JPS6064220A - Liquid-level detecting device for low temperature liquid - Google Patents

Liquid-level detecting device for low temperature liquid

Info

Publication number
JPS6064220A
JPS6064220A JP17126683A JP17126683A JPS6064220A JP S6064220 A JPS6064220 A JP S6064220A JP 17126683 A JP17126683 A JP 17126683A JP 17126683 A JP17126683 A JP 17126683A JP S6064220 A JPS6064220 A JP S6064220A
Authority
JP
Japan
Prior art keywords
liquid
voltage
liquid level
wiring
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17126683A
Other languages
Japanese (ja)
Inventor
Yasushi Iwasa
岩佐 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17126683A priority Critical patent/JPS6064220A/en
Publication of JPS6064220A publication Critical patent/JPS6064220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices

Abstract

PURPOSE:To reduce the amount of evaporation of a low temperature liquid utmost and to detect the liquid level accurately, by independently providing a current feeding wiring and a voltage wiring for each resistor element, and selectively switching each terminal to a power source and a voltage measuring device. CONSTITUTION:A plurality of, e.g., five, carbon resistor elements 1-5 are arranged in a low temperature liquid and over the surface of the liquid. A current feeding wiring 21 and a voltage measuring wiring 22 are independently provided for each element. In order to find the liquid level, switching devices 61 and 63 are operated, a current is fed to the resistor elements, 5 and 4 from a power source 60, and each voltage is measured by a voltage measuring device 62 at first. When voltages are equal, the current is fed to the resistor elements 4 and 3, and each voltage is measured. This procedure is sequentially repeated downward. When both voltages are different, the liquid surface is located between the resistor elements, e.g., 3 and 2. Since the current is not fed to the unnecessary resistor elements, useless evaporation of the low temperature liquid can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は微少な加熱でも蒸発し易い低温液体の液位な検
出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a device for detecting the level of a low-temperature liquid that easily evaporates even with slight heating.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

低温工学においては低温液体とは一150’0以下の温
度の液体と定義しているが、本発明はこれに限らず、液
体ヘリウム、液体酸素、液体窒素、液体水素やその他の
液化ガスのようC二微少な加熱で蒸発し易い液体を低温
液体と称することにする。
In cryogenic engineering, a cryogenic liquid is defined as a liquid with a temperature of -150'0 or less, but the present invention is not limited to this, and may include liquid helium, liquid oxygen, liquid nitrogen, liquid hydrogen, and other liquefied gases. C2 Liquids that easily evaporate with slight heating will be referred to as low-temperature liquids.

低温液体の液位検出装置は、容器内に貯蔵されている低
温液体が、外部からの熱侵入或いは内部での熱発生等に
より、蒸発して次第にその量が減じたり、外部から低温
液体を補給されてその量が増加したりしたとき、低温液
体の液位を検出することにより、容器内の低温液体の残
量を知る装置である。
A low temperature liquid level detection device detects when the low temperature liquid stored in a container evaporates and gradually decreases in volume due to heat intrusion from the outside or heat generation inside, or when the low temperature liquid is replenished from the outside. This device determines the remaining amount of low-temperature liquid in the container by detecting the level of the low-temperature liquid when the amount increases.

第1図は従来と本発明の一実施例とに共通な1部分を示
す低温液体の液位検出装置の概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view of a low temperature liquid level detection device showing a portion common to the conventional device and an embodiment of the present invention.

低温液体(この場合液体ヘリウムとする)を貯蔵する容
器である液体ヘリウム槽(11Jは、液体ヘリウム02
の蒸発量を減少させるために外側容器(2)との間を真
空に排気して、真空断熱層a4で周囲を取り囲まれ、さ
らに、液体ヘリウム槽(1υから蒸発してくる冷たいガ
スヘリウムを通す冷却配管(図示せず)を巻回して冷却
された輻射シールド板(1!9によって囲まれている。
A liquid helium tank (11J is a container for storing a low-temperature liquid (liquid helium in this case) is liquid helium 02
In order to reduce the amount of evaporation, the space between the outer container (2) and the outer container (2) is evacuated and surrounded by a vacuum insulation layer A4. It is surrounded by a radiation shield plate (1!9) which is cooled by winding a cooling pipe (not shown).

Oeは液体ヘリウム注入口であり、(171はガスヘリ
ウム出口である。液体ヘリウム槽aDの上部の蓋0沖に
電気および熱絶縁物製のパイプから成る支持部杓a傷を
取付けて、液体ヘリウム槽011の底部付近まで挿入す
る。支持部材(1’lの外周には下から番号(1)〜(
5)で示すカーボン抵抗素子α〔を、間隔をおいて配設
する。QOは液面を示す。
Oe is a liquid helium inlet (171 is a gas helium outlet).A support scoop made of electrical and thermal insulating pipes is attached to the upper lid of the liquid helium tank aD, and the liquid helium is injected into the liquid helium tank. Insert it to near the bottom of tank 011.The outer circumference of the support member (1'l is marked with numbers (1) to () from the bottom).
Carbon resistance elements α shown in 5) are arranged at intervals. QO indicates the liquid level.

そして従来は、第2図に示すように電流供給配線01)
で各抵抗素子(1)〜(5)を直列に接続し、端子(至
)、onに図示しない電源を接続して所定の電流を流し
、各抵抗素子(11〜(5)に印加される電圧を、端子
60〜6湧に電圧測定配線(24で導き、それぞれの端
子60.6I)間、6乃、霞間等に電圧測定装置(図示
せず)を接続して測定するよう(ニしていた。これらの
各配線Qυ、(社)は支持部材Qlのパイプの中を通し
て外部に導出している。
Conventionally, as shown in Fig. 2, current supply wiring 01)
Connect each resistance element (1) to (5) in series, connect a power supply (not shown) to the terminal (to), and apply a predetermined current to each resistance element (11 to (5)). The voltage can be measured by connecting a voltage measuring device (not shown) between the terminals 60 and 6, between the voltage measurement wiring (lead at 24, and each terminal 60.6I), between 6 and 6, etc. Each of these wiring lines Qυ is led out through the pipe of the support member Ql.

カーボン抵抗素子Qdlは液体ヘリウム(13の液面か
ら出ている場合と、液中に浸っている場合との温度の相
異で抵抗値が異なっているから、同一の所定電流を流す
場合、抵抗素子(1)、(2)と(3)〜(5)の各印
加電圧が異なることになる。従って、この印加電圧を比
較すれば第2の抵抗素子(2)と第3の抵抗素子(3)
との間に液面が存在することが分る。
The carbon resistance element Qdl has a different resistance value depending on the temperature when it comes out from the surface of liquid helium (13) and when it is immersed in the liquid, so when the same predetermined current is passed, the resistance The applied voltages of elements (1), (2) and (3) to (5) are different. Therefore, if these applied voltages are compared, it will be found that the second resistance element (2) and the third resistance element ( 3)
It can be seen that there is a liquid level between

ところで、第2図に示した従来の計測用配線図で、端子
(至)、431)間に例えば20 mAの電流を流すと
、液中の第1.第2の抵抗素子(1)、(2)(二はそ
れぞれ8■の電圧が印加され、液面上に出ている第3〜
第5の抵抗素子(3)〜(5)にはそれぞれ5■の電圧
が印加されるものとする。このことにより液面位置は前
述したように第2の抵抗素子(2)と第3の抵抗素子(
3)との間に存在することが検知できるのであるが、こ
の場合、液位な検知するのは第2と第3の抵抗素子(2
)、(3)によって行ない、他の抵抗素子(1)、(4
)、(5)は液位検出には直接には関与していない。し
かるに、電流は流れているので、発熱を生じ、液体ヘリ
ウム(1,11の蒸発損失を増大させるという重大な欠
点があった。この発熱に関与する電力を計算してみると
、液位検出に直接関与している第2、第3の抵抗素子(
2)、(3)の発熱は、20 mA X 8 V = 
0.160 Watt20 mA X 5 V = O
,] QOOWattであり、合計0.260Watt
である。液位検出に直接関与していない抵抗素子(1)
、(4)、(5)の電力は20 mA X 8 V =
 0.160 Watt2 X (2(1mAX5V 
)=0.200Wattであり、この合計は0.360
Wattである。この無駄な0.360Wattの電力
による発熱により液体ヘリウム0邊は1時間に約0.5
04Jが無駄に蒸発することになる。
By the way, in the conventional measurement wiring diagram shown in FIG. 2, when a current of, for example, 20 mA is passed between the terminals (to) and 431), the first . The second resistive elements (1) and (2) (2 are each applied with a voltage of 8 µm, and the 3rd to
It is assumed that a voltage of 5cm is applied to each of the fifth resistance elements (3) to (5). As a result, the liquid level position is changed between the second resistance element (2) and the third resistance element (2) as described above.
3), but in this case, it is the second and third resistance elements (2) that detect the liquid level.
), (3), and other resistive elements (1), (4
) and (5) are not directly involved in liquid level detection. However, since current is flowing, it generates heat and increases the evaporation loss of liquid helium (1,11), which is a serious drawback.When we calculate the power involved in this heat generation, we find that it is difficult to detect the liquid level. The second and third resistance elements directly involved (
The heat generation in 2) and (3) is 20 mA x 8 V =
0.160 Watt20 mA x 5 V = O
, ] QOOWatt, and the total is 0.260Watt
It is. Resistance element not directly involved in liquid level detection (1)
, (4), (5) power is 20 mA x 8 V =
0.160 Watt2
)=0.200Watt, and this total is 0.360
This is Watt. Due to the heat generated by this wasteful 0.360 Watt of electricity, liquid helium is heated at approximately 0.5 watts per hour.
04J will be evaporated in vain.

また容器内の液体ヘリウムの液面(イ)の移動高さ範囲
が大きい場合には、カーボン抵抗素子(1ωもこの移動
高さ範囲に沿って数を多く取付ける必要が生じる。この
場合には液位検出C:直接に関与する抵抗素子は2個の
ままであるが、直接に関与しない抵抗素子は、それだけ
増加するので、液位検出装置の無駄な発熱は著しく増大
し、液体ヘリウムの無駄な蒸発も著しく増大するという
重大な欠点があった。
In addition, if the moving height range of the liquid helium level (A) in the container is large, it will be necessary to install a large number of carbon resistance elements (1ω) along this moving height range. Level detection C: The number of resistance elements that are directly involved remains two, but the number of resistance elements that are not directly involved increases accordingly, so the wasteful heat generated by the liquid level detection device increases significantly, and the amount of wasteful heat generated by the liquid helium increases. A significant drawback was that evaporation was also significantly increased.

また、このような液体ヘリウムの無駄な蒸発は液面の移
動高さ範囲が太きくない場合でも、液位な精度良く検知
したい場合f二は、カーボン抵抗素子(irjIを密に
数多く配設する必要が生じるので、やはり前記と同様に
して、著しく増大するという重大な欠点があった。
In addition, such wasteful evaporation of liquid helium can be avoided even if the moving height range of the liquid level is not wide, and if you want to detect the liquid level with high accuracy, it is necessary to arrange a large number of carbon resistance elements (irjI) closely. As the need arises, there is also the same serious drawback of a significant increase.

またカーボン抵抗素子QO)に電流を流すための電源(
二対する負荷も増大し、このため通電電流が不安定にな
り、所望の一定電流を流すことが甲部になり、検出電圧
も不安定となって、液位検出が不明瞭になるという欠点
があった。
In addition, a power supply (
The load on both sides also increases, which causes the current to flow to become unstable, making it difficult to pass the desired constant current, and the detection voltage also becoming unstable, resulting in unclear liquid level detection. there were.

〔発明の目的〕[Purpose of the invention]

本発明は低温液体の蒸発量を極力少なく押えて、液位な
精度よく検出する低温液体の液位検出装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-temperature liquid level detection device that can accurately detect the liquid level while minimizing the amount of evaporation of the low-temperature liquid.

〔発明の概要〕[Summary of the invention]

本発明においては、低温液体中および液面上方にわたっ
て複数個の抵抗素子を配設し、この抵抗素子に所定の電
流を流すと共にその電流を流すに要する各抵抗素子の電
圧を測定し、その電圧の変化によって液位な検出する低
温液体の液位検出装置において、各抵抗素子にはそれぞ
れ独立して電流供給配線と電圧測定配線とを設け、各電
流供給配線および電圧測定配線の節11子をそれぞれ電
源および電圧測定装置に選択的に切換える電源切換装置
および測定電圧切換装置とを設けたことに特徴を有する
もので液面を挾んだ2個の抵抗素子のみ、あるいは液中
最上位の1個の抵抗素子のみに電流を流して電圧を測定
することにより、2個の抵抗素子に印加される電圧の変
化によるか又は液中の抵抗素子が液面上方(1出た場合
の電圧の変化な知ることにより液位を検出し、他の抵抗
素子には通電せず、低温液体の無駄な蒸発を防止するこ
とを可能にするものである。
In the present invention, a plurality of resistance elements are arranged in the low-temperature liquid and above the liquid surface, a predetermined current is passed through the resistance elements, and the voltage of each resistance element required to flow the current is measured. In a low-temperature liquid level detection device that detects the liquid level based on changes in the liquid level, each resistance element is independently provided with a current supply wiring and a voltage measurement wiring, and a node 11 of each current supply wiring and voltage measurement wiring is provided. It is characterized by having a power supply switching device and a measurement voltage switching device that selectively switch the power supply and voltage measurement device, respectively, and it is possible to use only two resistive elements sandwiching the liquid surface, or one at the top in the liquid. By passing current through only one resistive element and measuring the voltage, we can measure the voltage change due to the change in the voltage applied to two resistive elements or when the resistive element in the liquid is above the liquid surface (1). This makes it possible to detect the liquid level and not energize other resistance elements, thereby preventing unnecessary evaporation of the low-temperature liquid.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第3図および第4図
を参照して説明する。尚、この装置の概略縦断面図は、
背景技術の項にて説明した第1図の通りであるから、こ
れも参照されたい。そして、第3図はこの装置のブロッ
ク図、第4図は第3図の配線の端子配置図である。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. The schematic vertical cross-sectional view of this device is as follows:
This is as shown in FIG. 1 described in the background art section, so please refer to this as well. FIG. 3 is a block diagram of this device, and FIG. 4 is a terminal layout diagram of the wiring shown in FIG.

本実施例においては、5個のカーボン抵抗素子(1)〜
(5)にはそれぞれ独立して電流供給配線0υと電圧測
定配線(27Jとを設け、各電流供給配線(21)l二
はそれぞれ端子(41−(4鴎を設け、各電圧測定配線
(22にはそれぞれ端子(50〜軸を設ける。電流供給
配線の端子f4(l −(49)は、電源(60)に選
択的に接続し、各抵抗素子(1)〜(5)に選択的に電
流を流すようにする電源切換装置(61)内に配設する
。電圧測定配線(2りの端子(イ)〜6glは、2個の
電圧測定装置(62) 、(62)に選択的に接続し、
各抵抗素子(1)〜(5)の電圧を選択的に測定するた
めの測定電圧切換装R(63)内に配設する。そして電
源切換装置(61)と測定電圧切換装置(63)とを連
動させる切換連動装置(64)を設ける。
In this example, five carbon resistance elements (1) to
(5) are each independently provided with a current supply wiring 0υ and a voltage measurement wiring (27J), each current supply wiring (21) is provided with a terminal (41-(4), and each voltage measurement wiring (22 are each provided with a terminal (50~axis).Terminal f4 (l-(49) of the current supply wiring is selectively connected to the power supply (60) and selectively connected to each resistance element (1)~(5). It is installed in the power supply switching device (61) that allows current to flow.The voltage measurement wiring (two terminals (A) to 6gl are selectively connected to the two voltage measurement devices (62) and (62). connection,
It is arranged in a measurement voltage switching device R (63) for selectively measuring the voltage of each resistance element (1) to (5). A switching interlocking device (64) is provided to interlock the power switching device (61) and the measurement voltage switching device (63).

次に作用について説明する。Next, the effect will be explained.

本実施例の装置によって液位な知るには次のようにする
。各切換装置(61) 、 (63)を動作させ、始め
第5と第4の抵抗素子(5)、(4)に所定の電流を流
して各々の電圧を測定する。両電圧が等しかったら、次
に$4と第(3)の抵抗素子(4)、(5)(二所定の
電流を流して各々の電圧を測定する。これを順次下方に
繰返して行き、両電圧が異なっていたら、その抵抗素子
、第1図では第3と第2の抵抗素子(3)、(2)の間
に液面(2■があることが検出される。これは下方の抵
抗素子から順次上方へ測定して行くようにしてもよい。
The liquid level can be determined using the apparatus of this embodiment as follows. Each of the switching devices (61) and (63) is operated, and a predetermined current is initially passed through the fifth and fourth resistance elements (5) and (4) to measure their respective voltages. If both voltages are equal, then pass a predetermined current through $4 and the (3) resistance element (4), (5) and measure each voltage. If the voltages are different, it is detected that there is a liquid level (2) between the resistive elements, the third and second resistive elements (3) and (2) in Figure 1. The measurements may be made sequentially upward from the element.

一旦液位を検出した後は、その液面e1を挾む抵抗素子
(2)、(3)にのみ連続的に電流を流し、電圧の測定
を続ける。そして、両者の電圧が低い方で等しくなった
ならば、両抵抗素子(2)、(3)が液面(2)上(3
)の通電と電圧測定を止め、第2と第1の抵抗素子(2
)、(1)に通電と電圧測定を行なうように各切換装f
gi (61) 、 (63)を切換えて液位の監視を
行えば良い。
Once the liquid level is detected, a current is continuously applied only to the resistance elements (2) and (3) that sandwich the liquid level e1, and the voltage continues to be measured. Then, if both voltages become equal on the lower side, both resistance elements (2) and (3) are connected to the liquid level (2) (3).
) and stop the voltage measurement of the second and first resistance elements (2
), (1) to conduct energization and voltage measurement.
The liquid level can be monitored by switching gi (61) and (63).

逆に両者の電圧が高い方で等しくなったならば、容器内
に液体ヘリウムが補給されて液位が高くなり、両抵抗素
子(2)、(3)が液中に入ったことを示すものである
から、前記とは逆に、j順次上方の抵抗素子にて通電と
電圧測定を行なうように各切換装置(61) 、 (6
3)を切換えて液位を検出すればよい。
Conversely, if the voltages on both sides become equal on the higher side, this indicates that liquid helium has been replenished into the container and the liquid level has risen, and both resistance elements (2) and (3) have entered the liquid. Therefore, contrary to the above, each switching device (61), (6
3) to detect the liquid level.

このようにすれば連続的に9m電する抵抗素子は液面を
挾む2個だけとなり、他の抵抗素子には通電しないから
無駄な発熱による液体ヘリウムの蒸発を防止することが
できる。また電源(6o)の負荷も軽減され、精度のよ
い安定した電流を得られる効果を有する。
In this way, the number of resistive elements that continuously conduct electricity for 9 m is reduced to two that sandwich the liquid surface, and the other resistive elements are not energized, thereby preventing evaporation of liquid helium due to wasteful heat generation. Further, the load on the power supply (6o) is reduced, and a stable current with high accuracy can be obtained.

第5図に示す他の実施例は第3図に示した実施例の切換
連動装置(64)を省略したもので、他は第3図に示し
た実施例の通りである。
Another embodiment shown in FIG. 5 is the same as the embodiment shown in FIG. 3 except that the switching interlock device (64) of the embodiment shown in FIG. 3 is omitted.

これは両切楔装置(61) 、(63)を必らずしも連
動にことができるためである。他の作用効果は$3図に
示した実施例と同様である。
This is because the double cutting wedge devices (61) and (63) can not necessarily be interlocked. Other functions and effects are similar to those of the embodiment shown in Figure $3.

尚、前記各実施例においては、カーボン抵抗素子の選択
的連続通電は液面を挾む2個(一対して行なうこととし
たが、検出の確実性を期待するために3個あるいは4個
等、数を増やしてもよいし、容器内の液体ヘリウムの液
面(21が低下方向のみC1変化することが予じめ予想
できるときには、液面−下の最上部に位置する抵抗素子
のみに選択的通電を行ない、その電圧の変化を待って液
位の変化を検出するようにしても、本発明の意図すると
ころから、何ら逸脱するものではない。そして抵抗素子
としてはカーボン低紙素子を用いるととで説明してきた
が、カーボングラス抵抗素子やゲルマニウム抵抗素子等
を用いることができることも勿論である。また支持部材
a1は棒状のものでもよい。
In each of the above embodiments, the selective continuous energization of the carbon resistance elements was carried out in two (a pair) sandwiching the liquid surface, but in order to ensure the reliability of detection, three or four carbon resistance elements were , the number may be increased, or if it is predicted in advance that the liquid helium level (21) in the container will change only in the downward direction, select only the resistive element located at the top of the liquid helium below the liquid level. There is no deviation from the intent of the present invention even if the current is applied to the target and the change in the liquid level is detected by waiting for the change in voltage.Then, a carbon thin paper element is used as the resistance element. Although it has been explained above, it is of course possible to use a carbon glass resistance element, a germanium resistance element, etc. Also, the support member a1 may be rod-shaped.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、差し当って液位
検出に関係の無い抵抗素子には電流を流さないようにし
たから、精度が良く、低温液体の無駄な蒸発をなくして
経済的な低温液体の液位検出装置を提供することができ
る。
As explained above, according to the present invention, current is not passed through the resistance elements that are not related to liquid level detection for the time being, so accuracy is high and unnecessary evaporation of low-temperature liquid is eliminated, making it economical. Accordingly, it is possible to provide a low-temperature liquid level detection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来および本発明の一実施例に共通した部分を
示・す低温液体の液位検出装置の概略縦断面図、第2図
は第1図の従来の場合の配線の端子配置図、第3図は第
1図の本発明の一実施例の場合の配線系統を示すブロッ
ク図、第4図は第3図の配線の端子配置図、第5図は他
の実施例の配線系統を示すブロック図である。 1〜5・・・抵抗素子の番号、1o・・・抵抗素子11
・・・低温液体を貯蔵する容器である液体ヘリウム槽1
2・・・低温液体である液体ヘリウム18・・・容器の
蓋 19・・・支持部材20・・・液面 21・・・電
流供給配線22・・・電圧測定配線 40〜59・・・
端子の番号60・・・電源 61・・・電源切換装置6
2・・・電圧測定装置 63・・・測定電圧切換装置6
4・・・切換運動装置 代理人 弁理士 井 上 −男 第 1 図 第 2 図 第 3 図 第 4 図
Fig. 1 is a schematic vertical cross-sectional view of a low temperature liquid level detection device showing parts common to the conventional method and an embodiment of the present invention, and Fig. 2 is a terminal arrangement diagram of the wiring in the conventional case of Fig. 1. , FIG. 3 is a block diagram showing the wiring system in one embodiment of the present invention shown in FIG. 1, FIG. 4 is a terminal arrangement diagram of the wiring in FIG. 3, and FIG. 5 is a wiring system in another embodiment. FIG. 1-5... Resistance element number, 1o... Resistance element 11
...Liquid helium tank 1, which is a container for storing low-temperature liquid
2... Liquid helium which is a low temperature liquid 18... Container lid 19... Support member 20... Liquid level 21... Current supply wiring 22... Voltage measurement wiring 40-59...
Terminal number 60...Power supply 61...Power switching device 6
2...Voltage measurement device 63...Measurement voltage switching device 6
4...Switching motion device agent Patent attorney Mr. Inoue Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)低温液体中および液面上方にわたって複数個の抵
抗素子を配設し、この抵抗素子に所定の電流を流すと共
にその電流を流すに要する各抵抗素子の電圧を測定し、
その電圧の変化によって液位な検出する低温液体の液位
検出装置において、各抵抗素子C二はそれぞれ独立して
電流供給配線と電圧測定配線とを設け、各電流供給配線
および電圧測定配線の端子をそれぞれ電源および電仕測
定装憧−罵−遭択的(:切換える電源切換装置および測
定電圧切換装置とを設けたことを特徴とする低温液体の
液位検出装置。
(1) Arranging a plurality of resistance elements in the low-temperature liquid and above the liquid surface, passing a predetermined current through the resistance elements, and measuring the voltage of each resistance element required to flow the current,
In a low-temperature liquid level detection device that detects the liquid level based on a change in voltage, each resistance element C2 is independently provided with a current supply wiring and a voltage measurement wiring, and a terminal of each current supply wiring and voltage measurement wiring is provided. A liquid level detection device for a low-temperature liquid, characterized in that it is provided with a power supply switching device and a measurement voltage switching device for switching between a power source and an electrical measuring device, respectively.
(2)電源切換装置と測定電圧切換装置とを連動させる
切換連動装置を設けたことを特徴とする特許請求の範囲
第1項記載の低温液体の液位検出装置。
(2) The low temperature liquid level detection device according to claim 1, further comprising a switching interlock device that interlocks the power supply switching device and the measurement voltage switching device.
(3)抵抗素子およびこれに接続する各配線は低温液体
を貯蔵する容器に支持された電気および熱絶縁物製の棒
又はバイブ状の支持部祠に2着したことを特徴とする特
許請求の範囲第1項又は第2項記載の低温液体の液位検
出装置。
(3) The resistive element and each wiring connected thereto are attached to two support parts in the form of a rod or a vibrator made of electrical and thermal insulators supported by a container storing a low-temperature liquid. A liquid level detection device for a low temperature liquid according to item 1 or 2.
JP17126683A 1983-09-19 1983-09-19 Liquid-level detecting device for low temperature liquid Pending JPS6064220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17126683A JPS6064220A (en) 1983-09-19 1983-09-19 Liquid-level detecting device for low temperature liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17126683A JPS6064220A (en) 1983-09-19 1983-09-19 Liquid-level detecting device for low temperature liquid

Publications (1)

Publication Number Publication Date
JPS6064220A true JPS6064220A (en) 1985-04-12

Family

ID=15920137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17126683A Pending JPS6064220A (en) 1983-09-19 1983-09-19 Liquid-level detecting device for low temperature liquid

Country Status (1)

Country Link
JP (1) JPS6064220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223626A (en) * 1986-03-26 1987-10-01 Sumitomo Heavy Ind Ltd Level detector for cryogenic liquid tank
JP2005259001A (en) * 2004-03-15 2005-09-22 Omron Corp Panel mounting structure of electronic equipment case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223626A (en) * 1986-03-26 1987-10-01 Sumitomo Heavy Ind Ltd Level detector for cryogenic liquid tank
JP2005259001A (en) * 2004-03-15 2005-09-22 Omron Corp Panel mounting structure of electronic equipment case

Similar Documents

Publication Publication Date Title
JP2008532022A (en) Superconducting liquid level measuring device for liquefied hydrogen and liquefied neon and measuring method for measuring liquid level
US6988400B2 (en) Mass flowmeter having measuring ranges measured by two separate methods
JPH11317307A (en) Zero boil-off refrigerating agent cooling recondensing type superconducting magnet assembly
CN100422694C (en) Method for measuring liquid cryogen level using a level probe
US5575854A (en) Semiconductor treatment apparatus
CN1181525A (en) High thermal gain oven
US5018387A (en) Cryogenic liquid level measuring apparatus
JPS6064220A (en) Liquid-level detecting device for low temperature liquid
Pillai et al. An improved comparative thermal conductivity apparatus for measurements at high temperatures
JPS6133367B2 (en)
KR20140080623A (en) Apparatus and method for measuring level of liquid gas using superconductor and metal
JPS6351253B2 (en)
JP4514532B2 (en) AC loss measuring apparatus and measuring method
KR940002192B1 (en) Liquid level meter
JPH0792002A (en) Liquefied helium level gauge
Hagedorn et al. Monitor for the quality factor in two-phase helium flow using a low temperature oscillator
Wenzel Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure
JP2658140B2 (en) Liquid level measurement method and apparatus
CN109871051A (en) Temperature control system and temprature control method for atomic air chamber
JPH0257919A (en) Liquid level gage
JPH0242321A (en) Liquid level gauge
Boroski et al. Thermal Performance Measurements of a 100 Percent Polyester MLI System for the Superconducting Super Collider; Part I: Instrumentation and Experimental Preparation (300K-80K)
JPH06350143A (en) Temperature measurement device and semiconductor manufacture device using it
JP3161803B2 (en) Differential scanning calorimeter
JP3285155B2 (en) Ice / snow water mixing ratio measuring device