・= α to s−x, 2.338 Kβ, 2.464 keva 19
-= CL- to line α, 2.622 Kβ, 2.81
5 keva20...Compton scattering + Thomson scattering and above Applicant: Daini Seikosha Co., Ltd. Patent Attorney Mogami Tsutomu

Claims (2)

【特許請求の範囲】[Claims] (1)X線を発生させるだめのX線管と、このX線管か
らのX線を単色化する分光装置と、試料からの螢光X線
を検出する検出器とからなるX線分析装置において、前
記X線管の陽極ターゲットとして、重金属の合金を用い
ると共に、前記分光装置に設けられた分光結晶によって
単色化後に試料を経て前記検出器に入射するように構成
したことを特徴とするX線分析装置。
(1) An X-ray analysis device consisting of an X-ray tube that generates X-rays, a spectrometer that monochromates the X-rays from the X-ray tube, and a detector that detects fluorescent X-rays from the sample. In the X-ray tube, a heavy metal alloy is used as an anode target of the X-ray tube, and the X-ray tube is configured such that the X-ray tube is made monochromatic by a spectroscopic crystal provided in the spectrometer and then enters the detector through the sample. Line analyzer.
(2)前記分光結晶をそのX線照射位置を中心として回
転可能な構成としたことを特徴とする特許請求の範囲′
4,1項記載のX線分光装置。
(2) Claims characterized in that the spectroscopic crystal is configured to be rotatable around its X-ray irradiation position.
4. The X-ray spectrometer according to item 1.
JP17338483A 1983-09-20 1983-09-20 Fluorescent-x-ray analyzing apparatus Pending JPS6064236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17338483A JPS6064236A (en) 1983-09-20 1983-09-20 Fluorescent-x-ray analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17338483A JPS6064236A (en) 1983-09-20 1983-09-20 Fluorescent-x-ray analyzing apparatus

Publications (1)

Publication Number Publication Date
JPS6064236A true JPS6064236A (en) 1985-04-12

Family

ID=15959397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17338483A Pending JPS6064236A (en) 1983-09-20 1983-09-20 Fluorescent-x-ray analyzing apparatus

Country Status (1)

Country Link
JP (1) JPS6064236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239747A (en) * 1985-08-14 1987-02-20 Furukawa Electric Co Ltd:The Method for analyzing composition of article to be measured by x-rays
JP2015513767A (en) * 2012-02-28 2015-05-14 エックス−レイ オプティカル システムズ インコーポレーテッド X-ray analyzer in which multiple excitation energy bands are generated using an X-ray tube anode and monochromating optics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239747A (en) * 1985-08-14 1987-02-20 Furukawa Electric Co Ltd:The Method for analyzing composition of article to be measured by x-rays
JP2015513767A (en) * 2012-02-28 2015-05-14 エックス−レイ オプティカル システムズ インコーポレーテッド X-ray analyzer in which multiple excitation energy bands are generated using an X-ray tube anode and monochromating optics
CN107424889A (en) * 2012-02-28 2017-12-01 X射线光学系统公司 With the X-ray analysis device using multiple activation energy band caused by more material X ray tube anodes and monochromatic optical devices

Similar Documents

Publication Publication Date Title
EP1402541B1 (en) Wavelength dispersive xrf system using focusing optic for excitation and a focusing monochromator for collection
Friedman et al. A Geiger Counter Spectrometer for X‐Ray Fluorescence Analysis
US9336917B2 (en) X-ray apparatus, method of using the same and X-ray irradiation method
JP7395775B2 (en) Systems and methods for X-ray absorption spectroscopy using a crystal analyzer and multiple detector elements
Szlachetko et al. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)
US4417355A (en) X-Ray fluorescence spectrometer
Georgopoulos et al. Design criteria for a laboratory EXAFS facility
Wobrauschek et al. X‐ray fluorescence analysis with a linear polarized beam after bragg reflection from a flat or a curved single crystal
JP2002189004A (en) X-ray analyzer
JPS6064236A (en) Fluorescent-x-ray analyzing apparatus
Harada et al. K-line X-ray fluorescence analysis of high-Z elements
US3073952A (en) X-ray diffraction apparatus
Injuk et al. Performance and characteristics of two total-reflection X-ray fluorescence and a particle induced X-ray emission setup for aerosol analysis
JPH08220027A (en) X-ray fluorescence analyzer
CN113218975A (en) Surface X-ray absorption spectrum measuring device
JPH071311B2 (en) Method for peak separation of fluorescent X-ray spectrum
JP2728627B2 (en) Wavelength dispersive X-ray spectrometer
Jaklevic et al. Recent results using synchrotron radiation for energy‐dispersive x‐ray fluorescence analysis
Arai Intensity and distribution of background x‐rays in wavelength‐dispersive spectrometry
JP2877534B2 (en) Total reflection X-ray fluorescence analysis method and analyzer
JPH11281597A (en) Photoelectric spectrograph and surface analyzing method
Birks et al. Development of X-ray fluorescence spectroscopy for elemental analysis of particulate matter in the atmosphere and in source emissions
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
JPH08105846A (en) X-ray analyzer
US20030026383A1 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive x-ray spectrometric devices