JPS6063479A - Pulse compression device of radar - Google Patents

Pulse compression device of radar

Info

Publication number
JPS6063479A
JPS6063479A JP58171580A JP17158083A JPS6063479A JP S6063479 A JPS6063479 A JP S6063479A JP 58171580 A JP58171580 A JP 58171580A JP 17158083 A JP17158083 A JP 17158083A JP S6063479 A JPS6063479 A JP S6063479A
Authority
JP
Japan
Prior art keywords
circuit
pulse
signal
cos
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58171580A
Other languages
Japanese (ja)
Inventor
Shuichi Ooka
大岡 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58171580A priority Critical patent/JPS6063479A/en
Publication of JPS6063479A publication Critical patent/JPS6063479A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To select optionally a frequency difference between subpulses independently of intervals of sampling by correcting a phase difference between channels after sampling and performing the pulse compression processing thereafter in a pulse compressor of a radar in the spread spectrum system. CONSTITUTION:Operations of a transmitter 10 and a receiver 30 up to a mixer 62 of a spectrum condensing circuit 60 are similar to conventional those. The output of the mixer 62 passes an intermediate frequency amplifier 33 and a phase detector 34 without adding. A reception video signal outputted from the phase detector 34 is sampled and digitized by a sampling circuit 35. The phase difference between channels is corrected in the output of a phase correcting circuit 70, and this output is subjected to pulse compression by a pulse compressing circuit 36.

Description

【発明の詳細な説明】 この発明灯レーダのパルス圧縮装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a pulse compression device for a lamp radar.

従来のパルス圧縮装置として第1図に示すものがあった
。第1図において、121は空中線、fl+は送受切替
器である。また(+11は中間周波帯の送信信号として
の送信伸長パルス信号7允生する送1d物号発生回路、
021は置局波帯の局部発振器、(13)け送信信号発
生回路(川及び局部発振器(121の出力周波数の和の
信号全作成する混合器、(14111′i混合器(13
1の出力全増幅゛する電力増幅器であり、(10)灯上
記回Wr散素(川〜(14)からなる送信装置である。
A conventional pulse compression device is shown in FIG. In FIG. 1, 121 is an antenna, and fl+ is a transmitter/receiver switch. (+11 is a transmission 1d object signal generation circuit that generates a transmission expansion pulse signal 7 as an intermediate frequency band transmission signal;
021 is a local oscillator for the station waveband, (13) a mixer that creates a signal of the sum of the output frequencies of the transmission signal generation circuit (river and local oscillator (121), and (14111'i mixer (13)
It is a power amplifier that fully amplifies the output of 1, and is a transmitting device consisting of (10) lights and the above-mentioned Wr dispersion elements (14).

捷た011け高周波増幅器、@け高周波増幅器onおよ
び局部発振器群の出力周波数の差の信号を生成する混合
器、(ト)は中間周波数増幅器、■に位相検波器、01
げザンフリング回路、鳴1灯パルスFヒ縮回路であり、
−は以上の回路要素Cn−(2)からなる受信装置であ
る。また(3)は本装置の出力端子である。
011-digit high-frequency amplifier, @ mixer that generates a signal of the difference in the output frequency of the high-frequency amplifier on and the local oscillator group, (G) is an intermediate frequency amplifier, ■ is a phase detector, 01
Gezanfling circuit, one-lamp pulse Fhi contraction circuit,
- is a receiving device consisting of the above circuit element Cn-(2). Further, (3) is an output terminal of this device.

また、■け局部発振器群であり、相異なる周波数L1〜
Lw i出力する複数(N1個の局部発振器(41−1
)〜(41−IJ)から構成される装輪にスペクトル拡
散回路であり、上記送信信号発生回路(出力・ら発せら
れた伸長波パルスを複数(N)個のサブパルスに分割す
る分割回路6り、この複数に分割ざねたサブパルスのそ
ねそhと前記局部発振器群@(1のそねぞねの出力と會
混合して、七わぞね異なる周波数f1〜fNのサブパル
ス群分得る混合器(52−1)〜(52−N)、および
これらの出カケ加算する加算器Qカ)ら構成さnる。
In addition, there is a group of local oscillators with different frequencies L1 to
Lwi output multiple (N1 local oscillators (41-1
) to (41-IJ), and a dividing circuit 6 that divides the stretched wave pulse emitted from the transmission signal generating circuit (output) into a plurality of (N) sub-pulses. , a mixer which mixes this sub-pulse line h divided into a plurality of parts with the output of the local oscillator group @(1 line) to obtain sub-pulse groups of seven different frequencies f1 to fN. (52-1) to (52-N), and an adder Q that adds the outputs of these.

また、(圃はスペクトル凝縮回路であり、分配回路+6
11 、混合器(a2−1)〜(62−IJ) 、およ
び加算回路−から構成されている。
In addition, (field is a spectrum condensation circuit, distribution circuit +6
11, mixers (a2-1) to (62-IJ), and an adder circuit.

次に動作について説明する。Next, the operation will be explained.

ここで、説9Jの便宜のため、上記局部発振器(ト)。Here, for convenience of theory 9J, the above local oscillator (g).

スペクトル拡散面@−の混合器@、スペクトル凝縮回路
−の混合器(6カ、お1びそれらに人って得られるサブ
パルスの数げそれぞれ5個(N−5)とする。
The mixer on the spectrum spreading surface and the mixer on the spectrum condensing circuit are 6, and the number of subpulses obtained by each of them is 5 (N-5).

送1g信号発生回路(Illに第2図(a)(b)に不
す工うに、パルス幅T、中心燭波畝f、 (f、げ中間
周波数)。
The transmission 1g signal generation circuit (Ill shown in FIGS. 2(a) and 2(b)) has a pulse width T, a center wave ridge f, (f, and an intermediate frequency).

周波数掃引幅Δfの中間周波帯の周波数変調伸長パルス
信号ケ生成する。この信号の周波数スペクトルに、周知
めように、第2図(d) K示す如く、はぼΔfの広が
りを有している。
A frequency modulated expanded pulse signal in an intermediate frequency band with a frequency sweep width Δf is generated. As is well known, the frequency spectrum of this signal has a spread of approximately Δf, as shown in FIG. 2(d).

このような送信信号発生回路(川の出力信号(第3図(
a)参照)を、分割回路5υにおいて別途準備されるゲ
ート信号Gにより第3図(b)〜(f)に示すようにN
 (−5)等分して別々に出力する。これらの出力σそ
れぞれ混合器(52−1)〜(52−5) K加えられ
、局部発振器群−からの局部発振信号(周波数LX〜L
5)と混合されて、例えば第3図(b)〜(りに示すよ
うに和周波数信号fl、 fQ、・・・・・−・・fδ
のザブパルス出力1得る。これらを加算回路−において
加え合わせることによって、第3図(ロ))に示すよう
なスペクトル拡散伸長パルス信号が得られる。ここで、
相隣る局部発振信号の周波数間隔(例えばLa −Lx
)Thfsとすると、その周波数スペクトルに第4図の
ようになり、スペクトル分布範囲は概ね4fqとなる。
Such a transmission signal generation circuit (output signal of the river (Fig. 3)
a)) is changed to N as shown in FIG.
(-5) Divide into equal parts and output separately. These outputs σ are added to the mixers (52-1) to (52-5), respectively, and the local oscillation signals (frequency LX to L
5), and the sum frequency signals fl, fQ, ......fδ are mixed, for example, as shown in FIG.
Obtain the Zabu pulse output of 1. By adding these in the adder circuit, a spread spectrum expanded pulse signal as shown in FIG. 3(b) is obtained. here,
Frequency interval between adjacent local oscillation signals (e.g. La - Lx
)Thfs, its frequency spectrum will be as shown in FIG. 4, and the spectral distribution range will be approximately 4fq.

仮りに、fB −10MHzと選定すZlとスペクトル
分布範曲は概ね40 MHzとなり、従来のIMH2(
圧縮後パルス幅1声Sとして)の40倍に広帯域化が可
能となる。
For example, if Zl is selected as fB -10 MHz, the spectral distribution range will be approximately 40 MHz, and the conventional IMH2 (
It becomes possible to widen the band by 40 times (assuming that the pulse width after compression is one voice S).

このようにして得られたスペクトル拡散回路−の出力と
、局部発振器α2からの局部発振信号に、混合器Ojで
混合され、和の周波数の高周波信号に変換される。この
出力は、電力増幅器θ褐で増幅されて、高周波送信信号
となって送受切換器i1i k経由して、空中線(2)
から空中に放射される。一方、目標物体(図示せず)か
らの反射信号は空中線(2)で受信されて、送受切換器
(1)全経由して受信装置(7)に導かれる。この高周
波受信信号は高周波増幅器0])で低雑音増幅され、混
合器−において上述の局部−発振器021からの局部発
振信号と混合され、中間周波(差周波)受信信号に変換
される。
The output of the spread spectrum circuit thus obtained and the local oscillation signal from the local oscillator α2 are mixed in a mixer Oj and converted into a high frequency signal of the sum frequency. This output is amplified by the power amplifier θ, becomes a high frequency transmission signal, and is sent to the antenna (2) via the transmitter/receiver switcher i1i k.
is radiated into the air. On the other hand, a reflected signal from a target object (not shown) is received by the antenna (2) and guided to the receiving device (7) through the transmitter/receiver switch (1). This high frequency received signal is amplified with low noise by a high frequency amplifier 0), mixed with the local oscillation signal from the local oscillator 021 mentioned above in a mixer, and converted into an intermediate frequency (difference frequency) received signal.

そしてスペクトル凝縮口cttnに入力したスペクトル
拡散伸長パルス信号は、スペクトル拡散回路−の場合と
け逆の処理によってスペクトル凝縮され、加算回路−の
出力に受信伸長ノ(ルス信号が現われる。即ち、分配回
路161)の出力信号(第3図(g))は混合器(62
−1)〜(62−5)に加えられて、それぞれ周波数L
1〜L5の局部発振信号との差周波数信号に変換され、
その後加算口g&−にて加え合わされて第3図(a) 
K示す受信伸長パルス信号となる。
The spread spectrum expanded pulse signal inputted to the spectrum condensing port cttn is spectrum condensed by the reverse process as in the case of the spread spectrum circuit, and a reception expanded pulse signal appears at the output of the adder circuit. In other words, the distribution circuit 161 ) output signal (Fig. 3(g)) is sent to the mixer (62
−1) to (62-5), and the frequency L
It is converted into a difference frequency signal with the local oscillation signal of 1 to L5,
After that, they are added together at addition port g&- as shown in Fig. 3(a).
The received expanded pulse signal is shown as K.

このようにして得られた中間周波信号としての受信伸長
パルス信号は中間周波増幅器−て増幅されたのち、位相
検波器例で送信信号発生口w!I(Illから送られる
基準信号により位相検波され、サンプリング回路■で各
サブパルス間の搬送周波数差の逆数の整数倍のタイミン
グでサンフ1ノング、ディジタル変換し、パルス圧縮口
V&(至)でパルス圧縮処理金受ける。パルス圧縮回路
(至)は、例えばFFT (高速フーリエ変換)、遅延
回路及び加算B42用いたディジタル・パルス圧縮回路
にエリ構成され、第2図(a) (b)に示す信号を同
図(c)のように圧縮する機能全有する。このとき、圧
縮後パルス幅τは概ね周波数掃引幅Δfの逆数1/Af
に等しいものとなる。パルス圧縮口@牌の圧縮後のパル
ス信号出力は、端子(3)から取り出され、レーダー信
号処理装置(図示せず)IC送られる。
The received expanded pulse signal as an intermediate frequency signal obtained in this way is amplified by an intermediate frequency amplifier, and is then amplified by an example of a phase detector at the transmission signal generation point w! The phase is detected by the reference signal sent from I (Ill), and the sampling circuit ■ performs sampling and digital conversion at a timing that is an integer multiple of the reciprocal of the carrier frequency difference between each sub-pulse, and the pulse compression port V & (to) performs pulse compression. The pulse compression circuit (to) is configured as a digital pulse compression circuit using, for example, FFT (Fast Fourier Transform), a delay circuit, and an addition B42, and outputs the signals shown in FIGS. 2(a) and (b). It has all the compression functions as shown in (c) of the same figure.At this time, the pulse width τ after compression is approximately the reciprocal of the frequency sweep width Δf 1/Af
will be equal to . The pulse signal output after compression from the pulse compression port @ tile is taken out from the terminal (3) and sent to a radar signal processing device (not shown) IC.

上記方式で送信1行なう場合、送信信号は次のようにな
る。
When performing one transmission using the above method, the transmitted signal is as follows.

即ち、送信1g号発生回路1111出力はEC=cos
(ω0+Δωt)t (’o≦t<T )Δf (但し、ωow2π(fo −−)、Δω−2πbt。
That is, the output of the transmission 1g signal generation circuit 1111 is EC=cos
(ω0+Δωt)t ('o≦t<T)Δf (However, ωow2π(fo −-), Δω−2πbt.

2 T 局部発振器群θa比出力 Fir、1−cos(ωL−2°s)tFiLa−co
g(ωL−″s)を 孔L!l”e08ω1t KL4−cos(ωL+ω5)t KL5−cos(ωL+2ω5)t (但し、ωL−2πL3.ω9−2πfs)スペクトル
拡散回路■出力は 331−008(ω0+△ωt)t−cos(ωL−2
ω5)t(0≦tく−) T 2T (i≦(i) FiB5−cos(ω0+Δωt)t−cogωLtl
 1 −−coo(ω0+Δωt+ω1)t+−cos ・−
−22 2T 3T (−≦tく−) 5 5 EB <−CO8(ω0+Δωt)t−cos(ωL+
ω5it3T 4T (−≦t〈−) 5 5 g55”Coθ(ωO十Δωt)t−cos(ωL+2
ωSatT (−≦t<T) 局部発振器α21出力は KL−C08ωLxt 従って混合器(1濁出力(送信出力信号)はE71=(
!01i1ω1llcos(ωO+Δωを十ωL−2ω
s)t(O≦t〈−) EシーcosωLlt”(!Oθ(ω0+Δωt+″L
−ω5)tBT3−CosωLlt−C06(ω0+Δ
ωt+ω1)tBT4−C08ωLl’c’C05(ω
0+Δωt+ωL+ωB)tET51+lIC0SωL
lt”COθ(ωθ+Δωt+ωL+2ωs)tまた、
送信〜受信時間itlとすると、受信ビデオ信号は次の
ようになる。
2 T Local oscillator group θa ratio output Fir, 1-cos(ωL-2°s)tFiLa-co
g(ωL-"s) is a hole L!l"e08ω1t KL4-cos(ωL+ω5)t KL5-cos(ωL+2ω5)t (However, ωL-2πL3.ω9-2πfs) Spread spectrum circuit ■Output is 331-008(ω0+ △ωt)t-cos(ωL-2
ω5)t(0≦tku−) T 2T (i≦(i) FiB5−cos(ω0+Δωt)t−cogωLtl
1 −−coo(ω0+Δωt+ω1)t+−cos ・−
-22 2T 3T (-≦tku-) 5 5 EB <-CO8(ω0+Δωt)t-cos(ωL+
ω5it3T 4T (-≦t<-) 5 5 g55"Coθ(ωO+Δωt)t-cos(ωL+2
ωSatT (-≦t<T) The local oscillator α21 output is KL-C08ωLxt Therefore, the mixer (1 turbidity output (transmission output signal) is E71 = (
! 01i1ω1llcos (ωO+Δω is 1ωL−2ω
s)t(O≦t〈-) EccosωLlt”(!Oθ(ω0+Δωt+″L
-ω5)tBT3-CosωLlt-C06(ω0+Δ
ωt+ω1)tBT4-C08ωLl'c'C05(ω
0+Δωt+ωL+ωB)tET51+lIC0SωL
lt”COθ(ωθ+Δωt+ωL+2ωs)tAlso,
If the transmission-reception time is itl, the received video signal will be as follows.

即ち、局部発振器Qz出力社 IcL−C08ωLx ft−tR) 混合器に)出力は EIFI”Co日ωLl (t−”R)・C08(ω1
.l+ω0+△ωt+ωL−2ωs )tEIF2−c
osωLILt−t4 )−cos(ωL1+ω0+Δ
ωt+ωL−ωB)tEIFB−C08ωLx(t−t
R)−coo(ωL1+ωO+△ωt+ωL)tEIF
4−Cot;ωLl(t−tR)拳cos (ωL1+
ω0+Δωt+ωL+ωq)tEIF5−CoθωLl
(t−1R)・008(ωLl+ω0+Δωを十ω工5
+2ωB)tここで、−ωr、1t、H’d、各チャン
ネルで同位相のため無視する。
That is, the local oscillator Qz output (IcL-C08ωLx ft-tR) mixer) output is EIFI"Co dayωLl (t-"R)・C08(ω1
.. l+ω0+△ωt+ωL-2ωs)tEIF2-c
osωLILt-t4)-cos(ωL1+ω0+Δ
ωt+ωL-ωB)tEIFB-C08ωLx(t-t
R)-coo(ωL1+ωO+△ωt+ωL)tEIF
4-Cot; ωLl (t-tR) fist cos (ωL1+
ω0+Δωt+ωL+ωq)tEIF5−CoθωLl
(t-1R)・008(ωLl+ω0+Δω is 10ω work 5
+2ωB)tHere, -ωr, 1t, and H'd are ignored because they have the same phase in each channel.

局部発振器群顛出力は EL、−C8(ωL−2ω5)(t−t)L)F!L2
−cos(ωl−ω3)(t−tR)EL3”QOB6
)L(t −tH) EC4=CO8(ωL+ω5)(t−tl+)EL5−
coe(ωL+2ω5)(t−tR)スペクトル凝縮回
路…出力は EC1−cos(ωL−2ω5)(t″″tR)・C0
8(ω0+Δωt+ωL−2ω5)tE(1−cos(
ωL−ω5)(t−tR)呻cos(ω0+Δωt+ω
L−ω5ltT 2T (−≦tく−) 5 5 IC!l”C0IIIωL(t−tR) ・C08(ω
O+△rut+ω1.)tl 1 −−Coil(ωL t R+ (ω0+Δω1)1)
+−・−・・−・2 2 2T 3T (i≦tく刊 EC4=CO8(ωL+ω8)(t−tR)・cos(
ω0+△ωt+ωL+ω5)t3T 4T (−≦tく−) 5 5 Ec 5−cos (ωL+2ωs Ht−tR)・c
os(ω0+△ωを十ω1+3ωBltT (−≦t<T1 ここで、ωLtRu各チャンネルで同位相のため無視す
ると、スペクトル凝縮回路(−および中間周波増幅器■
の出力は Ecx=cos(−2ωStR+(ω0+△ωt)t)
 (0≦tく−)T 2T EC2=COB(−ωst、+(ω0+Δω1)1) 
(−≦tく−)5 5 位相検波b(至)に送られる基準信号はER−008(
ω0(t−tR)) 位相検波器−の出力(1 Kv 1−coB(−2ωstR+(ω0+Δωt)t
) ・cos(Co(t−tu))(0≦t<−) Fiv2=cos(−ωstR+(ω0+△ω1)1)
・cos(Co(t−ti))Ev3−cos(ω0+
△ωt)t−cos(ω。(t−tR))Kv<” c
os(ωB t R+ (ωO+Δωt )t) ・c
og(ω、 (t−tH) )雪−C08(ωBtB+
Δωt2+ω0tR)+−・・−・・・・・2 3T 4T (−≦tく−) 5 b Bv5=cos(2ωB t R+ (ω0植ωt)t
)−coe(Co(t、 tH))=−coe(2ωs
tR+△ωt″+ωOtB ) + ==−・2 (−≦t<T) ωotRU各チャンネルで同位相のため無視すると、受
信ビデオ信号は Ev 1=cO8(−2ω5tlli+Δωt2) (
0≦t〈−)T 2T Ev2−coe(−ωStR+Δωt2) (−≦tく
−)5 5 2T”3T Evs−coe(Δωt2) (−>t<−) 5 T E’V5−Coθ(2ωStR+Δωt2) (−≦t
<TIとなり、従って、第5図に示すように、送信〜受
信時間tRの変化によって各チャンネルの位相が変化す
ることとなる。
The local oscillator group output is EL, -C8(ωL-2ω5)(t-t)L)F! L2
-cos(ωl-ω3)(t-tR)EL3"QOB6
)L(t-tH) EC4=CO8(ωL+ω5)(t-tl+)EL5-
coe(ωL+2ω5)(t-tR) spectrum condensation circuit...Output is EC1-cos(ωL-2ω5)(t″″tR)・C0
8(ω0+Δωt+ωL-2ω5)tE(1-cos(
ωL−ω5)(t−tR) groan cos(ω0+Δωt+ω
L-ω5ltT 2T (-≦tku-) 5 5 IC! l”C0IIIωL(t-tR) ・C08(ω
O+△rut+ω1. )tl 1 --Coil(ωL t R+ (ω0+Δω1)1)
+−・−・・−・2 2 2T 3T (i≦t EC4=CO8(ωL+ω8)(t−tR)・cos(
ω0+△ωt+ωL+ω5)t3T 4T (-≦tku-) 5 5 Ec 5-cos (ωL+2ωs Ht-tR)・c
os(ω0+△ω is 1ω1+3ωBltT (-≦t<T1) Here, if ωLtRu is ignored because each channel has the same phase, the spectrum condensation circuit (- and intermediate frequency amplifier ■
The output of is Ecx=cos(-2ωStR+(ω0+△ωt)t)
(0≦tku-)T 2T EC2=COB(-ωst, +(ω0+Δω1)1)
(-≦tku-)5 5 The reference signal sent to phase detection b (to) is ER-008 (
ω0(t-tR)) Phase detector - output (1 Kv 1-coB(-2ωstR+(ω0+Δωt)t
) ・cos(Co(t-tu))(0≦t<-) Fiv2=cos(-ωstR+(ω0+△ω1)1)
・cos(Co(t-ti))Ev3-cos(ω0+
△ωt)t-cos(ω.(t-tR))Kv<”c
os(ωB t R+ (ωO+Δωt )t) ・c
og(ω, (t-tH)) Snow-C08(ωBtB+
Δωt2+ω0tR)+−・・−・・・・2 3T 4T (−≦tku−) 5 b Bv5=cos(2ωB t R+ (ω0 Plant ωt) t
)-coe(Co(t, tH))=-coe(2ωs
tR+△ωt''+ωOtB ) + ==-・2 (-≦t<T) ωotRUEach channel has the same phase, so if ignored, the received video signal will be Ev 1=cO8(-2ω5tlli+Δωt2) (
0≦t<-)T 2T Ev2-coe(-ωStR+Δωt2) (-≦tku-)5 5 2T"3T Evs-coe(Δωt2) (->t<-) 5 T E'V5-Coθ(2ωStR+Δωt2) (−≦t
<TI, and therefore, as shown in FIG. 5, the phase of each channel changes as the transmission-reception time tR changes.

ここでサンプリング回路(2)で受信ビデオ信号をサン
プリングする時刻tsk (m:整数、送信時刻からm回目のサンプリング) とすることにより、サンプリング出方は−cos (−
2m−n・2π+Δωt2)−cos(Δωt 2 )
(○≦tく−) T 2T (−≦tく−) 5 ED4=008(ω5−m−n6.−、+Δωt2)=
cos(△ωt 2 )(−≦tく−) 5 5 ED5−coθ(2ωs ’m’n−−+△ωt2)=
cos(△ωt 2 )3 (−≦t<T) すなわち、第5図に示すように、送15〜受信時間tR
がサブパルス間の周波数差f8の逆数17f 9の整数
倍のとき、各チャンネルの位相は0となり、各チャンネ
ル間の位相差は0になるので、この時刻に受信信号をサ
ンプリングすることによりパルス圧Nk行なうことがで
きる。
Here, by setting the time tsk (m: integer, m-th sampling from the transmission time) at which the received video signal is sampled in the sampling circuit (2), the sampling output is -cos (-
2m-n・2π+Δωt2)-cos(Δωt2)
(○≦tku−) T 2T (−≦tku−) 5 ED4=008(ω5−m−n6.−, +Δωt2)=
cos (△ωt 2 ) (-≦tku-) 5 5 ED5-coθ(2ωs 'm'n--+△ωt2)=
cos (Δωt 2 ) 3 (-≦t<T) That is, as shown in FIG. 5, the transmission 15 to reception time tR
When is an integer multiple of the inverse number 17f9 of the frequency difference f8 between sub-pulses, the phase of each channel becomes 0, and the phase difference between each channel becomes 0. Therefore, by sampling the received signal at this time, the pulse pressure Nk can be done.

このとき、サンプリング間隔l\tsと各ザブパルス間
の周波数差fsとに次の関係VCあることが必要である
At this time, it is necessary that the following relationship VC exists between the sampling interval l\ts and the frequency difference fs between each subpulse.

ΔtB−n・−n=整数 3 一例として、サンプリング間隔△tB p 1.IIs
とすれば、各サブパルス間の周波数差fS U IMH
2の整数倍に選ぶ必要がある。
ΔtB-n・-n=integer 3 As an example, sampling interval ΔtB p 1. IIs
Then, the frequency difference between each sub-pulse fS U IMH
It is necessary to choose an integer multiple of 2.

従来のスペクトル拡散方式のパルス圧縮装置は以上のよ
うVC構成されているので、サンプリング間隔Δtsと
各サブパルス間の搬送周波数差ts Tryの関係にあ
ることが必要であり、各サブパルス間の搬送周波数差−
+9は、サンフ゛リング間隔ΔtsiC工V制限を受け
る欠点があった。
Since the conventional spread spectrum pulse compression device has the VC configuration as described above, it is necessary that there is a relationship between the sampling interval Δts and the carrier frequency difference between each sub-pulse, tsTry, and the carrier frequency difference between each sub-pulse. −
+9 had the disadvantage of being limited by the sampling interval ΔtsiC.

この発明ハ上記のような従来のものの欠点?除去するた
めになされたもので、スペクトル拡散方式のレーダのパ
ルス圧縮装置において、スペクトル凝縮処理後の各チャ
ンネル1…の位相差は、各サブパルス間の搬送周波数差
と、送信〜受信時間により決まるため、サンプリング後
、チャンネル間の位相51.に補正した後、パルス圧縮
処理を行なうことにエリ、各サブパルス間の周波数差げ
サンプリング間隔に制御iM ’e受けず、自由に選ぶ
ことので。
What are the drawbacks of this invention compared to the conventional ones mentioned above? This was done in order to eliminate this difference.In a spread spectrum radar pulse compression device, the phase difference of each channel 1 after spectrum condensation processing is determined by the carrier frequency difference between each subpulse and the transmission to reception time. , after sampling, the phase between channels 51. After the correction, pulse compression processing is performed, since the frequency difference between each sub-pulse and the sampling interval are not subject to control and can be freely selected.

きるスペクトル拡散方式のレーダのパルス圧縮装置?提
供することケ目的としている。
Pulse compression device for spread spectrum radar? The purpose is to provide.

以下、この発明の一実施例を図について説明する046
図において、川はスペクトル凝縮回路であり、分配回路
(6B、混合器(62−1)〜((+2−N)から構成
されている。(33−1)〜(33−N)ri中間周波
増幅器、(3吐−1)〜(34−N)は位相検波器、f
/lけ位相補正回路であり、(’7l−1)〜(71−
N)は乗算器、(’72−11〜(72−N)は補正値
発生回路で構成されている。これ以外は第1図の従来の
構成と同一である。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
In the figure, the river is a spectrum condensation circuit, which is composed of a distribution circuit (6B, mixers (62-1) to ((+2-N)). (33-1) to (33-N) ri intermediate frequency Amplifier, (3-1) to (34-N) are phase detectors, f
/l phase correction circuit, ('7l-1) to (71-
N) is a multiplier, and ('72-11 to (72-N) are correction value generating circuits.Other than this, the structure is the same as the conventional structure shown in FIG. 1).

次に動作について説明する。Next, the operation will be explained.

本発明における送信装置(lO)の49作I:t i;
I:米と同様であり、また、受信装+* m・において
にスペクトル凝縮回路IBIlの混合器(62−1)〜
(62−N) ’までの動作は従来と同様である。
49 works of the transmitting device (lO) in the present invention I:t i;
I: Same as US, and the mixer (62-1) of the spectrum condensing circuit IBIl in the receiver +* m.
The operation up to (62-N)' is the same as the conventional one.

本発明では、混合器(62−1)〜(62−Nlの出力
げ従来のように加算されることなくN個の中間周波増幅
器(33−1)〜(33−N)、位相検波器(34−1
)〜(34−N) 2通るが、数式上に従来と同様に表
わ格れる。すなわち、従来と同様サブパルス敢N=5と
すると位相検波器(34−1)〜(34−5)から出力
される受信ビデオ信号に T 2T Ev2−cos (−ωBJ+△GJt2 ) <−S
tく−)5 2T 、3T F2V5−cos(△ωt” ) (−St< )5 
5 3T 4T Eve−cos(ωstR+Δωt2) (−St<−
)5 5 T Ev5−cos(2ωStR+Δωt2) (−St(
T)この信号をサングリノブ回路(35−1)〜(35
−5)でサンプリング、ディジグル化した信号に、送信
〜サン19フフ時間ktsとすると、 Rnx−cos(−2ωst、3+Δωt2) (o≦
t〈−)恥”−ooS (−(us tB+am1;2
1 T 2T(−≦0く−) 5 5 2T 3’l’ EDsmcos (Δωt” (Go<−)5 3T 、4T KD4=cos(ωst6+△ωt2)(−≦oく−)
5 T !D5=coa(2ωsts+△ωt2)(−≦0AT
)補正値発生回路(72−1)〜(72−5)で発生す
る補正値を、 0x−cos(j2ω5ts) 02−cos(ω5ts) 3−1 C4−cos(−ω5ts) C5−co8(−2ω5t8) とすると、位相補正回路(至)の出力はEol−coo
(2ωsts ) ・cos (−2ωsts+Δωt
2)Fog−cos(ω6tB)−cos(−ωsts
+Δω1.II)EoイーC08(−ω5ts)−co
s(ωsts+ムωtQ)Eos−cos(−2ω5t
s)・cos(2ωsts+△ωt2)となり、各チャ
ンネル間の位相差が補正され、パルス圧縮回路(至)で
パルス圧縮を行なうことができる。
In the present invention, the outputs of the mixers (62-1) to (62-Nl) are not added as in the conventional case, but instead are added to N intermediate frequency amplifiers (33-1) to (33-N), phase detectors ( 34-1
)~(34-N) 2 passes, but they are represented in the formula in the same way as before. That is, if the sub-pulse length N=5 as in the conventional case, the received video signal output from the phase detectors (34-1) to (34-5) has T2T Ev2-cos (-ωBJ+△GJt2) <-S
tku-)5 2T, 3T F2V5-cos(△ωt”) (-St< )5
5 3T 4T Eve-cos(ωstR+Δωt2) (-St<-
)5 5 T Ev5-cos(2ωStR+Δωt2) (-St(
T) This signal is sent to the Sangrinob circuit (35-1) to (35
-5), and if the time from transmission to sun 19 is kts, then Rnx-cos(-2ωst, 3+Δωt2) (o≦
t<-) shame”-ooS (-(us tB+am1;2
1 T 2T (-≦0ku-) 5 5 2T 3'l' EDsmcos (Δωt"(Go<-)5 3T, 4T KD4=cos (ωst6+△ωt2) (-≦oku-)
5T! D5=coa(2ωsts+△ωt2)(-≦0AT
) The correction values generated by the correction value generation circuits (72-1) to (72-5) are expressed as: 0x-cos (j2ω5ts) 02-cos (ω5ts) 3-1 C4-cos (-ω5ts) C5-co8(- 2ω5t8), the output of the phase correction circuit (to) is Eol-coo
(2ωsts) ・cos (-2ωsts+Δωt
2) Fog-cos(ω6tB)-cos(-ωsts
+Δω1. II) Eo E C08(-ω5ts)-co
s(ωsts+muωtQ)Eos−cos(−2ω5t
s)·cos(2ωsts+Δωt2), the phase difference between each channel is corrected, and pulse compression can be performed by the pulse compression circuit (to).

各サブパルス間の搬送周波数差は既知であるため、補正
値発生口@@では、補正値f ROM(ReadOnl
y Meory)等に記憶しておき、送信〜サン19フ
フ時間tSに従って読み出すことにより補正値を発生で
きる。補正値は送信サブパルス間の搬送周波数差の逆数
の時間毎に繰り返えされるため、mouvc+″i全レ
ンジ(レーダの繰り返し周期)の補正値を記憶する必要
はない◎ 以上の実施例では、チャーブパルス圧縮の例について述
べたが、他の方式、例えば周波数コード化パルス圧縮等
にも適用可能である。また、サブパルス分割は等分割で
ある必要はない。サブパルス間の周波数差f9は一定で
ある必要げない。スペクトル拡散、凝縮処理は中間周波
数で行なう場合について述べたが、これは高周波段階で
も同様に過用できる。
Since the carrier frequency difference between each sub-pulse is known, the correction value f ROM (ReadOnl
A correction value can be generated by storing the correction value in a file such as y Meory) and reading it out according to the transmission-to-sun 19-fufu time tS. Since the correction value is repeated every reciprocal of the carrier frequency difference between the transmission sub-pulses, it is not necessary to store the correction value for the entire mouvc + "i range (radar repetition period). In the above embodiment, the chirve pulse Although the example of compression has been described, it is also applicable to other methods, such as frequency coded pulse compression.Also, subpulse division does not need to be equal division.The frequency difference f9 between subpulses needs to be constant. Although the spectrum spreading and condensing processes have been described in the case of performing them at intermediate frequencies, they can be similarly overused at the high frequency stage.

補正値発生口vIrC:ra fl ROMに記憶した
補正値を送信〜サン19フフ時間に従って読み出す方式
で説明7行なったが、各サプノ(ルス間の搬送周波数差
fSと送信〜サンプル時間t、3からc−cos(2π
fsts )の演算により補正値音発生することもでき
る。ヌベクトル凝縮回路−では混合器(62−1)〜(
62−N)の出力を加算せず、N個の中間周波増幅器(
33−1)〜(33−N) 、位相検波器(34−1)
〜(34−N)、サンプリング回@ (35−1)〜(
35−N) ?用いる例で説明したが、従来と同様の構
成で混合器(62−x)〜(62−N)の出力全加算器
−で加算し、従来と同様一系統の回I#!rを通った後
、パルス圧縮回路(7)内のフィルタを通った後、サブ
パルスに再分割して位相補正7行なうこともできる。
Correction value generation port vIrC:ra fl Although explanation 7 was given on the method of reading out the correction value stored in the ROM according to the transmission to sample time, the difference between the carrier frequency fS and the transmission to sample time from 3 to c-cos(2π
It is also possible to generate a correction value sound by calculating fsts). In the Nuvector condensing circuit, mixers (62-1) to (
62-N) without adding the outputs of N intermediate frequency amplifiers (
33-1) to (33-N), phase detector (34-1)
~(34-N), sampling times @ (35-1) ~(
35-N)? As explained using an example, the outputs of the mixers (62-x) to (62-N) are added by full adders with the same configuration as the conventional one, and one system of times I#! After passing through the filter in the pulse compression circuit (7), the pulse can be re-divided into sub-pulses and subjected to phase correction (7).

以上のように、この発明によれば、スペクトル拡散方式
のレーダのパルス圧縮装置においてけ、各サブパルス間
の搬送周波数差をサンプリング間隔に関係なく任意に選
ぶことができる効果がある。
As described above, according to the present invention, in a spread spectrum radar pulse compression device, the carrier frequency difference between each sub-pulse can be arbitrarily selected regardless of the sampling interval.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスペクトル拡散方式のレーダのパルス圧
縮装置の一例ケ示す構成図、第2図(al(b)はとも
に伸長パルス信号の波形図、第21火1 (cl B 
/<ルス圧縮後の信号波形図、第2図(a)に伸長パル
ス信号のスペクトルケチす図、第3図(a)Vi送、受
信伸長パルス信号の波形図、第3図(bl〜(f)はス
ペクトル拡散の説明図、第3図(mlはスペクトル拡散
後のパルス信号の波形図、第4図はスペクトル拡散伸長
パルス信号のスペクトル全示す図、第5図にスペクトル
拡散伸長パルス信号の混合器Q出力の位相を示す図、第
6図は本発明によるレーダのパルス圧縮装置の一実施例
?示す図である。 図において、(10)は送信装置、(Illは送信信号
発生回路、顧は局部発振器群、10はスペクトル拡散回
路、θ21は局部発振器、031は混合器、 (+4)
は電力増幅器、Illは送受切換器、(2)は空中線、
に)は受信装置、C11)は高周波場@器、@げ混合器
、鏝はスペクトル凝縮回路、儲は中間周波増幅器、C3
4は位相検波器、(至)はサンプリング回路、□□□け
パルス圧縮回路、(至)に位相補正回路である。 各図中の同一符号は同一部分全示す。 代理人 大岩増雄 第2図 第3図 第4図 第5図 (α) 手続補正書(方式) 特許庁長官殿 1、事件の表示 特願昭58−171580号3、補正
をする者 −t′:・−7・ \シ日ニー 6、補正命令の日付 昭和59年1月81日 6、補正の対象 (1)明細書の図面の簡単な説明の鼎 7、補正の内容 (1)明細書第22頁第19行ないし同第28頁第5行
に「第2図(a)、(b)は・・・・・・パルス信号の
波形図」とあるのを[第2図及び第8図は第1図の送信
装置Qlの波形説明図、」と訂正する。 以上
Figure 1 is a configuration diagram showing an example of a pulse compression device for a conventional spread spectrum radar, and Figure 2 (al and b) are waveform diagrams of expanded pulse signals.
/< Signal waveform diagram after pulse compression, Figure 2 (a) is a diagram showing the spectrum of the expanded pulse signal, Figure 3 (a) is a waveform diagram of the Vi transmission and reception expanded pulse signal, Figure 3 (bl~( f) is an explanatory diagram of spectrum spreading, Figure 3 (ml is a waveform diagram of a pulse signal after spectrum spreading, Figure 4 is a diagram showing the entire spectrum of a spread spectrum expanded pulse signal, and Figure 5 is a diagram showing the entire spectrum of a spread spectrum expanded pulse signal). A diagram showing the phase of the mixer Q output, and FIG. 6 is a diagram showing an embodiment of the radar pulse compression device according to the present invention. In the figure, (10) is a transmitting device, (Ill is a transmitting signal generation circuit, 031 is a mixer, (+4)
is a power amplifier, Ill is a transmitter/receiver switch, (2) is an antenna,
) is the receiving device, C11) is the high frequency field @ mixer, @ge mixer, the trowel is the spectrum condensing circuit, the name is the intermediate frequency amplifier, C3
4 is a phase detector, (to) a sampling circuit, □□□ a pulse compression circuit, and (to) a phase correction circuit. The same reference numerals in each figure indicate all the same parts. Agent Masuo Oiwa Figure 2 Figure 3 Figure 4 Figure 5 (α) Procedural amendment (method) Commissioner of the Japan Patent Office 1, Indication of case Patent Application No. 171580/1983 3, Person making the amendment-t' :・-7・ \\日に 6、Date of amendment order January 81, 1982 6、Object of amendment (1) Brief explanation of the drawings in the specification 7、Contents of amendment (1) Specification From the 19th line on page 22 to the 5th line on page 28, the text ``Figures 2 (a) and (b) are pulse signal waveform diagrams.'' The figure is an explanatory diagram of the waveforms of the transmitting device Ql in FIG. 1.''that's all

Claims (1)

【特許請求の範囲】[Claims] f+i 内部変調さhた送信伸長パルス信号を複数のサ
ブパルス(C分割し各サブパルスの搬送周波数をそhぞ
ね異なる周波数に変換した後再び七わらを加え合わせて
複数のチャンネル全有するスペクトル拡散伸長パルス信
号音送信するスペクトル拡散回路と、受信した上記スペ
クトル拡散伸長)(ルス信号を上記複数のチャンネルご
とに分割し上記送信時における周波数変換と逆の周波数
変換ケ行なった後再び七わらを加え合わせて受信伸長パ
ルス信号?生成するスペクトル凝縮回路と、上記受信伸
長パルス信号を検波、サンプリングした浚、送信時のチ
ャンネル間の搬送周波数差を補正する位相補正回路と、
上記位相補正信号?用いてパルス圧縮?行なうパルス圧
縮回路とを備えたこと全特徴とするレーダのパルス圧縮
装置。
f+i The internally modulated transmission expanded pulse signal is divided into multiple subpulses (C, the carrier frequency of each subpulse is converted to a different frequency, and then the 7 layers are added together again to create a spread spectrum expanded pulse that has multiple channels) Spread spectrum circuit for transmitting signal sound and spread spectrum expansion of the received signal) A spectrum condensing circuit that generates a received expanded pulse signal, a phase correction circuit that detects and samples the received expanded pulse signal, and corrects a carrier frequency difference between channels during transmission.
The above phase correction signal? Using pulse compression? What is claimed is: 1. A radar pulse compression device characterized by comprising a pulse compression circuit for performing
JP58171580A 1983-09-17 1983-09-17 Pulse compression device of radar Pending JPS6063479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171580A JPS6063479A (en) 1983-09-17 1983-09-17 Pulse compression device of radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171580A JPS6063479A (en) 1983-09-17 1983-09-17 Pulse compression device of radar

Publications (1)

Publication Number Publication Date
JPS6063479A true JPS6063479A (en) 1985-04-11

Family

ID=15925782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171580A Pending JPS6063479A (en) 1983-09-17 1983-09-17 Pulse compression device of radar

Country Status (1)

Country Link
JP (1) JPS6063479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508777A (en) * 2015-02-16 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. Ranging method and apparatus
US10351477B2 (en) 2013-12-10 2019-07-16 Rogers Germany Gmbh Method for producing a metal-ceramic substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351477B2 (en) 2013-12-10 2019-07-16 Rogers Germany Gmbh Method for producing a metal-ceramic substrate
JP2018508777A (en) * 2015-02-16 2018-03-29 華為技術有限公司Huawei Technologies Co.,Ltd. Ranging method and apparatus
US10578729B2 (en) 2015-02-16 2020-03-03 Huawei Technologies Co., Ltd. Ranging method and apparatus

Similar Documents

Publication Publication Date Title
US7564400B2 (en) Spread spectrum radar apparatus
US2897442A (en) Frequency spectrum analyzers
JP2005201655A (en) Reception time measuring device and distance measuring device using it
RU2338219C1 (en) Method of target tracking and design of giant-pulse radiolocation station for method implementation
RU2600109C1 (en) Monopulse radar of millimetre range
JP5117999B2 (en) Distance measuring device
JPS6063479A (en) Pulse compression device of radar
JPH0777362B2 (en) Spread spectrum communication device
JP3397158B2 (en) ECM radar device
RU2631422C1 (en) Correlation-phase direction-finder
GB2545041A (en) Receiver with automatic gain control by an alternating current closed loop for radar applications
US3017505A (en) Receiving apparatus for radio frequency signals
JPH0642638B2 (en) Wireless communication device
JPS6136190B2 (en)
JPH05264725A (en) Coded cw radar apparatus
JP3453341B2 (en) Radar equipment
JP2980082B2 (en) Radar equipment
JP2001033547A (en) Distance measuring apparatus
RU2115236C1 (en) Communication system with wide-band signals
JPS61100679A (en) Synthetic aperture radar apparatus
RU2067770C1 (en) User set receiver for signals from global satellite navigation systems
RU2258939C1 (en) Method for forming and compressing radio signals
JPH07110374A (en) Coding cw radar device
RU2205508C2 (en) Transceiving device
JP2001296351A (en) Transceiver