JPS6063283A - Coal liquefaction - Google Patents

Coal liquefaction

Info

Publication number
JPS6063283A
JPS6063283A JP17260983A JP17260983A JPS6063283A JP S6063283 A JPS6063283 A JP S6063283A JP 17260983 A JP17260983 A JP 17260983A JP 17260983 A JP17260983 A JP 17260983A JP S6063283 A JPS6063283 A JP S6063283A
Authority
JP
Japan
Prior art keywords
coal
catalyst
hydrogen
slurry
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17260983A
Other languages
Japanese (ja)
Inventor
Makoto Nishimura
西村 真琴
Hiroshi Miyadera
博 宮寺
Shunsuke Nokita
舜介 野北
Takao Hishinuma
孝夫 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17260983A priority Critical patent/JPS6063283A/en
Publication of JPS6063283A publication Critical patent/JPS6063283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:An aqueous solution of compounds containing Sn and Zn is added to a coal slurry as a catalyst, then coal liquefaction is carried out with high-pressure hydrogen to achieve high-efficiency liquefaction of coal with a small amount of the catalyst, whereby inexpensive liquefied oil is obtained in high yield. CONSTITUTION:First, a solution of compounds containing Sn and/or Zn, preferably potassium stannate, in water or an organic solvent, as a catalyst, is added to a slurry of coal in a solvent, then the slurry is brought into contact with hydrogen under high-temperature and high-pressure conditions to liquefy the coal. The above reaction is effected usually at 100-300 atmospheric pressure and 400-480 deg.C.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は石炭の直接水添液化方法に係り、特に石炭スラ
リーと水素とを短時間で反応させ、多量の液状物を得る
のに好適な触媒、及びその添加方法からなる石炭液化方
法にlJl:lする。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for direct hydrogenation and liquefaction of coal, and in particular to a catalyst suitable for reacting coal slurry and hydrogen in a short time to obtain a large amount of liquid. , and its addition method.

〔発明の背景〕[Background of the invention]

従来から石炭の液化法については多くの検討がなされて
おり、それらは大別すると、(1)直接水添液化法、(
2)抽出水添液化法、(3)合成液化法、(4)乾留液
化法の4神がある。
Many studies have been conducted on coal liquefaction methods, and these can be roughly divided into (1) direct hydrogenation and liquefaction methods;
There are four methods: 2) extraction hydrogenation liquefaction method, (3) synthetic liquefaction method, and (4) dry distillation liquefaction method.

技術的には(3)が最も進んでいるが、石炭を一度ガス
化してから再び液化するという最低2段階のプロセスが
必要で、製品のコストが高く、全体の収率も低い。(4
)は最も単純なプロセスであるが、収率が最も低く、ま
だ固形分(チャー)の生成量が多く、処理に問題がある
。、(2)は高圧の水素を使用せず、溶剤中の水素によ
って液化する方法であるが、l(!化油が重′6で利用
価値が低く、特定の炭種しか使用できず、また溶剤を水
添処理して再利用しなければならない等の間jlQ点が
ある。
Technically, method (3) is the most advanced, but it requires at least a two-step process of gasifying the coal and then liquefying it again, resulting in high product costs and low overall yields. (4
) is the simplest process, but it has the lowest yield, still produces a large amount of solids (char), and has processing problems. , (2) is a method of liquefying with hydrogen in a solvent without using high-pressure hydrogen, but the liquefied oil is heavy and has low utility value, and only certain types of coal can be used, and There are jlQ points during which the solvent must be reused by hydrogenation treatment, etc.

一方(1)は石炭スラリーを高圧下で水素と混合し、予
熱段階を経て反応911度まで加熱する方法である。
On the other hand, (1) is a method in which coal slurry is mixed with hydrogen under high pressure and heated to a reaction temperature of 911 degrees through a preheating step.

液化油の収率を向上させるため触媒を使用するが、触媒
によって(5)触媒活性は低いが安価な触媒を多量に使
用する方法と、(+3)触媒活性は高いが比較的高価な
触媒を少目、使用する方法に2分される。
Catalysts are used to improve the yield of liquefied oil, but depending on the catalyst, there are two methods: (5) using a large amount of inexpensive catalyst with low catalytic activity, and (+3) using a relatively expensive catalyst with high catalytic activity. It is divided into two parts depending on the method used.

囚は触媒が安価なので使い捨てが可能であるが、活性が
低いので液化油が重質で利用filli値が低く、残渣
が多暇に生成しその処理に問題があるなどの欠点がある
。才た03)は触媒の活性低下が速いため液化率を維持
するためには高価な触媒を補充成るいは交換せねばなら
ず、少量で活性の高い触媒の選択および触媒の効率的な
回収をしなければならないといつだ問題点がある。
Since the catalyst is cheap, it can be disposed of, but it has drawbacks such as low activity, heavy liquefied oil, low utilization filli value, and frequent generation of residue, which poses problems in its disposal. With 03), the activity of the catalyst decreases quickly, so in order to maintain the liquefaction rate, it is necessary to replenish or replace the expensive catalyst. Therefore, it is necessary to select a highly active catalyst in a small amount and to efficiently recover the catalyst. There are always problems when you have to do it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、直接水添液化法において少量で高い触
媒活性を示す触媒、及びそれが反応器中で最も高い活性
を示すように石炭スラリー中に混入する石炭液化方法を
提供することにある。
An object of the present invention is to provide a catalyst that exhibits high catalytic activity in a small amount in a direct hydrogenation liquefaction method, and a coal liquefaction method in which the catalyst is mixed into a coal slurry so that it exhibits the highest activity in a reactor. .

〔発明の概要〕 石炭液化方法は前記のように4種に大別されるが、プロ
セス全体のコストや液化油の質などの点から直接水添法
が将来最も有望でぽ)ると考えられる。直接水添法は石
炭と溶剤とを混合したスラリーと水素とを100〜30
0気圧、400〜480Cといった高温、高圧条件下で
反応させて石炭を低分子化し、溶剤中に分散させて灰分
を含む未反応炭分から分1・+I、 l、て無灰の液状
物とする方法である。この際分離した未反応炭分をガス
化したり、副生するガスを改質することによって必斐な
水素を得ることができる。
[Summary of the Invention] Coal liquefaction methods can be roughly divided into four types as mentioned above, but the direct hydrogenation method is considered to be the most promising in the future in terms of the overall cost of the process and the quality of liquefied oil. . In the direct hydrogenation method, a slurry of coal and a solvent is mixed with hydrogen at 100-30%
Coal is reacted under high temperature and high pressure conditions such as 0 atm and 400 to 480C to reduce its molecular weight, and is dispersed in a solvent to form an ashless liquid from the unreacted coal containing ash. It's a method. At this time, the necessary hydrogen can be obtained by gasifying the separated unreacted carbon content or reforming the by-product gas.

直接水添法では液化油中の軽質油の割合を高めるだhに
触媒を添加する。IN+ hvには囚安価な使い捨て触
媒と(13触媒活性の高い高級な触媒の2種があるが、
軽質油を多く得るためには0邊の使用が望捷しい。しか
しながら(B)は触媒活性の低下が著しいだめ、高価な
触媒を回収酸るいはV換して再使用する必要がある。し
かしながら回収率には限界があるため、添加量が少なく
ても殴れだ液化率が得られる触媒、及びその添加方法が
望まれる。
In the direct hydrogenation method, a catalyst is added to the liquid to increase the proportion of light oil in the liquefied oil. There are two types of IN+ hv: an inexpensive disposable catalyst and a high-grade catalyst with high catalytic activity (13).
In order to obtain a large amount of light oil, it is desirable to use 0°. However, since the catalyst activity of (B) is significantly reduced, it is necessary to recover the expensive catalyst and reuse it by converting it into acid or V. However, since there is a limit to the recovery rate, there is a need for a catalyst and a method for adding the catalyst that can provide an excellent liquefaction rate even with a small amount added.

この一方法として、触媒を微粉末としてスラリー中に混
入し、反応後の未反応炭を一部再循甲して触媒として再
使用することにより、触媒の添加量を減少させる方法(
特開昭53−106709号公報)がある。この方法の
中には高活性な触媒としてモリブデン酸アンモニウムの
ような水溶性の化合物を用い、水溶液として石炭スラリ
ー中にエマルジョンとして分散させ、反応雰囲気下で酸
化モリブデンの微粉末にして反応を行なわせる方法が知
られている。これは酸化モリブデンを粉末として添加す
るよりもよシ微小な粒となるため触媒表面積が大きくな
り、より少量で同程度の触媒活性を示すためと考えられ
る。したがってこの方法でより活性の高い触媒を見い出
せれば、添加する触媒の叶がより少量で浸れだ液化率が
維持でき、液化油のコストも軽減できると考え、種々検
討した結果本発明に到達した。
One method for this is to reduce the amount of catalyst added by mixing the catalyst in the form of fine powder into the slurry and recycling some of the unreacted carbon after the reaction to reuse it as a catalyst (
JP-A-53-106709). In this method, a water-soluble compound such as ammonium molybdate is used as a highly active catalyst, and the aqueous solution is dispersed as an emulsion in a coal slurry, and the reaction is carried out in the form of fine powder of molybdenum oxide in a reaction atmosphere. method is known. This is thought to be because molybdenum oxide becomes finer particles than when it is added as a powder, so the surface area of the catalyst becomes larger, and a smaller amount of molybdenum oxide exhibits the same level of catalytic activity. Therefore, if we can find a catalyst with higher activity using this method, we believe that the liquefaction rate can be maintained with a smaller amount of catalyst added, and the cost of liquefied oil can also be reduced.As a result of various studies, we have arrived at the present invention. .

触媒活性の高い高級な触媒の一つにスズや亜鉛の塩化物
が知られている。これらは反応条件下で溶融して液状と
なり、活性表面が常に更新するので活性低下が起こらず
、軽質油分の多い液化油が高収率で得られる。しかしな
がら同時に発生する塩化水素による機器の腐蝕や触媒の
回収に問題があつプこ。しだがって塩化物を使用せずに
活性の高いスズ、亜鉛の化合物を用いて、反応条件下で
溶融状四と同じような状態をつくり出せないかと考くて
本発明を達成した。即ち水溶性成るいは有機溶媒に可溶
性のスズ、iIF鉛の化合物を水又は有機溶媒の溶液と
して石炭スラリー中に混入し、反応雰囲気下で微粉体と
なし、少量で高い液化活性を示すようにしたーものであ
る、 〔発明の実施例〕 以下、本発明の一実施例を1″!11面により説明する
Chlorides of tin and zinc are known as high-grade catalysts with high catalytic activity. These melt and become liquid under the reaction conditions, and since the active surface is constantly renewed, no reduction in activity occurs, and liquefied oil with a high light oil content can be obtained in high yield. However, at the same time, there were problems with equipment corrosion due to the hydrogen chloride and recovery of the catalyst. Therefore, the present invention was achieved by considering whether it is possible to create a state similar to the molten state under reaction conditions by using highly active compounds of tin and zinc without using chlorides. That is, water-soluble or organic solvent-soluble tin and iIF lead compounds are mixed into coal slurry as a solution in water or an organic solvent, and are made into fine powder in a reaction atmosphere so that they exhibit high liquefaction activity even in a small amount. [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be explained using the 1''!11 plane.

0.1喘以下に粉砕した石炭1をホッパ2より一定数ず
つミキサー3へ供給する。ミキサー3では循環溶剤25
とスズ又は亜鉛の水溶液4とを混合攪拌し、水溶液4が
エマルジョンとして分散した石炭スラリー5とする。石
炭スラリー5はポンプ6にて加圧され、同様にコンプレ
ッサ31で加圧された水素32と混合し、予熱器7で2
50C程度に予熱する。享らに反応器8で400〜.p
480PCに加熱、攪拌しながら水素と反応させ、石炭
を液化する。反応によって生じた粗生成物9はガスや液
状物、未反応炭分、および灰分等を含むので高圧気液分
離器10で水素、副生ガスおよび軽質油分と重質油分、
未反応炭分および灰分等に分離する。ガスおよび軽質油
分はさらに常圧蒸留塔11で水素および副生ガス12、
製品油13、および蒸留残渣14に分離する。水素およ
び副生ガス12は深冷分離等を行なった後、改質塔15
で炭化水素ガス成分にスチーム16を吹き込んで水蒸気
改質を行ない、改質水素17とし、未反応水素とともに
7浅化反応用水素として再使用する。高圧気液分間R?
1ylOで分paされた重質油分、未反応炭分および灰
分等はハイドロクロン18等の方法で固液分離を行い、
中・重″n油19と未反応炭および灰分等に分l′li
&する。中・重質油19は常圧蒸留残渣14と混合して
減圧蒸留塔21で中質油22、重質油23、およびター
ル・ピッチ24に分離する。重質油23およびタール・
ピッチ24の一部お・よび減圧蒸留残渣を混合して石炭
の溶剤25として再使用する。未反応炭分および灰分等
20けガス化炉26で酸素、スチーム33によってガス
化し、ガス化水素27と灰分28にする。
Coal 1 pulverized to 0.1 mm or less is supplied from a hopper 2 to a mixer 3 in fixed quantities. In mixer 3, circulating solvent 25
and an aqueous solution 4 of tin or zinc are mixed and stirred to form a coal slurry 5 in which the aqueous solution 4 is dispersed as an emulsion. The coal slurry 5 is pressurized by a pump 6, mixed with hydrogen 32 which is similarly pressurized by a compressor 31, and mixed with hydrogen 32 by a preheater 7.
Preheat to about 50C. 400 ~ in reactor 8. p
The coal is heated to 480PC and reacted with hydrogen while stirring to liquefy the coal. The crude product 9 produced by the reaction contains gas, liquid matter, unreacted coal, ash, etc., so it is separated in the high-pressure gas-liquid separator 10 by hydrogen, by-product gas, light oil, heavy oil, etc.
Separate into unreacted carbon and ash. The gas and light oil are further passed through an atmospheric distillation column 11 to hydrogen and by-product gas 12,
It is separated into a product oil 13 and a distillation residue 14. Hydrogen and by-product gas 12 are subjected to cryogenic separation, etc., and then sent to reforming tower 15.
Steam 16 is blown into the hydrocarbon gas component to perform steam reforming to produce reformed hydrogen 17, which is reused together with unreacted hydrogen as hydrogen for the 7 shallowing reaction. High pressure gas/liquid minute R?
Heavy oil, unreacted coal, ash, etc. separated with 1ylO are subjected to solid-liquid separation using a method such as Hydroclone 18.
Divided into medium/heavy oil 19, unreacted coal, ash, etc. l'li
&do. The medium/heavy oil 19 is mixed with the atmospheric distillation residue 14 and separated into medium oil 22, heavy oil 23, and tar pitch 24 in a vacuum distillation column 21. Heavy oil 23 and tar
A portion of the pitch 24 and the vacuum distillation residue are mixed and reused as a coal solvent 25. Unreacted coal and ash are gasified in a 20-car gasifier 26 using oxygen and steam 33 to form gasified hydrogen 27 and ash 28.

未反応水素、改質水素17とカス化水素27とを合わせ
て液化用水素29とするが、水素量が少ない場合は別途
補充水素30を供給する。
Unreacted hydrogen, reformed hydrogen 17, and hydrogen scum 27 are combined to form hydrogen for liquefaction 29, but if the amount of hydrogen is small, supplementary hydrogen 30 is separately supplied.

第1表には、前記図の装置直への基礎実験として回分式
の反応装置を用い、神々の触媒の石炭液化性能を比較し
たときの結果を示しだものである。
Table 1 shows the results of a comparison of the coal liquefaction performance of God's Catalyst using a batch type reactor as a basic experiment directly to the device shown in the figure above.

回分式の反応試験は石炭、溶剤、触7!IIをあらかじ
め反応容器内に入れ夕水素を充填し、昇温した溶融物(
はんだ)内に反応器を浸して急速加熱しながら振とうし
、一定時間経過後急冷し、その後生成物を採取するもの
である。第1表中には1111t媒の種類、石炭に対す
る触媒の添加M゛、水素圧、加pJH漉度、時間、およ
び生成物中の液状物の転化率、軽質油収率と重質油収率
との比(以下L/Hと称する)を示す。触媒を添加しな
い扁6と他の結果とを比較すると、触媒を添加した場合
は転化率やL / Hが上Jf、 t、−Cおり、これ
らの触媒が液状物の生成に効果を及ぼしているととがわ
かる。触媒活性をみると酸化鉄、水rli着化鉄化鉄性
が低く、5%添加しても転化率は殆ど増加しないが、他
の高活性な触媒は転化率が犬きく増加する。特に本発明
の水溶性又は有機溶媒に可溶性のスズ系の触媒の効果が
高く、蛤化率、L/Hともに大きい。
Batch reaction tests include coal, solvent, and 7! II was placed in a reaction vessel in advance, then filled with hydrogen, and the heated melt (
The reactor is immersed in solder, rapidly heated and shaken, and then rapidly cooled after a certain period of time, after which the product is collected. Table 1 shows the type of 1111t medium, catalyst addition M to coal, hydrogen pressure, pJH straining rate, time, conversion rate of liquid in the product, light oil yield, and heavy oil yield. (hereinafter referred to as L/H). Comparing Flat 6 with no catalyst added and other results, the conversion rate and L/H were higher when the catalyst was added, indicating that these catalysts had an effect on the production of liquid products. I can tell when it's there. Looking at the catalyst activity, iron oxide and water rli adsorption properties are low, and the conversion rate hardly increases even when 5% is added, but the conversion rate increases significantly with other highly active catalysts. In particular, the effect of the water-soluble or organic solvent-soluble tin-based catalyst of the present invention is high, and both the clam formation rate and L/H are high.

触媒量が0.5 W を係と少量になると、どの触媒で
も転化率やL/Hが低下するが、粉体の酸化スズ(Sn
02 )を添加したときに比べて、水溶性のスズ酸カリ
ウム(K2Sn02) やモリブデン酸アンモニウム(
(NH4)s Moy 024 )を添加したものはあ
まり低下していない。特にスズ酸カリウムの場合はO,
(15W t%に添加量をrn<少させても、モリブデ
ン酸アンモニウムを0.5 W t%添加したときと同
様な結果を示しており、少量で高い液状物収率を示す触
媒であることを見い出した。
When the amount of catalyst is as small as 0.5 W, the conversion rate and L/H decrease with any catalyst, but powdered tin oxide (Sn
02), water-soluble potassium stannate (K2Sn02) and ammonium molybdate (
(NH4)s Moy 024 ) did not decrease much. Especially in the case of potassium stannate, O,
(Even if the addition amount was reduced to 15 W t%, rn< , the same results were obtained as when ammonium molybdate was added at 0.5 W t%, indicating that the catalyst shows a high liquid yield with a small amount. I found out.

−4だ第2表は、第1表の結果をもとに第1図に示した
反応系を用いて反応iMP1i4 s o cと43D
Cで反応を行ったときの結果を示しだ。反応温度を低下
させても転化率、L/Hはあまり変らない。
-4 Table 2 shows the reaction iMP1i4 s o c and 43D using the reaction system shown in Figure 1 based on the results in Table 1.
Show the results when the reaction was carried out in C. Even if the reaction temperature is lowered, the conversion rate and L/H do not change much.

触媒の活性をみると、スズ酸カリウムを0.05Wi%
を添加した場合でも高い転化率、L/Hを示している。
Looking at the activity of the catalyst, potassium stannate was added at 0.05 Wi%.
It shows a high conversion rate and L/H even when adding .

凍たスズ酸カリウムを0.5 W t %添加したとき
は酸化スズを同量加えて450Cで反応したときの転化
率、L / Hよりも高い値を示している。このことか
ら反応東件の緩和もはかることができる。
When 0.5 Wt% of frozen potassium stannate was added, the conversion rate, L/H, was higher than when the same amount of tin oxide was added and the reaction was carried out at 450C. From this, it is possible to alleviate the reaction to the incident.

本結果はスズの化合物の水溶液についての一例であるが
、第1表からもわかるように同様なスズ系の化合物であ
るテトラフェニルスズ(S L’ (C6115)4)
を少量の溶剤(前記の液化用溶剤と同一)に溶かした溶
液や、亜鉛の化合物である酢酸IE鉛(Zn(CH3C
OO)2)の水溶液を、スズ酸カリウノ・水溶液と同量
用いて反応させたときも、従来のモリブデン酸アンモニ
ウム水溶液の場合よりも高い転化率、L / Hを示す
。したがって本→ら明のスズ又は亜鉛の化仔物を水又は
有機溶媒の溶液として用いると、従来のモリブデンの化
合物の溶液や、スズ、亜鉛のね体の触媒に比べて、少(
4で高い液状物の収率を青ることができる。
This result is an example of an aqueous solution of a tin compound, but as can be seen from Table 1, a similar tin-based compound, tetraphenyltin (S L' (C6115)4)
IE lead acetate (Zn(CH3C
Even when the aqueous solution of OO)2) is reacted with the same amount of potassium stannate aqueous solution, it shows a higher conversion rate, L/H, than the conventional aqueous ammonium molybdate solution. Therefore, when the compound of tin or zinc of this → Ramei is used as a solution in water or an organic solvent, compared to a solution of a conventional molybdenum compound or a catalyst made of a tin or zinc body, the amount of
4 can achieve high liquid yield.

この原因として石炭スラリー中に触媒ン)ダ液がエマル
ジョンとして分散し、反応雰囲気下で微粉体となり、石
炭上に均一に分布するためであると推定したが、実際に
未反応唐土のスズ、亜鉛の分布状態を粉体の酸化物を添
加したときと比べると、酸化物を添加したときは未反応
唐土にスズがイ(へ中している点が多く不均一に存在す
るのに比べて、溶液を添加したときf:iはぼ均一に分
布しており、これが液状物の収率を高める一因となるこ
とが明らかになった。
It was assumed that the cause of this was that the catalyst liquid was dispersed as an emulsion in the coal slurry, turned into fine powder in the reaction atmosphere, and was uniformly distributed on the coal, but in reality, tin and zinc in unreacted clay were found. Comparing the distribution state of tin with that when powdered oxide was added, it was found that when oxide was added, tin was unevenly present in the unreacted clay (there were many hollow spots). When the solution was added, f:i was distributed almost uniformly, and it became clear that this was a factor in increasing the yield of the liquid product.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、石炭と溶剤を混合したスラリー中に触
媒としてスズ又は/及び亜鉛を含む化合物を水又は有佛
溶媒の溶液として添加し、高圧水素によって石炭液化反
応を行わせることにより、従来のモリブデン化合物の溶
液が粉体の触媒に比べて、より少量の触媒でも茜い液状
物の収率を得ることができる。
According to the present invention, a compound containing tin and/or zinc as a catalyst is added as a solution of water or a Buddhist solvent to a slurry of coal and a solvent, and a coal liquefaction reaction is carried out using high-pressure hydrogen. A solution of a molybdenum compound can yield a bright liquid product even with a smaller amount of catalyst than a powdered catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の石炭力′魅化方法を示すプロセスフロー
シートである。 1・・・供給石炭、3・・・ミキサー、4・・・川:I
/lL溶液、8・・・反応器、10・・・気液分離器、
II・・・常圧蒸留塔、15・・・改質基、17・・・
改質水素、未反応水素、18・・・固液分t111器、
21・・・7成圧蒸留塔、25・・・循環溶剤、26・
・・ガス化炉、27・・・ガス化水素、30・・・補充
水素、32・・・加圧水素。 代理人 弁理士 鵜沼辰之
The drawing is a process flow sheet showing the coal power attraction method of the present invention. 1...Supplied coal, 3...Mixer, 4...River: I
/lL solution, 8... reactor, 10... gas-liquid separator,
II... Atmospheric pressure distillation column, 15... Modifying group, 17...
Reformed hydrogen, unreacted hydrogen, 18...solid-liquid t111 unit,
21...7 Compressive distillation column, 25... Circulating solvent, 26...
... Gasifier, 27... Gasified hydrogen, 30... Replenishment hydrogen, 32... Pressurized hydrogen. Agent Patent Attorney Tatsuyuki Unuma

Claims (1)

【特許請求の範囲】 1、石炭を溶剤及び触媒と混合したスラリーを高τ品高
圧下で水素と接触せしめて石炭を液化する石炭液化方法
において、前記触11^とじてスズ及び/又は!lF鉛
を含む化合物を水又は有機溶剤に溶かした浴液を使用し
、この溶液をスラリー中に添加して反応させることを特
徴とする石炭液化方法。 2、!1れ゛[請求の範囲第1項において、触媒として
のスズの化合物がスズ配カリウムで、ちることを特徴と
する石炭液化方法。
[Claims] 1. A coal liquefaction method in which coal is liquefied by contacting a slurry of coal mixed with a solvent and a catalyst with hydrogen under high pressure. A coal liquefaction method characterized by using a bath solution in which a compound containing 1F lead is dissolved in water or an organic solvent, and adding this solution to a slurry for reaction. 2,! 1. A method for liquefying coal according to claim 1, characterized in that the tin compound as a catalyst is potassium tin.
JP17260983A 1983-09-19 1983-09-19 Coal liquefaction Pending JPS6063283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17260983A JPS6063283A (en) 1983-09-19 1983-09-19 Coal liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17260983A JPS6063283A (en) 1983-09-19 1983-09-19 Coal liquefaction

Publications (1)

Publication Number Publication Date
JPS6063283A true JPS6063283A (en) 1985-04-11

Family

ID=15945040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17260983A Pending JPS6063283A (en) 1983-09-19 1983-09-19 Coal liquefaction

Country Status (1)

Country Link
JP (1) JPS6063283A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745108A (en) * 1971-05-25 1973-07-10 Atlantic Richfield Co Coal processing
JPS53106708A (en) * 1977-02-28 1978-09-18 Dow Chemical Co Emulsion catalyst for hydrogenating hydrocarbonaceous materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745108A (en) * 1971-05-25 1973-07-10 Atlantic Richfield Co Coal processing
JPS53106708A (en) * 1977-02-28 1978-09-18 Dow Chemical Co Emulsion catalyst for hydrogenating hydrocarbonaceous materials

Similar Documents

Publication Publication Date Title
US4105755A (en) Hydrogen production
US1900751A (en) Purification of gases
US2913388A (en) Coal hydrogenation process
US3944480A (en) Production of oil and high Btu gas from coal
US4081337A (en) Electrolytic production of hydrogen
JPS6142590A (en) Preparation of high-concentration hydrogen gas with thermal cracking of heavy oil
US4147611A (en) Regeneration of alkali metal sulfides from alkali metal hydrosulfides
AU553199B2 (en) Production of hydrogen from oil shale
CN1505591A (en) Method for the production of hydrogen and applications thereof
US4325707A (en) Coal desulfurization by aqueous chlorination
US1996009A (en) Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
EP0004456B1 (en) Methanation of carbon monoxide without prior separation of inert gases
JPS6063283A (en) Coal liquefaction
US3954596A (en) Production of low sulfur heavy oil from coal
WO1980001280A1 (en) Coal liquefaction process with improved slurry recycle system
US2860101A (en) Balanced hydrogenation of coal
US4224137A (en) Recovery of catalysts from the hydrogenation of coal
JPS59136135A (en) Catalyst and method for coal-direct liquefaction
US5266189A (en) Integrated low severity alcohol-base coal liquefaction process
EP0060376B1 (en) Recovery and recycle of molybdenum values from coal residue
JPH10121055A (en) Method for liquefying coal
CN106044825A (en) Treating method for waste sulfuric acid
JPH11226427A (en) Production of coal liquefaction catalyst
Del Bianco et al. Studies on coal reactivity by using the CO/H2O/base system
JPS5891002A (en) Gasifying method of heavy oil by fluid catalytic partial oxidation