JPS5891002A - Gasifying method of heavy oil by fluid catalytic partial oxidation - Google Patents

Gasifying method of heavy oil by fluid catalytic partial oxidation

Info

Publication number
JPS5891002A
JPS5891002A JP18800381A JP18800381A JPS5891002A JP S5891002 A JPS5891002 A JP S5891002A JP 18800381 A JP18800381 A JP 18800381A JP 18800381 A JP18800381 A JP 18800381A JP S5891002 A JPS5891002 A JP S5891002A
Authority
JP
Japan
Prior art keywords
partial oxidation
heavy oil
gasifying
carbon
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18800381A
Other languages
Japanese (ja)
Other versions
JPS612603B2 (en
Inventor
Shozo Ito
伊藤 昭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP18800381A priority Critical patent/JPS5891002A/en
Publication of JPS5891002A publication Critical patent/JPS5891002A/en
Publication of JPS612603B2 publication Critical patent/JPS612603B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To permit partial oxidation of heavy oil fractions at a lower temp., a less rate of oxygen consumption and a higher rate of gasification in a titled gasifying method by specifying the compsn. of catalysts. CONSTITUTION:Heavy oil fractions are brought into fluidized contact with gasifying agents at 800-1,000 deg.C and 1.0-10:1 total O atoms of the gasifying agents: the C atoms of the heavy oil fractions in the presence of fluidized bed catalysts contg. CaO deposited on alumina carriers and iron oxide as an assistant. Here, if the gasifying temp. for partial oxidation is below the lower limit, main reaction consists of a thermal decomposition and therefore essential components of tar and carbon are contained much and unsaturation components such as ethylene are increased in the formed gas. In excess of the upper limit, a secondary decomposition of the products is induced, by which carbon is formed and the consumption of O is increased. If the O atom/C atom ratio is below the lower limit, carbon deposits on the surfaces of the catalysts, the catalytic activity is decreased sharply, and unsaturated components are increased in the formed gas. In excess of the upper limit, the partial oxidation progresses so much that CO2 increases in the formed gas and a loss of energy is caused on account of an increase in the amt. of unreacted excess steam.

Description

【発明の詳細な説明】 この発明は液状炭化水素、特に常圧蒸留残さ油、減圧蒸
留残さ油などの重質油を流動触媒ノーと接触させること
により接触部分酸化する方法に関し、部分酸化生成物は
合成ガスJ?都市ガスの製造または石炭液化用や石油襦
製などの水素化用水素の製造、C−/化学の原料として
有用である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for catalytically partially oxidizing liquid hydrocarbons, particularly heavy oils such as atmospheric distillation residues and vacuum distillation residues, by contacting them with a fluid catalyst. Is it syngas J? It is useful for the production of city gas, production of hydrogen for coal liquefaction, hydrogenation of petroleum reagents, etc., and as a raw material for C-/chemistry.

既存の工業用重質油のガス化操作は塩基性触媒の使用下
に7000℃以上の温度で行われ、また無触媒下の部分
酸化も僅かにこのガス化操作に対し実績がある。
Existing industrial heavy oil gasification operations are carried out at temperatures above 7000° C. using basic catalysts, and partial oxidation without catalysts has also been used for this gasification operation to a limited extent.

この無触媒方法では部分酸化反応器内でコーキング反応
が起り、原料ガスがカーボンへ転化するからガス化率が
低下する、また副生ずるカーボン処理のために装置の構
成と構造とを特に考慮した設計を必要とし、カーボン除
去用の捕集器、急冷浴の設置6を必要とし、カーボン再
利用のためベレットシステムを付帯するとか、カーボン
を抽出し原料油に混合リサイクルすることなどが行わわ
る。捷た非接触法であるために7300℃以上の茜温の
ガス化温度が要求される。
In this non-catalytic method, a coking reaction occurs in the partial oxidation reactor, and the raw material gas is converted to carbon, resulting in a lower gasification rate.In addition, the structure and structure of the equipment was designed with special consideration given to the treatment of by-product carbon. This requires the installation of a carbon collector and quenching bath6 for removing carbon, and the addition of a pellet system for carbon reuse, or the extraction of carbon and recycling by mixing it with raw oil. Since this is a non-contact method, a gasification temperature of 7,300° C. or higher is required.

また、この分野での接触部分酸化方法では前述のように
塩基性物質からなる触媒、例えば酸化カルシウム、マグ
ネシア、ドロマイトなどb\が使用されてきた。しかし
、この種の触媒は低温では低活性であるので、1000
℃以上の尚ガス化温度が要求され、従って、装置の耐火
性、耐スポーリング性さらには重質油中のイ訛黄との結
合による崩壊、消耗などの問題に対する対策が必要であ
る。
Further, in the catalytic partial oxidation method in this field, as mentioned above, catalysts made of basic substances, such as calcium oxide, magnesia, dolomite, etc., have been used. However, this type of catalyst has low activity at low temperatures, so
A gasification temperature of .degree. C. or higher is required, and therefore, measures must be taken to prevent problems such as fire resistance and spalling resistance of the equipment, as well as disintegration and wear due to combination with the heavy oil.

本発明の目的は(1)高いガス化率(カーボン、タール
などの副生を実質上伴わないガス化)、(2)簡単な装
置Wと操作・計理、(3)クリーンで良質なガスの製造
、(4t)より低ガス化温度の使用を可能となす液状炭
化水素特に重質油、例えば常L[蒸留残油、減圧蒸留残
油の接触部分酸化法を提供するにある。
The objectives of the present invention are (1) high gasification rate (gasification with virtually no by-products such as carbon and tar), (2) simple equipment W, operation and accounting, and (3) clean and high quality gas. The object of the present invention is to provide a method for the catalytic partial oxidation of liquid hydrocarbons, especially heavy oils, such as ordinary L[distillation residues and vacuum distillation residues], which enables the production of (4T) and the use of lower gasification temperatures.

本発明の他の目的は合成ガスの製誼用、都市ガスの製造
用原料1石炭液化や石油精製彦どの水添用水素のデ、′
)造、C/化学原料など全提供するにある。
Another object of the present invention is to produce hydrogen for hydrogenation in coal liquefaction, petroleum refining, etc. for synthesis gas production, city gas production, etc.
) manufacturing, C/chemical raw materials, etc. are all provided.

この目的は炭化水素、とくに重質油をアルミナ相体にJ
[持した酸化カルシウムと助剤と17で鉄全含有する流
動床触媒の存在下にgoo℃〜100θ℃の流度でガス
化剤と、7.0〜/θ:/のガス化剤全酸紫原子: j
N化水素炭素原子の原子比(O原子/C原子比)で流動
接触させることを特徴とする炭化水素、特に重質油の流
動+Y触間部分酸化ガス化方法より達成される。
The purpose of this is to convert hydrocarbons, especially heavy oil, into an alumina phase.
[Calcium oxide, auxiliary agent, and gasifying agent at a flow rate of 7.0 to /θ: / in the presence of a fluidized bed catalyst containing all iron at 17°C to 100°C; Purple atom: j
This can be achieved by a method for partially oxidizing hydrocarbons, especially heavy oil, by fluidizing and gasifying hydrocarbons, especially heavy oil, by bringing them into fluid contact at an atomic ratio of N hydrogen carbon atoms (O atoms/C atomic ratio).

本発明方法で使用する炭化水素としては特に常圧蒸留残
油または減圧蒸留残油のような重欠j油を使用できる。
The hydrocarbons used in the process of the invention can in particular be depleted oils such as atmospheric distillation residues or vacuum distillation residues.

炭素原子/水素原子比ざ、2程IM−の重質油が安ボし
てガス化できる。
Heavy oil with a carbon atom/hydrogen atom ratio of about 2 IM- can be cheaply converted into gas.

1ij・IZ媒州体のアルミナはこの種の触媒にt+!
2常1す・用されるタイプのアルミナ、特にα−アルミ
ナが好適である。酸化カルシウムはアルミナに対し〜、
スθ〜35%、最も好ましくは30%で助剤の酸化鉄は
Caoに対し7〜10%使用するのが好丑しい。
1ij/IZ medium alumina is t+ for this type of catalyst!
Aluminas of the type commonly used are preferred, especially alpha-aluminas. Calcium oxide is different from alumina.
It is preferable to use iron oxide as an auxiliary agent in an amount of 7 to 10% based on Cao.

触媒はr−アルミナを7200℃で2時間焼成してα−
アルミナとした仮、湿式法により調整した。すなわちカ
ルシウムおよび鉄の硝酸塩を用いてアルミナに111持
させ硝酸根を加熱除去した相持段JjJび7200℃で
焼成して整粒して反応に使用した。
The catalyst is α-aluminum by calcining r-alumina at 7200℃ for 2 hours.
It was prepared by a wet method using alumina. That is, alumina was loaded with 111 using calcium and iron nitrates, and the nitrate radicals were removed by heating, and the mixture was calcined at 7,200° C., sized, and used in the reaction.

gθ0℃〜/θ00℃のに四〇バ13分酸化ガス化a、
A度が使用されるが、goo”c未満では主反応が熱分
解となるので、タールやカーボンの生成が多く、生産す
るガス組成もエチレン、プロピレンなどの不飽和成分(
本発明の目的ではこれらの成分は不適)が多くなる。ま
た100θ℃を越えると生成物の二次分解全誘発し、カ
ーボンを生成するようになる。また必要以上に温度を上
げることは酸素の消費°址を増加させることになり、生
成ガス組成の劣化ばかりでなく、経済的にも好ましくな
い。
Oxidation gasification for 40 minutes at gθ0℃~/θ00℃ a,
A degree is used, but if it is less than goo'c, the main reaction is thermal decomposition, so a lot of tar and carbon are produced, and the composition of the gas produced is also unsaturated components such as ethylene and propylene (
These components are unsuitable for the purpose of the present invention). Moreover, when the temperature exceeds 100θ°C, secondary decomposition of the product is completely induced and carbon is generated. Moreover, raising the temperature more than necessary increases the consumption of oxygen, which not only deteriorates the composition of the produced gas but is also economically unfavorable.

ガス化剤とけ水蒸気及び酸素−または空気が使用される
。酸素または空気は反応に必要な酸素を供給すると共に
触媒活性の低下を防止し、反応熱の補足を負担する。
Gasifying agents dissolved in water vapor and oxygen or air are used. Oxygen or air supplies the oxygen necessary for the reaction, prevents the catalyst activity from decreasing, and supplements the reaction heat.

ガス化剤と炭化水素との量比はガス化剤中の酸素原子(
水蒸気中の酸素十純酸素または空気中の酸素またはそれ
らの混合物の酸素):炭化水素中の炭素原子の原子比(
0/C)が/〜10:/に制限される。0/Cが7未満
では触媒表面にカーボンが析出して触媒活性を急速に低
下させて1史用困難となる。また生成ガスの組成が不飽
和成分に富んだものとなへまたシC比が10を越えると
H1t1t化が進みすぎて生成ガス中にCO2ガスが増
大(空気を使用する時にけN2もともに増大する)して
劣質化するか、未反応の余剰水蒸気−の増大でエネルギ
ー損失を招くことになる。
The ratio of the gasifying agent to the hydrocarbon is the oxygen atom in the gasifying agent (
Atomic ratio of carbon atoms in hydrocarbons: oxygen in water vapor (ten pure oxygen or oxygen in air or oxygen in mixtures thereof)
0/C) is limited to /~10:/. If 0/C is less than 7, carbon will precipitate on the surface of the catalyst, rapidly reducing the catalyst activity and making it difficult to use it for a single period. In addition, if the composition of the generated gas is rich in unsaturated components and the C ratio exceeds 10, H1t1t will progress too much and CO2 gas will increase in the generated gas (when air is used, N2 will also increase). ), resulting in deterioration of the quality, or an increase in unreacted surplus water vapor, resulting in energy loss.

本発明方法によれば炭化水素、特に重質油を部分酸化で
き、それによってN2及び00を生成し、これらは合成
ガス製造用、都市ガス製造、C/化学に利用でき、また
石炭液化や石油精製、その他において必要な水素を提供
するのに利用できる。
According to the method of the present invention, hydrocarbons, especially heavy oils, can be partially oxidized, thereby producing N2 and 00, which can be used for synthesis gas production, city gas production, C/chemistry, coal liquefaction and oil It can be used to provide hydrogen needed in refining and other processes.

以下に実施例により本発明を更に具体的に説明する。The present invention will be explained in more detail below with reference to Examples.

原料の重質油(O//n=f、コ)に所定量の水蒸気全
添加して通常の方法で予熱し、他方別に窒気捷たは酸素
を各々ガス化炉に供給し、ガス化炉内は前述の触媒で濃
厚流層が形成されてgoo℃〜100θ°C1好ましく
は900°Cで接触部分酸化によるガス化が行われる。
A predetermined amount of steam is added to the raw material heavy oil (O//n=f, ko) and preheated in the usual manner, and nitrogen or oxygen is separately supplied to the gasification furnace for gasification. Inside the furnace, a dense flow layer is formed by the above-mentioned catalyst, and gasification by catalytic partial oxidation is performed at gooC to 100θC, preferably 900C.

ガス化炉中では下記の反応が生起する: OnHm+(n十−) 02j”neo□+2H20グ OnHm +nH,04nOO+(j + n ) H
20nHm +00,4コnOO+−1H2(30+ 
H,O′;1002+H2 ここに酸素は部分酸化に必要な酸素を供給すると共に触
媒活性の低下を防止し、反応熱の補足全負担する。
The following reaction occurs in the gasifier: OnHm+(n+−) 02j”neo□+2H20gOnHm+nH,04nOO+(j+n)H
20nHm +00, 4 pieces nOO+-1H2 (30+
H, O'; 1002+H2 Here, oxygen supplies the oxygen necessary for partial oxidation, prevents a decrease in catalyst activity, and supplements the entire reaction heat.

触媒活性の主体のOaOは相体中のA420.と反応し
て0aAf203.11g 0aO−A4,05. 、
?OaO−Af、03゜JOaO−5AJ20. f生
成し、これらの成分均衡が活性に影響するものと考えら
れる。またFe2o、は少くとも一部がFe2O4の形
態にまでなるものがあるが、これらの酸化鉄の存在は部
分酸化方法には効果的であって、以上のことが合成され
て複合作用を銹発し、触媒機能全確立するものと思わね
る。
OaO, which is the main component of catalytic activity, is A420. Reacts with 0aAf203.11g 0aO-A4,05. ,
? OaO-Af, 03°JOaO-5AJ20. It is thought that the balance of these components influences the activity. In addition, Fe2O, at least in part, is in the form of Fe2O4, and the presence of these iron oxides is effective in the partial oxidation method, and the above is synthesized to produce a complex effect. , I don't think that the catalytic function will be fully established.

第1図に常圧蒸留残油を900℃の部分酸化温度(ガス
化温度)でアルミナ−0aO−Fe触媒(アルミナに対
しOao 30%、 OaOに対し酸化鉄5%)A)、
/。原子比−/、2:/の水蒸気(曲線B)及び/。原
子比/、コニ/の(水蒸気。、9モル/C原子十酸素0
.3原子/C原子)(曲線0)t−使用した場合の経時
ガス化率の変化を示した。
Figure 1 shows the atmospheric distillation residual oil at a partial oxidation temperature (gasification temperature) of 900°C using an alumina-0aO-Fe catalyst (30% Oao to alumina, 5% iron oxide to OaO),
/. Water vapor with atomic ratios −/, 2:/ (curve B) and/. Atomic ratio /, Coni / of (water vapor., 9 moles / C atoms 10 oxygen 0
.. 3 atoms/C atoms) (curve 0) shows the change in gasification rate over time when t- is used.

曲線Aの条件下ではガス化率ij: 97%と高いが大
割゛の水蒸気を要するので所g総エネルギー量が多すぎ
る欠点がある。曲線Bでは反応開始後約7時間付近から
活性低下が認められるが、ガス化剤中の酸素原子ft/
、−に固定してその酸素原曲線C)。
Under the conditions of curve A, the gasification rate ij is as high as 97%, but since a large proportion of water vapor is required, there is a drawback that the total amount of energy is too large. In curve B, a decrease in activity is observed from around 7 hours after the start of the reaction, but the oxygen atoms in the gasifying agent ft/
, - its original oxygen curve C).

第2図に炭化水素(重質油)として常圧蒸留残油を用い
、第7図と同組成のアルミナ−0aO−Fe触媒を用い
、10原子比を/1.2に固定し、空気量を変動(純酸
素使用の場合もあるので空気中の窒素を除いて純酸素に
近い状態にして比較する)することによって水蒸気:酸
素の比を変えた時の生成物ガスH,、00、002及び
OH4の組成(%)を示した。!た各空気中の酸素原子
/CU!子の原子比により得られた部分酸化生成物ガス
の発熱量(キロカロリー/ NMJ )をも示した(曲
mD)。第1図から空気中の酸素の送入量を増せば良質
なガスが得られ、空気中の酸素送入量を減らせば都市ガ
スなどの燃料ガス用の相当の発熱i:Th有するガスが
得られることがわかる。
In Figure 2, atmospheric distillation residual oil is used as the hydrocarbon (heavy oil), an alumina-0aO-Fe catalyst with the same composition as in Figure 7 is used, the 10 atomic ratio is fixed at /1.2, and the amount of air is (In some cases, pure oxygen is used, so the nitrogen in the air is removed and the comparison is made in a state close to pure oxygen.) By varying the water vapor:oxygen ratio, the product gas H, 00, 002 and the composition (%) of OH4. ! Oxygen atoms in each air/CU! The calorific value (kilocal/NMJ) of the partial oxidation product gas obtained by the atomic ratio of the particles is also shown (track mD). From Figure 1, increasing the amount of oxygen fed into the air will yield a high-quality gas, while reducing the amount of oxygen fed into the air will yield a gas with a considerable amount of heat generation i:Th for fuel gas such as city gas. I know that it will happen.

例えば0原子(空気中酸素)10原子0.3(合計0原
子(水蒸気十酸素)10原子−/、コ)の場合にはその
発熱量は2jθθキロ力ロリー/NMBを上回わり、都
市ガス等のエネルギーの用途に有利でありそのガス化率
も95チでおることがわかる。
For example, in the case of 0 atoms (air oxygen) 10 atoms 0.3 (total 0 atoms (water vapor 10 oxygen) 10 atoms - /, ko), the calorific value exceeds 2jθθ kg/NMB, and city gas It can be seen that it is advantageous for energy applications such as, and its gasification rate is 95 degrees.

本発明方法は従来技術により工業化された重質油ガス化
技術と対比すると、(1)ガス化温度が低く(本発明ざ
oo℃〜1000℃、好適には900℃、先行技術/3
θθ℃〜/600°C)、(,2)酸素消費量が少なく
 (本発明方法は0.3モル酸素/C原子、先行技術は
o、s −o、tモル10.J子)及びガス化率が高い
(本発明方法では9Q%もの高率(fi が得られ、先行技術ではざ0−43%)といった利点が
あり、重質油の部分酸化ガス化工業において大きな意義
を有するものである。
Compared to the heavy oil gasification technology industrialized by the prior art, the method of the present invention has (1) a lower gasification temperature (the present invention ranges from 0°C to 1000°C, preferably 900°C, prior art/3
θθ℃~/600°C), (,2) low oxygen consumption (0.3 mol oxygen/C atom in the method of the present invention, 10.J atoms in the prior art) and gas It has the advantage of a high conversion rate (fi of as high as 9Q% can be obtained with the method of the present invention, compared to 0-43% with the prior art), and has great significance in the heavy oil partial oxidation gasification industry. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によるガス化率の経時変化を示す図
、第1図は送入空気中の酸素原子比率と生成物ガス組成
及び発熱量を示す図である。 特許出願人  株式会社 日本製鋼所 代 ” 人   曽  我  道  照” 1)
FIG. 1 is a diagram showing the change over time in the gasification rate according to the method of the present invention, and FIG. 1 is a diagram showing the oxygen atomic ratio in the introduced air, the product gas composition, and the calorific value. Patent applicant: Japan Steel Works Co., Ltd. ``Teru Soga Michi'' 1)

Claims (1)

【特許請求の範囲】 重質油をガス化剤で流動接触操作により部分酸化してガ
ス化するに当り、 アルミナ担体、酸化カルシウム及び助剤として酸化鉄を
含む触媒を使用し、 goo’c〜10OO℃の温度で、 ガス化剤中の全酸素原子二重質油の炭素原子の原子比が
/〜10:/の条件下で部分酸化を行うことを特徴とす
る方法。
[Claims] In gasifying heavy oil by partially oxidizing it with a gasification agent through a fluid contact operation, a catalyst containing an alumina carrier, calcium oxide, and iron oxide as an auxiliary agent is used, and goo'c~ A method characterized in that partial oxidation is carried out at a temperature of 100° C. under conditions in which the atomic ratio of carbon atoms of all oxygen atoms in the gasifying agent to carbon atoms of the dual quality oil is /~10:/.
JP18800381A 1981-11-24 1981-11-24 Gasifying method of heavy oil by fluid catalytic partial oxidation Granted JPS5891002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18800381A JPS5891002A (en) 1981-11-24 1981-11-24 Gasifying method of heavy oil by fluid catalytic partial oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18800381A JPS5891002A (en) 1981-11-24 1981-11-24 Gasifying method of heavy oil by fluid catalytic partial oxidation

Publications (2)

Publication Number Publication Date
JPS5891002A true JPS5891002A (en) 1983-05-30
JPS612603B2 JPS612603B2 (en) 1986-01-27

Family

ID=16215934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18800381A Granted JPS5891002A (en) 1981-11-24 1981-11-24 Gasifying method of heavy oil by fluid catalytic partial oxidation

Country Status (1)

Country Link
JP (1) JPS5891002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199701A (en) * 1982-04-26 1983-11-21 ユナイテッド・テクノロジ−ズ・コ−ポレイション Auto-thermal vapor improving process and its catalyst
WO1999019249A1 (en) * 1997-10-14 1999-04-22 Shell Internationale Research Maatschappij B.V. A process for the preparation of hydrogen and carbon monoxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10521767B2 (en) 2015-01-16 2019-12-31 Symbotic, LLC Storage and retrieval system
US9850079B2 (en) 2015-01-23 2017-12-26 Symbotic, LLC Storage and retrieval system transport vehicle
JP6870517B2 (en) 2017-07-20 2021-05-12 株式会社ダイフク Transport vehicle and transport equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199701A (en) * 1982-04-26 1983-11-21 ユナイテッド・テクノロジ−ズ・コ−ポレイション Auto-thermal vapor improving process and its catalyst
JPH0413025B2 (en) * 1982-04-26 1992-03-06 Yunaitetsudo Tekunorojiizu Corp
WO1999019249A1 (en) * 1997-10-14 1999-04-22 Shell Internationale Research Maatschappij B.V. A process for the preparation of hydrogen and carbon monoxide

Also Published As

Publication number Publication date
JPS612603B2 (en) 1986-01-27

Similar Documents

Publication Publication Date Title
US3031287A (en) Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane
EP0550242B1 (en) Processing of synthesis gas
US6448441B1 (en) Gasification process for ammonia/urea production
US3919114A (en) Synthesis gas process
US3475160A (en) Method of producing reducing gases for the fluidized bed reduction of ores
US3737291A (en) Process for reforming heavy hydrocarbons
US3726791A (en) Hydrogen production from an integrated coker gasifier system
US4021366A (en) Production of hydrogen-rich gas
US4082520A (en) Process of producing gases having a high calorific value
US2963348A (en) Hydrocarbon conversion process
WO1996001228A1 (en) Method for producing synthesis gas
JPS5844601B2 (en) Bubunsanganiyorgouseigasno seizouhouhou
JP2716650B2 (en) Method and reactor for producing gas enriched with hydrogen and carbon monoxide
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
EP0625481A1 (en) High temperature steam reforming
EP0196359B1 (en) Method and apparatus for fluidized bed reduction of iron ore
US4056483A (en) Process for producing synthesis gases
US2346754A (en) Fuel oil gasification
US3222147A (en) Process for the preparation of mixtures of hydrogen, carbon monoxide and methane
US3846095A (en) Reducing gas generation
US4411670A (en) Production of synthesis gas from heavy hydrocarbon fuels containing high metal concentrations
JPS5891002A (en) Gasifying method of heavy oil by fluid catalytic partial oxidation
US2697655A (en) Manufacture of a hydrogen-rich gas
US4399023A (en) Process for simultaneously cracking heavy hydrocarbons into light oils and producing hydrogen
EP0004456B1 (en) Methanation of carbon monoxide without prior separation of inert gases