JPS6063971A - Negative resistance light emitting element - Google Patents

Negative resistance light emitting element

Info

Publication number
JPS6063971A
JPS6063971A JP59165057A JP16505784A JPS6063971A JP S6063971 A JPS6063971 A JP S6063971A JP 59165057 A JP59165057 A JP 59165057A JP 16505784 A JP16505784 A JP 16505784A JP S6063971 A JPS6063971 A JP S6063971A
Authority
JP
Japan
Prior art keywords
layer
cooling
voltage
gnd
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59165057A
Other languages
Japanese (ja)
Other versions
JPS6048916B2 (en
Inventor
Kazuhisa Murata
和久 村田
Hiroshi Hayashi
寛 林
Takeshi Sakurai
武 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59165057A priority Critical patent/JPS6048916B2/en
Publication of JPS6063971A publication Critical patent/JPS6063971A/en
Publication of JPS6048916B2 publication Critical patent/JPS6048916B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable the manufacture of a GND having a multilayer structure with the carrier concentration controlled at a time of crystal growth by a method wherein the cooling speed is controlled in the process of cooling a solution added with a dopant acting as an impurity for both polarities. CONSTITUTION:A mixture (raw material) of a fixed ratio of composition is uniformly dissolved. It is cooled to 905 deg.C at a cooling speed of 1 deg.C/min by the epitaxial growing method and then kept at this temperature for 5min. An N1 layer is formed in this process. Successively, a P1 layer is formed by cooling to 903 deg.C at a cooling speed of 0.05 deg.C/min. When the P1 layer is formed, a low carrier concentration layer is formed by cooling to 901 deg.C by the setting of the cooling speed at CR close to the region of inversion temperature. When this layer is formed, it is cooled to 891 deg.C and kept for 5min by an increase in the cooling speed to 2 deg.C/min. An N2 layer is formed in this process. Further, the cooling speed is set at 0.1 deg.C/min, and then a P2 layer is formed by cooling to 880 deg.C. Thereafter, the cooling speed is gradually increased with the decrease in the temperature inside a furnace, and a multilayer single crystal prepared after cooling inside the furnace is taken out.

Description

【発明の詳細な説明】 く便 概〉 本発明はスイッチング電圧及び保持電流をそれぞれ一定
以上大きくした負性抵抗素子の素子構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Convenience Overview The present invention relates to an element structure of a negative resistance element in which the switching voltage and the holding current are each increased by a certain level or more.

例えば電子ライターに使用されるスイッチング素子は、
ガスに着火させるのに必要な一定値以上イノチング素子
としてはSiのSCRを用いたもの、SiのRNPN構
造のダイオードを用いたもの、G a A sよりなる
PNPN発光ダイオード(以下GNDという。)を用い
たもの等があるが、上記の中、GNDはスイッチング動
作と同時に発光する特徴があり、発光によってインジケ
ータの役割を果し、装飾的価値もあるので、今後の発展
が望まれている。
For example, the switching elements used in electronic lighters are
A certain value or more required for igniting the gas can be used as an innoting element using a Si SCR, a Si RNPN diode, or a PNPN light emitting diode (hereinafter referred to as GND) made of GaAs. Among the above, GND has the characteristic of emitting light at the same time as the switching operation, and the light emission serves as an indicator and has decorative value, so further development is desired.

〈先行技術〉 ここで従来のGNDの構造及び製造方法について少し説
明すると、本件発明者等の一人による発明、特許番号第
763787号「多層半導体の製法」に記載されている
通り、III −V族化合物半導体に対して両性不純物
として働くドーパントを添加した融液を冷却することに
よってP型、N型半導体層を成長させる方法において、
上記融液の冷却期間、反転温度領域を繰返し通過するご
とく冷却速度を繰り返し変化させ、順次N型、P型層を
析出させる製法がある。この方法で作られだGND/7
)慟:&プ’e ”n 11萌Iff ;斗ト r+−
by rs +rJr ’k 1 θ”l h74FI
I IW hl第1のP型層PI 、第2のN型層N2
、第2のP型層P2の4層構造で構成される。このGN
Dのスイッチング電圧V8けGND製作時に於ける製造
技術」二の制約からキャリアの拡散長に対してベース層
の厚さが大きくなっているので層P1 と層N2で形成
される接合J2の破壊電圧で決められ、寸だ保持電流I
hは層N1 と層P1 で形成される接合J1の注入効
率と、層P1中での電子輸送効率及び層N2 と層P2
で形成される接合J3の注入効率と層N2中での正孔輸
送効率で決められる。
<Prior Art> Here, to briefly explain the structure and manufacturing method of the conventional GND, as described in Patent No. 763787, "Manufacturing method of multilayer semiconductor", an invention by one of the present inventors, III-V group In a method of growing P-type and N-type semiconductor layers by cooling a melt added with a dopant that acts as an amphoteric impurity for a compound semiconductor,
There is a manufacturing method in which the cooling rate is repeatedly changed during the cooling period of the melt so that the melt repeatedly passes through an inversion temperature region, and N-type and P-type layers are sequentially deposited. GND/7 made using this method
) 柟:&pu'e ”n 11moeIff ;斗ト r+-
by rs +rJr 'k 1 θ”l h74FI
I IW hl First P-type layer PI, second N-type layer N2
, a second P-type layer P2. This GN
Switching voltage of D V8 and GND Due to the second constraint in manufacturing technology, the thickness of the base layer is large relative to the carrier diffusion length, so the breakdown voltage of junction J2 formed by layer P1 and layer N2 is The holding current I is determined by
h is the injection efficiency of the junction J1 formed by the layer N1 and the layer P1, the electron transport efficiency in the layer P1, and the layer N2 and the layer P2.
It is determined by the injection efficiency of the junction J3 formed in and the hole transport efficiency in the layer N2.

この構造のGNDスイッチング電圧Vsは2oボルト±
3ボルトであり、保持電流Ihは1〜10mAである。
The GND switching voltage Vs of this structure is 2o volts ±
3 volts, and the holding current Ih is 1 to 10 mA.

次に本発明によって製造されるGNDが使用される一実
施例である電子ライターの電気回路図を第2図とともに
説明する。
Next, an electric circuit diagram of an electronic lighter, which is an example in which the GND manufactured according to the present invention is used, will be explained with reference to FIG. 2.

Sはスイッチ、JZは比較的低電圧の電池電源、O20
はスイッチSを介して電池電源Eから電力の供給を受け
て動作するブロッキング発振回路である。ブロッキング
発振回路O8Cは従来から周知のものであって、コンデ
ンサC1、抵抗R,トランジスタQおよび3巻線り、、
L2 、L3を有するトランスT、から構成されている
。C2は充放電用コンデンサで整流用ダイオードD1を
介してトランスT、の出力巻線L3の両端に接続さり。
S is a switch, JZ is a relatively low voltage battery power supply, O20
is a blocking oscillation circuit that operates by receiving power from a battery power source E via a switch S. The blocking oscillator circuit O8C is conventionally known and includes a capacitor C1, a resistor R, a transistor Q, and three windings.
It consists of a transformer T having L2 and L3. C2 is a charging/discharging capacitor connected to both ends of the output winding L3 of the transformer T via the rectifying diode D1.

る。D2はGa As負性抵抗発光素子等の負性抵抗を
有するGNDで、高圧発生用トランスT2の一次巻ML
4 と直列接続して充放電用コンデンサC2の両端に接
続される。Pは高圧発生用トランスT2の二次巻線L5
に接続された点火用プラグである。
Ru. D2 is a GND having negative resistance such as a GaAs negative resistance light emitting element, and is connected to the primary winding ML of the high voltage generation transformer T2.
4 in series and connected to both ends of the charging/discharging capacitor C2. P is the secondary winding L5 of the high voltage generation transformer T2
This is the spark plug connected to the ignition plug.

第3図は負性抵抗を有するGND D2の電圧(V)−
電流(I)特性図で、高抵抗状態の遮断領域■、電圧V
が上れば電流Iが減少する負(<J抵抗領域1]および
普通の発光ダイオードと同じ低抵抗値をもつ導通領域1
■とよりなり、光出力は入力電流にほぼ比例するため、
遮断領域■の状態ではほとんど発光せず、導通領域1u
の大電流時に強い発光を示す。なお、Vsは半導体発光
素子D2のスイッチング電圧、Ihは導通保持電流であ
る。
Figure 3 shows the voltage (V) of GND D2, which has negative resistance.
In the current (I) characteristic diagram, the cutoff region of high resistance state ■, voltage V
When the current I increases, the current I decreases (<J resistance region 1] and the conduction region 1 has the same low resistance value as an ordinary light emitting diode.
■As the optical output is approximately proportional to the input current,
Almost no light is emitted in the state of the cutoff region ■, and the conduction region 1u
It emits strong light at large currents. Note that Vs is a switching voltage of the semiconductor light emitting element D2, and Ih is a conduction holding current.

さて、スイッチSを閉成すると、電池電源Eよりベース
巻線り、および抵抗Rを介してトランジスタQにベース
電流が供給され、コレクタ巻線L2を介してコレクタ電
流が流れる。ここで、ベース巻aL 1 とコレクタ巻
線L2はその誘起電圧によりベース電流に正帰還をかけ
ているので、コレクタ電流を一層増加さぜる。こうして
、正帰還によってトランジスタQが飽和してしまうと、
ベース巻線り、への帰還がなくなりトランジスタQはカ
ットオフとなる。そして、カットオフの間にコンデンサ
C1の放電が行なわれ、放電が終了した時点で再ひベー
ス電流の供給が開始され上記動作を繰Fフ返ず。
Now, when the switch S is closed, a base current is supplied from the battery power supply E to the transistor Q via the base winding and the resistor R, and a collector current flows through the collector winding L2. Here, since the base winding aL 1 and the collector winding L2 apply positive feedback to the base current by their induced voltages, the collector current is further increased. In this way, when transistor Q becomes saturated due to positive feedback,
Since there is no feedback to the base winding, the transistor Q is cut off. Then, during the cutoff, the capacitor C1 is discharged, and when the discharge is finished, the supply of base current is started again, and the above operation is repeated.

発1辰器用トランスT1の出力巻線L3から出力される
電圧は、後述するようにGND I)2のスイッチング
電比Vs以上であることが必要で、ここではスイッチン
グ値電圧Vsをほぼ30Vとして、トランスT1の巻線
比によって、電池電源Eの1.3〜3V程度の低い電圧
を一次的に昇圧して、このように発振回路そのもので一
次的な引圧をすることは、特にブロッキング発振回路の
場合、その発振回路の有効な利用が計れて、かつ電池電
源Eとしてより低電圧のものが使用でき有用である○ なお、発振器用トランスT1の出力巻線り、から出力さ
れる電圧は、実際には負荷として充放電用コンデンサC
2が接続されているので、開放電圧そのものの値にはな
らない。第4図は出力巻線L3と整流ダイオードD1の
接続点の電圧波形を示すタイムチャートであるが、ピー
ク電圧■p1パルス幅Wおよび繰返し周期rは充放電用
コンデンサC2の充電状態により変化する。ピーク電圧
The voltage output from the output winding L3 of the generator transformer T1 needs to be equal to or higher than the switching voltage ratio Vs of GND I)2, as will be described later. Here, the switching value voltage Vs is set to approximately 30V, Depending on the winding ratio of the transformer T1, the low voltage of about 1.3 to 3V of the battery power source E is primarily boosted, and the oscillation circuit itself is used to pull down the voltage primarily, especially in a blocking oscillation circuit. In this case, the oscillation circuit can be used effectively, and a lower voltage battery can be used as the battery power source E, which is useful.In addition, the voltage output from the output winding of the oscillator transformer T1 is In reality, the charge/discharge capacitor C is used as a load.
2 is connected, it does not become the value of the open circuit voltage itself. FIG. 4 is a time chart showing the voltage waveform at the connection point between the output winding L3 and the rectifier diode D1, and the peak voltage (2) p1 pulse width W and the repetition period r vary depending on the charging state of the charging/discharging capacitor C2. peak voltage.

Vpは略々コンデンサC2の充電電圧と同一であり、充
電電圧が高くなればそれに従ってピーク電圧Vp も高
くなる。まだ、パルス幅Wおよび繰り返し周期rは、充
放電用コンデンサC2の充電電圧すなわちピーク電圧V
pがブロッキング発振回路O8Cの内部に影響を与え、
充電電圧が高くないずれにしても、発振器用トランスT
、の出力巻線り、から出力された電圧は、−繰返し周期
r毎に、整流用ダイオードD、によって整流された後、
逐次充放成用コンデンサC2に充電されていく。
Vp is approximately the same as the charging voltage of capacitor C2, and as the charging voltage increases, the peak voltage Vp also increases accordingly. Still, the pulse width W and the repetition period r are determined by the charging voltage of the charging/discharging capacitor C2, that is, the peak voltage V.
p affects the inside of the blocking oscillation circuit O8C,
Even if the charging voltage is not high, the oscillator transformer T
The voltage output from the output winding of , after being rectified by the rectifying diode D, every - repetition period r,
The charging/discharging capacitor C2 is sequentially charged.

適数回これが繰返され、充放電用コンデンサC2の両端
電圧が第5図(a)のようにGND D2のしきい値電
圧Vsに達すると、これがスイッチオンして、充放電用
コンデンサC2、G N D D 2および昇圧用トラ
ンスT2の一次巻線L4による閉回路を構成し、急激な
放電電流を流す。これによって、GND D2を発光さ
せるとともに、昇圧用トランスT2の二次巻線L5にl
0KV近くの電圧を生じさせ、点火用プラグPを放電し
てガス等を点火する。充放電用コンデンサC2の放電が
終了するとGND D2はオフとなり、寸だ、発振器用
トランスT1の出力巻線L3から出力される電圧によっ
て、その−繰返し周期r毎に逐次放電用コンデンサC2
が充電される。これはスイッチSを閉成している間続け
られ、点火の繰返し周期rはここでは1/2〜1/3秒
程度である。
This is repeated an appropriate number of times, and when the voltage across the charging/discharging capacitor C2 reaches the threshold voltage Vs of GND D2 as shown in FIG. 5(a), it is switched on and the charging/discharging capacitors C2, G A closed circuit is formed by NDD2 and the primary winding L4 of the step-up transformer T2, and a rapid discharge current flows. As a result, GND D2 emits light and l is applied to the secondary winding L5 of the step-up transformer T2.
A voltage close to 0 KV is generated, the ignition plug P is discharged, and gas, etc. is ignited. When the discharge of the charging/discharging capacitor C2 is completed, GND D2 is turned off, and the voltage output from the output winding L3 of the oscillator transformer T1 causes the discharging capacitor C2 to be turned off successively at each repetition period r.
is charged. This continues while the switch S is closed, and the ignition repetition period r is here approximately 1/2 to 1/3 second.

GND D2のオフ動作は、GND D2に逆電圧を印
加するか、導通保持電流Ih以下をターンオフ期間以上
維持することが必要であるが、例えば、このときのブロ
ッキング発振1i−!回路O8Cの周波数が500KH
2と比較的高く、すなわちターンオフ期間以下の繰返し
周期rであって、また、導通保持電流Ih=0.1mA
以下の電流を流すことができない場合でも、第5図(b
)のように、昇圧用トランスT2の一次巻線L4の電圧
波形に逆電圧が発生ずるので、これによってGND D
2のオフ動作を行なうことができる。もちろん、ブロッ
キング発振回路O8Cからの出力によって、導通保持電
流Ih以下をターンオフ期間以」−糺持できれば、これ
によってオフ動作をすることは可能である。このように
高電圧が発生ずれば、点火プラグPより放電し、このと
きのスパークにより91Iえはガス等を点火する。
For the off operation of GND D2, it is necessary to apply a reverse voltage to GND D2 or to maintain the conduction holding current Ih or less for the turn-off period or longer. For example, the blocking oscillation 1i-! The frequency of circuit O8C is 500KH
2, that is, the repetition period r is less than the turn-off period, and the conduction holding current Ih = 0.1 mA.
Even if it is not possible to flow the following current,
), a reverse voltage is generated in the voltage waveform of the primary winding L4 of the step-up transformer T2.
2 off operations can be performed. Of course, if the output from the blocking oscillation circuit O8C can maintain the conduction holding current Ih or less during the turn-off period, it is possible to perform the off operation. If such a high voltage is generated, the spark plug P will discharge, and the spark will ignite the 91I gas or the like.

一方、GND D2は電流が流れる毎に発光するため動
作状態を表示できる。このことは、もしガスに点火しな
かった場合、GND D、+が発光ずればガスがないこ
とを確認できるとともに、発光していなければ電池電源
Eが所定値以下になったことやブロッキング発振回路O
8Cが故障していることを判断できる。
On the other hand, since GND D2 emits light every time a current flows, the operating state can be displayed. This means that if the gas does not ignite, you can confirm that there is no gas if GND D, + lights up, and if it does not light up, it means that the battery power supply E has fallen below a predetermined value or that the blocking oscillation circuit O
It can be determined that 8C is malfunctioning.

電子ライターとしてガスに着火するだめのエネルギーは
最低1mJ必要であり、高圧トランスの効率は通常10
%前後であるため、1回のスイッチングで確実に着火す
るにはコンデンサC2に貯えらノしるエネルギーは10
mJ以上必要である。
An electronic lighter requires at least 1 mJ of energy to ignite the gas, and the efficiency of a high-voltage transformer is usually 10 mJ.
%, so in order to reliably ignite with one switching, the energy stored in capacitor C2 is 10%.
More than mJ is required.

デンサの4王が100■の場合は2μF、25Vであノ
しば:32 /l F以上、9Vであれば250μF以
4−の容1iが必要となる。しかしコンデンサは一般に
客用が犬きくなhばそれに従って体積が大きくなり、コ
ンデンサとして一番安価な電解コンデンサの場合、第1
表の関係がある。
If the four capacitors are 100 µF, a capacitance of 2 μF and 25 V is required to be 32 /l F or more, and if it is 9 V, a capacitance of 250 μF or more is required. However, the volume of capacitors generally increases as customer use increases.
There is a table relationship.

第1表 コンデンサ及び他の電子部品、ガスボンベ、弁開閉機構
、その他の構造部品を7・ンデイタイプのライター内に
収納するためには、コンデンサ25■。
Table 1 To store capacitors, other electronic parts, gas cylinders, valve opening/closing mechanisms, and other structural parts in a 7-day type lighter, use a capacitor 25■.

33μFのものが限界であり、これ以上の容量のコンデ
ンサを使う場合は電子ライターが大型になり、携帯に不
便である0 以上に基いて考察すれば、GNDはスイ・ノチング電圧
が25V以上であり、保持電流が2mA以上のものが必
要である。2mA以」二必要である理由は前記回路にお
いて、GNI)が発振を繰り返すために必要な電流値で
あり、2mA以下の場合はG’ N Dはオン状態を保
ち発振しなくなるからである。
The capacitor with a capacitance of 33μF is the limit, and if a capacitor with a larger capacity is used, the electronic lighter will become larger and it will be inconvenient to carry.0 Considering the above, the switching voltage of GND is 25V or more. , a holding current of 2 mA or more is required. The reason why 2 mA or more is required is that in the circuit described above, GNI) is the current value necessary for repeating oscillation, and if it is 2 mA or less, G'ND remains on and does not oscillate.

前述したように従来一般に使用されるGNDはスイッチ
ング電圧が20V±3v1保持電流1〜10mAであり
、スイッチング電圧をさらに高くするためには層P1 
及び層N2のキャリヤ濃度を下げなければならない。
As mentioned above, the GND commonly used in the past has a switching voltage of 20V±3v1 and a holding current of 1 to 10mA, and in order to further increase the switching voltage, the layer P1
and the carrier concentration in layer N2 must be reduced.

しかし、このことはキャリヤ注入効率を上げることとな
るので、保持電流は1mA以下になり、上記の2mA以
上という条件を満たさなくなる。
However, since this increases the carrier injection efficiency, the holding current becomes 1 mA or less, which no longer satisfies the above-mentioned condition of 2 mA or more.

〈本発明の説明〉 本発明は以上のような点に鑑みて、例えば電子ライター
用のスイッチング素子に適したGNDを得るものである
<Description of the Present Invention> In view of the above points, the present invention provides a GND suitable for, for example, a switching element for an electronic lighter.

すなわち、本発明はスイッチング電圧及び保持電流が所
望の値以上に大きいGNDを得るだめの素子構造を提供
するものである。
That is, the present invention provides an element structure capable of obtaining a GND whose switching voltage and holding current are larger than desired values.

本発明によって構成されるGNDは、ベース層P、とベ
ース層N2のキャリヤ濃度の注入効率が上がらないよう
に十分大きくして、且つスイッチング電圧を決める接合
J2の近傍の空乏層の広がりより少し大きいP一層又は
N一層を設けた構造となりスイッチング電圧25V以上
、保持電流5mA以上を有するものである。
The GND constructed according to the present invention is made sufficiently large so as not to increase the injection efficiency of the carrier concentration of the base layer P and the base layer N2, and is slightly larger than the spread of the depletion layer near the junction J2 that determines the switching voltage. It has a structure with one P layer or one N layer, and has a switching voltage of 25 V or more and a holding current of 5 mA or more.

上記GNDは前述したように、Ga Asの化合物半導
体に対して両性不純物となるSlを添加した融液を冷却
してP型、N型半導体層を液相エピタキシャル成長させ
る場合に、融液の冷却期間、反転温度領域を繰返し通過
するよう冷却速度を繰返し変化させる。この製造過程に
おいて、ベース層P1 とベース層N2のキャリヤ濃度
は注入効率が上がらないように大きくする。1だ接合J
2の近傍に、空乏層の広がりより少し大きいP型又はN
型のキャリヤ濃度層P−(又はN−)を厚さ2μn設け
、PNP−PN(又はpNN PN)の5層構造を製作
する。この構造を第6図に示す。
As mentioned above, the GND is used for the cooling period of the melt when P-type and N-type semiconductor layers are grown by liquid phase epitaxial growth by cooling the melt in which Sl, which is an amphoteric impurity, is added to the GaAs compound semiconductor. , the cooling rate is repeatedly changed to repeatedly pass through the inversion temperature region. In this manufacturing process, the carrier concentrations in the base layer P1 and base layer N2 are increased so as not to increase the injection efficiency. 1 junction J
In the vicinity of 2, there is a P type or N type that is slightly larger than the spread of the depletion layer.
A type carrier concentration layer P- (or N-) having a thickness of 2 μm is provided to produce a five-layer structure of PNP-PN (or pNN PN). This structure is shown in FIG.

両性不純物としてはSi以外にGe、Sn等が知られて
いる。
In addition to Si, Ge, Sn, etc. are known as amphoteric impurities.

Siのみを不純物としたGa As液相成長に於いては
、前記特許番号第763787号「多層半導体の製法」
に記載されている通り、冷却速度の違いにより伝導型が
変り、1回の液相成長でPNPN4層構造を作る事がで
きるが、この時のキャリヤ濃度はN型、P型ともに伝導
型反転温度に近づく程低くなる。第7図はGa As融
液中のSi濃度が005〜]、、 00 wt%の時の
冷却速度(℃/分)と伝導型反転温度(℃)の相対関係
によって律せらhる伝導型領域を示す状態図である。図
中の曲線は(1,0,0)面における反転温度領域を示
すもので各伝導型の境界線である。
Regarding GaAs liquid phase growth using only Si as an impurity, the above-mentioned patent number 763787 "Method for manufacturing multilayer semiconductor"
As described in , the conductivity type changes depending on the cooling rate, and a PNPN four-layer structure can be created in one liquid phase growth, but the carrier concentration at this time is the conductivity reversal temperature for both N-type and P-type. The closer it gets to , the lower it becomes. Figure 7 shows the conductivity region determined by the relative relationship between the cooling rate (°C/min) and the conductivity inversion temperature (°C) when the Si concentration in the GaAs melt is 005 to 00 wt%. FIG. The curves in the figure indicate the inversion temperature region on the (1,0,0) plane, and are the boundaries of each conductivity type.

金層N2を反転温度領域より光分離して冷却速度2℃/
分で冷却する事とし、層P1を製作する時の冷却速度を
0.05℃/分、0.07℃/分。
The gold layer N2 is optically separated from the inversion temperature region and the cooling rate is 2℃/
The cooling rate when manufacturing layer P1 was 0.05°C/min and 0.07°C/min.

0.10℃/分と3種類に変化させた時のスイッチング
電圧Vss保持電流Ihをめると第8図の如くとなる。
When the switching voltage Vss and the holding current Ih are changed in three types at 0.10° C./min, the result is as shown in FIG.

スイッチング電圧Vsを決定するPN接合は強制反転で
製作されているため階段接合になっていると考えられ、
VSの値は次式により表わされる。
The PN junction that determines the switching voltage Vs is manufactured by forced inversion, so it is thought to be a step junction.
The value of VS is expressed by the following equation.

Vs =60(Eg/l、1)””(NB/10”)−
””・■まだ、この時の空乏層の広がりDは次式で決定
される。
Vs = 60 (Eg/l, 1)""(NB/10") -
``''・■ Still, the spread D of the depletion layer at this time is determined by the following equation.

D−577丁口〒面一 ・・・・・・・・■一方保持電
流Ihは注入効率rが太きくなると小さくなる。rは次
式で表わされる。
D-577 block 〒1〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒1. r is expressed by the following formula.

1 r=(1+NBW/ ) −・・・・・・・・・−・■
EL ここでVsを30V以上に上げるだめには、層P1の冷
却速度をさらに速くしなければならないが、冷却速度を
速くするとGa As融液中で−AslIIEの高い部
分が局部的にN層になりPN2層構造が形成され歩留り
が悪くなる。さらに■、■式より層P1のキャリア濃度
が低くなるため注入効率が−に昇し、Ihは1mA以下
となる。そこで保持電流Ihを大きくかつスイッチング
電圧Vsを大きくするためにPlの冷却速度を充分遅く
し、層N2の冷却速度を充分速くして注入効率が上がら
ないようにしておき、層P1と層N2間に反転温度領域
近傍の冷却速度で即ちキャリア濃度が充分低くなるよう
な冷却速度でかつ0式に基いて空乏層の広がりより広い
厚さの低キヤリア濃度の層を作ればスイッチング電圧V
sはこの低キヤリア濃度層のキャリア濃度で決定される
電圧となる。ここでスI・ノチング電圧Vs=30Vの
時の空乏層の広がりは09μmであることが実験結果よ
り判明している。
1 r=(1+NBW/ ) −・・・・・・・・・−・■
EL Here, in order to raise Vs to 30 V or more, the cooling rate of layer P1 must be further increased, but if the cooling rate is increased, the high -AslIIE part in the GaAs melt will locally become the N layer. As a result, a PN two-layer structure is formed, resulting in poor yield. Furthermore, according to formulas (1) and (2), the carrier concentration in the layer P1 becomes lower, so the injection efficiency increases to -, and Ih becomes 1 mA or less. Therefore, in order to increase the holding current Ih and the switching voltage Vs, the cooling rate of Pl is made sufficiently slow, and the cooling rate of layer N2 is made sufficiently fast to prevent the injection efficiency from increasing. If a low carrier concentration layer with a thickness wider than the spread of the depletion layer is created at a cooling rate near the inversion temperature region, that is, at a cooling rate such that the carrier concentration is sufficiently low, based on equation 0, the switching voltage V can be reduced.
s is a voltage determined by the carrier concentration of this low carrier concentration layer. Here, it has been found from experimental results that the spread of the depletion layer when the switching voltage Vs=30V is 09 μm.

〈1実施例の説明〉 上記考察に基いて本発明の1実施例を以下に詳説する。<Description of 1st example> Based on the above considerations, one embodiment of the present invention will be described in detail below.

Ga10gに対しSi 20mg 、Ga As 多結
晶2gの割合で混合物を作成し、該混合物を高純度黒鉛
、石英等のルツボに入れ、炉内で高周波加熱が抵抗加熱
により溶融する。炉内は真空あるいはアルゴン等の不活
性ガス又は高純度の水素ガスが流されており、ワークコ
イル又はヒーター等により炉内温度及び冷却速度が制御
される。炉内温度及び冷却速度の制御プロファイルは第
9図に示す要領で行なわれる。
A mixture is prepared at a ratio of 20 mg of Si and 2 g of GaAs polycrystal to 10 g of Ga, placed in a crucible made of high purity graphite, quartz, etc., and melted in a furnace by high frequency heating and resistance heating. A vacuum, an inert gas such as argon, or high-purity hydrogen gas is flowed inside the furnace, and the temperature and cooling rate inside the furnace are controlled by a work coil, a heater, or the like. The control profile of the furnace temperature and cooling rate is performed as shown in FIG.

本発明の製造方法を第7図及び第9図に基いてさらに詳
しく説明すると、前述した組成比の混合物(原料)を均
一に溶融する。その後液相エヒリキシャル成長法により
、冷却速度1℃/分で905℃まで冷却し、この温度で
5分間保持する。この工程で層N1が形成される。引き
続いて冷却速度0.05℃/分で903℃まで冷却し、
層P、を形成する。層P1が形成されると冷却速度を反
転温度領域近傍の冷却速度CRに設定して、9o1℃ま
で冷却し、低キヤリア濃度層を形成する。
The manufacturing method of the present invention will be explained in more detail with reference to FIGS. 7 and 9. A mixture (raw material) having the above-mentioned composition ratio is uniformly melted. Thereafter, it was cooled to 905° C. at a cooling rate of 1° C./min by liquid phase epitaxy, and held at this temperature for 5 minutes. Layer N1 is formed in this step. Subsequently, the mixture was cooled to 903°C at a cooling rate of 0.05°C/min.
A layer P is formed. When the layer P1 is formed, the cooling rate is set to a cooling rate CR near the reversal temperature region, and the layer is cooled to 9o1° C. to form a low carrier concentration layer.

第9図に於いて低キヤリア濃度層の冷却速度CRは01
℃/分、012℃/分、015℃/分。
In Figure 9, the cooling rate CR of the low carrier concentration layer is 01
°C/min, 012 °C/min, 015 °C/min.

0.2℃/分、o、5℃/分の5種類の冷却速度を試み
た結果スイッチング電圧Vs 、保持電流Ihは第10
図に示す結果が得られた。この実験結果よりスイッチン
グ電圧Vsを25V以上にするためには低キヤリア濃度
層の冷却速度CRは0.1℃/分よシ0.3℃/分の間
に設定すればよい事が判明した。またこの時の保持電流
Ihは7mA±1mAでほぼ一定値を示した。
As a result of trying five different cooling rates: 0.2°C/min, o, and 5°C/min, the switching voltage Vs and holding current Ih were the 10th.
The results shown in the figure were obtained. From the results of this experiment, it was found that in order to make the switching voltage Vs 25 V or more, the cooling rate CR of the low carrier concentration layer should be set between 0.1° C./min and 0.3° C./min. Further, the holding current Ih at this time was approximately constant at 7 mA±1 mA.

低キヤリア濃度層が形成されると冷却速度を2℃/分に
上げ、891℃まで冷却し5分間保持する。この工程で
層N2が形成される。さらに次工程で冷却速度を0.1
℃/分に設定し、880℃まで冷却して層P2を形成す
る。その後炉内温度の降下に対応して冷却速度を徐々に
上げ炉中冷却完了後作成された多層単結晶を取り出す。
When a low carrier concentration layer is formed, the cooling rate is increased to 2° C./min, and the temperature is cooled to 891° C. and held for 5 minutes. Layer N2 is formed in this step. In the next step, the cooling rate is increased to 0.1
C./min and cooled to 880.degree. C. to form layer P2. Thereafter, the cooling rate is gradually increased in accordance with the decrease in the temperature in the furnace, and after the cooling in the furnace is completed, the produced multilayer single crystal is taken out.

上記各工程中保持電流Ihを大きくかつスイッチング電
圧Vsを大きくする為、層P、の冷却速度は充分遅く、
層N2の冷却速度は充分速くされており、注入効率が上
がらないようになっている。
In order to increase the holding current Ih and the switching voltage Vs during each of the above steps, the cooling rate of the layer P is sufficiently slow.
The cooling rate of layer N2 is set sufficiently high so that the injection efficiency does not increase.

父形成される低キヤリア濃度層の厚さは層P1と層N2
間で空乏層の広がりより厚くなる。
The thickness of the low carrier concentration layer formed is layer P1 and layer N2.
It becomes thicker than the depletion layer spreads between.

以」二によりスイッチング電圧25V以上、保持電流5
mA以」二の電気的特性を有するGNDが製造される。
Due to ``2'', the switching voltage is 25V or more, and the holding current is 5V.
A GND having electrical characteristics of less than mA is manufactured.

〈発明の効果〉 本発明は両性不純物として働くドーパントを添加した融
液を冷却する過程で冷却速度を制御すること゛により低
キヤリア濃度層と高キャリア濃度層を形成したものであ
り、1回の結晶成長でキャリア濃度の制御された多層構
造を有するGNDを製造することができる。欠本発明の
GNDi−i:端部を取り除いたとするとスイッチング
電圧Vs25V以上で保持電流Ih 2mA以上の条件
を満たすものが全体の95%以上であり非常に歩留り効
率が良く、信頼性の高い結果が得られる。
<Effects of the Invention> The present invention forms a low carrier concentration layer and a high carrier concentration layer by controlling the cooling rate in the process of cooling a melt containing a dopant that acts as an amphoteric impurity. A GND having a multilayer structure with a controlled carrier concentration can be manufactured by crystal growth. GNDi-i of the present invention: If the ends are removed, more than 95% of the products satisfy the conditions of switching voltage Vs 25V or more and holding current Ih 2mA or more, resulting in very high yield efficiency and reliable results. can get.

又、本発明のGNDを従来のGNDと比較すると第2表
の如くとなる。
Further, when the GND of the present invention is compared with the conventional GND, the results are as shown in Table 2.

第2表でミサンシル扁1は従来の通常のG’NDであり
、サンプル扁2は従来のものであるが、スイッチング電
圧が大きくなるように製作したものである。サンプル扁
3は本発明により作製されたGN’Dである。
In Table 2, the sample plate 1 is a conventional normal G'ND, and the sample plate 2 is a conventional one, but manufactured so that the switching voltage is increased. Sample plate 3 is GN'D produced according to the present invention.

第 2 表 第2表より明らかなように、本発明によればスイッチン
グ電圧が40Vで、保持電流が5mAの素子が容易に製
作可能となる。
Table 2 As is clear from Table 2, according to the present invention, an element with a switching voltage of 40 V and a holding current of 5 mA can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGNDの構造を説明する図である。第2
図は本発明のGNDが使用される電子ライターの電気回
路図である。第3図はGNDの電圧−電流特性図である
。第4図は第2図に於ける要部の信号波形図である。第
5図(a)(b)は第2図に於ける他の要部の信号波形
図である。第6図は本発明の1実施例を示すGNDの構
造を説明する図である。第7図はSiを溶存するGa 
As融液の冷却速度と伝導型反転温度の関係及び各伝導
型領域を示す状態図である。第8図はP1製作時の冷却
速度とスイッチング電圧及び保持電流との関係を示すグ
ラフである。 第9図は本発明のGNDを作製するだめの炉内温度及び
冷却速度の制御プロファイルを示す説明図である。第1
0図は低キヤリア濃度層製作時の冷却速度とスイッチン
グ電圧及び保持電流の関係を示すグラフである。
FIG. 1 is a diagram explaining the structure of a conventional GND. Second
The figure is an electrical circuit diagram of an electronic lighter in which the GND of the present invention is used. FIG. 3 is a voltage-current characteristic diagram of GND. FIG. 4 is a signal waveform diagram of the main part in FIG. 2. 5(a) and 5(b) are signal waveform diagrams of other important parts in FIG. 2. FIG. 6 is a diagram illustrating the structure of GND showing one embodiment of the present invention. Figure 7 shows Ga dissolving Si.
FIG. 3 is a state diagram showing the relationship between the cooling rate of the As melt and the conductivity type inversion temperature, and each conductivity type region. FIG. 8 is a graph showing the relationship between the cooling rate, switching voltage, and holding current when manufacturing P1. FIG. 9 is an explanatory diagram showing a control profile of the furnace temperature and cooling rate for producing the GND of the present invention. 1st
Figure 0 is a graph showing the relationship between the cooling rate, switching voltage, and holding current when manufacturing a low carrier concentration layer.

Claims (1)

【特許請求の範囲】[Claims] 1、IIILV族化合物半導体に両性不純物として作用
するドーパントを添加して成るPNPN構造負性抵抗発
光素子において、PNPN構造のPN接合のうちスイッ
チング電圧を決定する中央の1) N接合位置に空乏層
の拡がりより厚い低キヤリア濃度層を介層し、該低キヤ
リア濃度層に接合するP型層とN型層のキャリア濃度を
高く設定したことを特徴とする負性抵抗発光素子。
1. In a PNPN structure negative resistance light emitting device made by adding a dopant that acts as an amphoteric impurity to a IIILV group compound semiconductor, a depletion layer is formed at the center 1) N junction position of the PN junction of the PNPN structure, which determines the switching voltage. 1. A negative resistance light emitting device characterized in that a low carrier concentration layer thicker than the spreading layer is interposed, and the carrier concentration of a P-type layer and an N-type layer bonded to the low carrier concentration layer is set to be high.
JP59165057A 1984-08-06 1984-08-06 Negative resistance light emitting device Expired JPS6048916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165057A JPS6048916B2 (en) 1984-08-06 1984-08-06 Negative resistance light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165057A JPS6048916B2 (en) 1984-08-06 1984-08-06 Negative resistance light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP507777A Division JPS5390782A (en) 1977-01-19 1977-01-19 Production of negative resistance light emitting element

Publications (2)

Publication Number Publication Date
JPS6063971A true JPS6063971A (en) 1985-04-12
JPS6048916B2 JPS6048916B2 (en) 1985-10-30

Family

ID=15805024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165057A Expired JPS6048916B2 (en) 1984-08-06 1984-08-06 Negative resistance light emitting device

Country Status (1)

Country Link
JP (1) JPS6048916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155263A (en) * 1988-12-07 1990-06-14 Nec Corp Semiconductor optical memory

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109811U (en) * 1991-03-13 1992-09-24 株式会社アマダ saw blade
JPH05285723A (en) * 1992-02-14 1993-11-02 Hitachi Koki Co Ltd Tipped cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155263A (en) * 1988-12-07 1990-06-14 Nec Corp Semiconductor optical memory

Also Published As

Publication number Publication date
JPS6048916B2 (en) 1985-10-30

Similar Documents

Publication Publication Date Title
US4268842A (en) Electroluminescent gallium nitride semiconductor device
US6104143A (en) Exciter circuit with solid switch device separated from discharge path
US2821493A (en) Fused junction transistors with regrown base regions
US5313078A (en) Multi-layer silicon carbide light emitting diode having a PN junction
JPH0324773A (en) Diamond electronic device
JPS6063971A (en) Negative resistance light emitting element
EP0948243B1 (en) Discharge lamp lighting system with overcurrent protection for an inverter switch or switches
US5538911A (en) Manufacturing method for a diamond electric device
US3365630A (en) Electroluminescent gallium phosphide crystal with three dopants
TWI392109B (en) Photonic devices formed on substrates and their fabrication methods
US4065780A (en) Tunnel injection of minority carriers in semi-conductors
US4161814A (en) Tunnel injection of minority carriers in semi-conductors
JP4401843B2 (en) Hole injection electrode and semiconductor device
JP2503588B2 (en) Discharge lamp lighting device
JPH0712094B2 (en) Method for manufacturing epitaxial wafer for light emitting semiconductor device
JPH0690018A (en) Light emitting element and its manufacture
JPS60260498A (en) Growth method of sic single crystal
JP3523412B2 (en) Manufacturing method of GaP: N light emitting diode
JPH0831620B2 (en) Semiconductor light emitting device
JPH01187885A (en) Semiconductor light emitting device
JPH09213995A (en) Light emitting thyristor element, light emitting device and cell monitor
JPS6315427A (en) Manufacture of compound semiconductor epitaxial thin-film
Clark et al. Efficient low‐voltage electroluminescent devices by tunnel injection of holes
JPH0652806B2 (en) Method for manufacturing semiconductor light emitting device
JPS6321917Y2 (en)