JPS606282B2 - Oxygen recycling ozone generator - Google Patents

Oxygen recycling ozone generator

Info

Publication number
JPS606282B2
JPS606282B2 JP52010054A JP1005477A JPS606282B2 JP S606282 B2 JPS606282 B2 JP S606282B2 JP 52010054 A JP52010054 A JP 52010054A JP 1005477 A JP1005477 A JP 1005477A JP S606282 B2 JPS606282 B2 JP S606282B2
Authority
JP
Japan
Prior art keywords
ozone
adsorption tower
oxygen
ozone generator
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52010054A
Other languages
Japanese (ja)
Other versions
JPS5395192A (en
Inventor
重典 八木
敬典 難波
周治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52010054A priority Critical patent/JPS606282B2/en
Publication of JPS5395192A publication Critical patent/JPS5395192A/en
Publication of JPS606282B2 publication Critical patent/JPS606282B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 この発明は酸素リサイクルオゾン発生装置、特にその装
置の作動が一時停止した場合の安全措置の機構に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen recycling ozone generator, and more particularly to a safety mechanism in case the operation of the apparatus is temporarily stopped.

オゾン発生装置は空気を原料とする方式が広く用いられ
ているが、酸素を原料として用いるとオゾン発生効率が
空気を原料とする場合の約2倍となり、大幅な省エネル
ギが達成される。
Ozone generators that use air as a raw material are widely used, but when oxygen is used as a raw material, the ozone generation efficiency is approximately twice that of when air is used as a raw material, and significant energy savings can be achieved.

しかし酸素を原料としてもオゾンに変換されるのは数%
であり「大部分の酸素はそのまま排出されることになる
。したがって酸素の消費量が増加し、空気を原料とする
オゾン発生装置に比べてオゾン発生コストは大幅に増加
する。しかしオゾンに変換されない酸素をオゾンと分離
して再びオゾン発生機に還流させる酸素リサイクルオゾ
ン発生装置を用いるとオゾン発生コストは相当低減され
る。第1図は従来の酸素リサイクルオゾン発生装置の構
成を示す系統図であり、電磁弁の操作により、吸着工程
と脱着工程とに交互に変換しうる2個の吸着塔を備えた
場合の構成を示している。
However, even if oxygen is used as a raw material, only a few percent is converted to ozone.
"Most of the oxygen will be exhausted as is. Therefore, the amount of oxygen consumed will increase, and the cost of ozone generation will be significantly higher compared to ozone generators that use air as the raw material. However, it will not be converted to ozone. The cost of ozone generation can be considerably reduced by using an oxygen recycling ozone generator that separates oxygen from ozone and returns it to the ozone generator. Figure 1 is a system diagram showing the configuration of a conventional oxygen recycling ozone generator. , shows a configuration with two adsorption towers that can be alternately converted into an adsorption process and a desorption process by operating a solenoid valve.

図において1はオゾン発生機、2は冷却器、3−1,3
−2,3−3,3−4,3−5,3−6,3−7,3一
8は作動切換用電磁弁、4ーー,4一2はオゾン吸着塔
、5一1,5一2は吸着剤(シリカゲル)、6はブロア
である。図のように構成されている従来の酸素リサイク
ルオゾン発生装置において、吸着塔4−1が吸着工程、
吸着塔4一2が脱着工程にある場合は、電磁弁3一1,
3一2が開放され電磁弁3一3,3一4が閉鎖されてい
る。
In the figure, 1 is an ozone generator, 2 is a cooler, 3-1, 3
-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8 are solenoid valves for operation switching, 4--, 4-2 are ozone adsorption towers, 5-1, 5-1 2 is an adsorbent (silica gel), and 6 is a blower. In the conventional oxygen recycling ozone generator configured as shown in the figure, the adsorption tower 4-1 performs the adsorption process,
When the adsorption tower 4-2 is in the desorption process, the solenoid valves 3-1,
3-2 is open, and solenoid valves 3-3, 3-4 are closed.

オゾン発生機1に供給された原料酸素は、オゾン発生機
1を通過する間に放電により原料酸素の一部がオゾンと
なり、オゾン化酸素(02十03)として冷却器2に送
られる。冷却器で冷却されたオゾン化酸素は電磁弁3一
Iを経て吸着塔4−川こ入り塔内の吸着剤医一喜を冷却
するとともに、冷却されて低温となった吸着剤5−喜‘
こオゾンが吸着されも残りの酸素は電磁弁3一2を通っ
てブロア6亀こ送られる。送られた酸素はブロア6によ
ってオゾン発生器軍曹こリサイクルされる。この時点で
オゾン化して消費された酸素は、原料酸素供給口から補
われる。脱着系統ではも電磁弁3−59 8一8が開放
「電磁弁3−79 8−8が閉鎖されており〜乾燥気体
が電磁弁8…覇を経て吸着塔亀山乳こ入り吸着剤5−2
に吸着されていたオゾンを脱看しながら電磁弁S−8を
通りオゾン含有気体として使用個所に送られる。
While the raw material oxygen supplied to the ozone generator 1 passes through the ozone generator 1, a part of the raw material oxygen becomes ozone due to electric discharge, and is sent to the cooler 2 as ozonized oxygen (02-03). The ozonized oxygen cooled by the cooler passes through the solenoid valve 31I and cools the adsorbent in the adsorption tower 4-Kawakoiri tower, and the cooled adsorbent 5-K' which has become low temperature.
Even after the ozone is adsorbed, the remaining oxygen is sent to the blower 6 through the solenoid valves 3 and 2. The oxygen sent to the ozone generator is recycled by the blower 6. The oxygen consumed by ozonization at this point is replenished from the raw material oxygen supply port. In the desorption system, solenoid valves 3-59 and 8-8 are open, and solenoid valves 3-79 and 8-8 are closed, and the dry gas is transferred to the adsorption tower Kameyama milk adsorbent 5-2 through solenoid valve 8...
The gas passes through the solenoid valve S-8 and is sent to the point of use as an ozone-containing gas while removing the ozone that has been adsorbed by the gas.

吸着塔亀一重内の吸着剤5一官がオゾンを飽和近くまで
吸着すると吸着塔4一舵ま電磁弁の操作によりオゾン吸
着工程からオゾン脱着工程へも吸着塔4−2はオゾン脱
着工程からオゾン吸着工程にそれぞれ切換えられる。
When the adsorbent 5 in the adsorption tower 4-2 adsorbs ozone to near saturation, the adsorption tower 4-2 switches from the ozone adsorption process to the ozone desorption process by operating a solenoid valve. Each is switched to the adsorption process.

従来の酸素リサイクルオゾン発生装置においては上記の
ように〜吸着塔内の吸着剤(シリカゲル)は冷却器2か
らの気体が運ぶ袷気によって冷却されているので、装置
の作動を停止させた場合、吸着塔内の吸着剤(シリカゲ
ル)の温度が上昇する。
In the conventional oxygen recycling ozone generator, as mentioned above, the adsorbent (silica gel) in the adsorption tower is cooled by the air carried by the gas from the cooler 2, so when the operation of the equipment is stopped, The temperature of the adsorbent (silica gel) in the adsorption tower increases.

吸着剤に吸着されているオゾンが脱看され、繋内オゾン
濃度が高くなるとともにも搭内圧力も上昇するのでオゾ
ン連鎖反応による爆発の危険が生じる。例えば気相オゾ
ン濃度3%〜全圧2気圧のオゾン含有酸素を−60q0
で吸着しているシリカゲルの濃度が」装置の作動一時停
止で密閉されたまま−6000から0℃まで上昇した場
合〜全圧は約6.2気圧、オゾン濃度は約18%に上昇
することが予測できる。通常も常温1気圧でオゾン含有
気体が爆発性を帯びる限界はもオゾン濃度が約20%程
度と言われておりt上記の状況は極めて危険な状態であ
る。上記のような爆発の危険を避けるための対策として
次の手段が考えられる。
The ozone adsorbed by the adsorbent is released, and the ozone concentration in the tether increases as well as the pressure in the tether, creating the risk of an explosion due to an ozone chain reaction. For example, ozone-containing oxygen with a gas phase ozone concentration of 3% to a total pressure of 2 atm is -60q0
If the concentration of silica gel adsorbed in the device rises from -6000 to 0°C while the device is closed during a temporary stop of operation, the total pressure will rise to about 6.2 atmospheres and the ozone concentration will rise to about 18%. Predictable. It is said that the limit at which an ozone-containing gas becomes explosive at room temperature of 1 atm is usually about 20% ozone concentration, and the above situation is extremely dangerous. The following measures can be considered to avoid the risk of explosion as described above.

■ 装置の作動の一時停止の際ト予めオゾンを安全限界
まで脱着しておく。
■ Before temporarily stopping the operation of the equipment, remove ozone to a safe limit.

(B’吸着塔の温度が上昇しないようにする。(Prevent the temperature of the B' adsorption tower from rising.

{C)気相オゾン濃度が上昇しない手段をとる。上記の
うち、風は装置の再起動に際し定常運転到達まで極めて
長い時間を要する欠点がありt{Biは簡便な実施手段
がない。この発明は■実施の手段を提供することにより
ト装置の作動の一時停止の場合も爆発の危険のない酸素
リサイクルオゾン発生装置を得ることを目的とするもの
である。第2図はこの発明に係る酸素リサイクルオゾン
発生装置の一実施例の横成を示す系統図である。図にお
いて4一竃a母 亀−2幻ま吸着塔内下部に吸着剤の存
在しない空間を設けた(この明細書では空隙部分という
)吸着塔も九ま流量調節バルブも蜜−音軍 登山松 蚤
−8,蟹−4は電磁弁も鮒まオゾン分解塔である。上記
のように構成された酸素リサイクルオゾン発生装置はト
通常の運転時においてはも電磁弁蚤−寛? 登−公 爵
−89 8−4奪ま閉じられ「従来のものと同様の作動
を行う。
{C) Take measures to prevent the gas phase ozone concentration from increasing. Among the above, wind has the drawback that it takes an extremely long time to reach steady operation when restarting the device, and there is no simple implementation method for t{Bi. The object of the present invention is to obtain an oxygen recycling ozone generator which does not pose the danger of explosion even when the operation of the apparatus is temporarily stopped by providing means for implementation. FIG. 2 is a system diagram showing the construction of an embodiment of the oxygen recycling ozone generator according to the present invention. In the figure, there is a space in the lower part of the adsorption tower where no adsorbent exists (referred to as the void area in this specification). The solenoid valves of Flea-8 and Crab-4 are also Funama ozone decomposition towers. The oxygen recycling ozone generator configured as described above does not operate with a solenoid valve during normal operation. Noboru-Duke-89 8-4 It was stolen and closed and "operates in the same way as the conventional one.

装置の作動の一時停止時においては電磁弁3一喜? 8
−公 3山363−事8 8−6軍8一蚤9 3−7?
3−遼が閉じられも吸着気体「脱着気体の流れは止め
られへオゾン発生機も停止すると同時に電磁弁轟一翼?
蟹一27 覇−3,蚤−鶴が開かれる。乾燥空気が流量
調節バルブ八電磁弁蜜−軍9 蚤−3を通り吸着塔亀−
茸a8 4−2a下部のシリカゲルの存在しなし、空間
の流通路を通り〜シリカゲルの温度上昇とともに脱着さ
れる高濃度オゾン含有気体のオゾン濃度を薄めつつ「電
磁弁蟹−29 蟹−傘を通りもオゾン分解塔桝こ流れ込
む。オゾン分解塔費に流れ込んだ乾燥空気に含まれてい
るオゾンは分解され「排出される。上誌作用により、吸
着塔の温度上昇にともなうシリカゲルから脱看される高
濃度オゾン含有気体は容易に安全限界まで薄められト従
来装置の場合に生ずるオゾン連鎖反応による爆発の危険
が排除される。
When the operation of the device is temporarily stopped, the solenoid valve 3 is used? 8
- Public 3 mountains 363 - thing 8 8-6 army 8 one flea 9 3-7?
3-Even if Liao is closed, the flow of adsorbed gas is stopped, and the ozone generator is also stopped, and at the same time, the solenoid valve Todoroki is closed?
Kaniichi 27 H-3, Flea-Tsuru are opened. The dry air passes through the flow control valve 8 solenoid valve 9, the flea 3, and the adsorption tower tortoise.
Mushroom a8 4-2a There is no silica gel at the bottom, passing through the space's flow path ~ diluting the ozone concentration of the highly concentrated ozone-containing gas that is desorbed as the temperature of the silica gel rises. The ozone contained in the dry air that flows into the ozone decomposition tower is decomposed and emitted. The ozone-containing gas is easily diluted to safe limits and the risk of explosion due to ozone chain reaction that occurs in conventional devices is eliminated.

この場合も吸着塔に供給すべき気体流量は極めて少量で
よい。例えば「 一600Cから0℃への温度上昇が3
時間の間におこなわれるとすればt常に10%以下の気
相オゾン濃度を確保するためには10従の吸着塔に対し
160N肘′日程度の乾燥空気流が必要となるが、これ
は「連続運転時の吸着気体流量約700帆でゾ日に対し
2%程度に相当する極めて小さい値である。なお「上記
実施例ではし作動一時停止時の安全のための気体を乾燥
空気源より供給したが「別設のタンクに乾燥空気を予め
高気圧で蓄えておき、作動一時停止時に適当な微少流量
を流すことによつても、上記の実施例と同様の効果を奏
することができる。
In this case as well, the gas flow rate to be supplied to the adsorption tower may be extremely small. For example, ``The temperature rise from -600C to 0℃ is 3
If it were to be carried out over a period of time, a dry air flow of about 160N would be required for 10 adsorption towers in order to always maintain a gas phase ozone concentration of 10% or less. This is an extremely small value, equivalent to about 2% of the adsorbed gas flow rate of about 700 sails during continuous operation.In addition, in the above embodiment, the gas for safety when the chopper operation is temporarily stopped is supplied from a dry air source. However, the same effect as in the above embodiment can be achieved by storing dry air in advance at high pressure in a separate tank and flowing an appropriate minute flow rate when the operation is temporarily stopped.

また「吸着塔内の吸着剤の存在しない空間は構内のどの
部分に設けてももあるいは複数個の空間部分を設けても
、効果において大した差異はない。
Furthermore, ``There is no significant difference in effectiveness no matter where in the adsorption tower the space where no adsorbent exists is provided, or whether a plurality of spaces are provided.

さらに上記空間の容積の大小も効果に対して大した差異
を及ぼさない。したがって極限の場合、すなわち吸着剤
の全く存在しない空間の容積が零であってもよい。この
場合は乾燥空気の吸着剤中の流通路が短いことが望まし
い。第3図はこの場合の一実施例の構成を示す系統図で
ある。この発明は以上説明したとおりも酸素リサイクル
オゾン発生装置の作動の一時停止に際し、気体をシリカ
ゲル吸着剤を貫通させないで流通させt温度上昇の際に
シリカゲルから脱着される高濃度オゾン含有酸素を安全
限界まで薄めて排出する簡単な装置の追加により「安全
性の向上と再起動に際して定常運転到達までの時間の短
縮が達成され「実用的価値が大である。
Furthermore, the size of the volume of the space does not make much of a difference to the effect. Therefore, in the extreme case, the volume of the space where no adsorbent is present may be zero. In this case, it is desirable that the dry air flow path in the adsorbent be short. FIG. 3 is a system diagram showing the configuration of an embodiment in this case. As explained above, this invention allows gas to flow through the silica gel adsorbent without penetrating the silica gel adsorbent when the operation of the oxygen recycling ozone generator is temporarily stopped, and the high concentration ozone-containing oxygen that is desorbed from the silica gel when the temperature rises is reduced to a safe limit. The addition of a simple device that dilutes and discharges the fuel will improve safety and shorten the time it takes to reach steady state operation upon restart, and has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸素リサイクルオゾン発生装置の構成を
示す系統図、第2図はこの発明に係る酸素リサイクルオ
ゾン発生装置の−実施例の構成を示す系統図も第3図は
この発明に係る酸素リサイクルオゾン発生装置の他の一
実施例の構成を示す系統図である。 図において川まオゾン発生機、2は冷却器、3−竃?3
一2?3−3?3−493−5;3岬6,3−7,奪−
翼‘ま電磁弁、4−1$ 傘−294−竃a琴 4一2
aは吸着塔、5−亀,5−2は吸着剤「 奪‘まブロア
、れま流量調節バルブち 鰭−亀9 8−2,8一3ヲ
舞−舵ま電磁弁「 9はオゾン分解塔である。 なお各図中同一符号は同一または相当部分を示すものと
する。第1図第2図 第3図
FIG. 1 is a system diagram showing the configuration of a conventional oxygen recycling ozone generator, FIG. 2 is a system diagram showing the configuration of an embodiment of the oxygen recycling ozone generator according to the present invention, and FIG. 3 is a system diagram showing the configuration of an embodiment of the oxygen recycling ozone generator according to the present invention. FIG. 2 is a system diagram showing the configuration of another embodiment of the oxygen recycling ozone generator. In the diagram, Kawama ozone generator, 2 is a cooler, and 3 is a stove? 3
12? 3-3? 3-493-5; 3 Misaki 6, 3-7, rob-
Tsubasa'ma solenoid valve, 4-1$ Umbrella-294-Koto 4-2
a is the adsorption tower, 5-tortoise, 5-2 is the adsorbent, the blower is taken away, the flow rate adjustment valve is controlled by the fin-tortoise 9, 8-2, 8-3 is the solenoid valve controlled by the fin-turtle, 9 is the ozone decomposition valve. It is a tower.The same reference numerals in each figure indicate the same or corresponding parts.Figure 1Figure 2Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 オゾン吸着工程とオゾン脱着工程とが交互に繰返さ
れるオゾン吸着塔を有する酸素リサイクルオゾン発生装
置において、乾燥気体の供給源と上記吸着塔との間に設
けられる乾燥気体供給路、上記オゾン吸着塔内に設けら
れオゾン吸着剤の存在しない空隙部分、上記乾燥気体供
給路に挿入され上記吸着塔の作動停止時に開放されて上
記乾燥気体を上記吸着塔内の上記空隙部分に供給する給
気用弁装置、上記空隙部分の終端と上記吸着塔外との間
に設けられる気体排出路、この気体排出路に挿入され上
記給気用弁装置と連動して開閉される排気用弁装置を備
えたことを特徴とする酸素リサイクルオゾン発生装置。
1. In an oxygen recycling ozone generator having an ozone adsorption tower in which an ozone adsorption step and an ozone desorption step are alternately repeated, a dry gas supply path provided between a dry gas supply source and the adsorption tower, and the ozone adsorption tower an air supply valve that is inserted into the dry gas supply path and is opened when the adsorption tower stops operating, and supplies the dry gas to the air gap in the adsorption tower; A device, a gas discharge path provided between the end of the gap portion and the outside of the adsorption tower, and an exhaust valve device inserted into the gas discharge path and opened and closed in conjunction with the air supply valve device. An oxygen recycling ozone generator featuring:
JP52010054A 1977-01-31 1977-01-31 Oxygen recycling ozone generator Expired JPS606282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52010054A JPS606282B2 (en) 1977-01-31 1977-01-31 Oxygen recycling ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52010054A JPS606282B2 (en) 1977-01-31 1977-01-31 Oxygen recycling ozone generator

Publications (2)

Publication Number Publication Date
JPS5395192A JPS5395192A (en) 1978-08-19
JPS606282B2 true JPS606282B2 (en) 1985-02-16

Family

ID=11739666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52010054A Expired JPS606282B2 (en) 1977-01-31 1977-01-31 Oxygen recycling ozone generator

Country Status (1)

Country Link
JP (1) JPS606282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206547B2 (en) * 2009-03-30 2013-06-12 三菱電機株式会社 Ozone production apparatus and method for producing ozone

Also Published As

Publication number Publication date
JPS5395192A (en) 1978-08-19

Similar Documents

Publication Publication Date Title
US4869890A (en) Control of nitric acid plant stack opacity during start-up and shutdown
CN108554150A (en) A kind of pre-heated catalytic combustion system of purifying volatile organic exhaust gas
KR20130012125A (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
JP2021133285A (en) Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recover method
JPH11335102A (en) Method and apparatus for continuously generating highly concentrated ozone
JP5427412B2 (en) Ozone gas concentration method and apparatus
NO176339C (en) Procedure for converting fuel to electricity
US3313631A (en) Apparatus for preserving animal and plant matter
ES2421193T3 (en) Method and atmosphere recycling system
JPS606282B2 (en) Oxygen recycling ozone generator
BR112020003389A2 (en) process for removing nitrous components from a crude liquid nitric acid stream to produce a bleached nitric acid product
US3342545A (en) Method of removing propane and other hydrocarbons from gases
JP6530122B1 (en) Hydrogen production equipment
JP2008297130A (en) Method for concentrating ozone gas
JPS62274561A (en) Molten carbonate fuel cell
JPS5910925B2 (en) Oxygen recycling ozone generator
JP2013010057A (en) Adsorption/desorption device and system for treating volatile organic compound
EP0402142B1 (en) Process for removing NOx from exhaust gas using electric discharge
US4330520A (en) Process and apparatus for preventing NOx emissions after emergency shutdowns of plants for the manufacture of nitric acid
JPS5481192A (en) Ozone generator
JP2020163247A (en) Carbon dioxide recovery device, hydrocarbon manufacturing device, and carbon dioxide recovery method
JPH029414A (en) Apparatus for treating combustion gas
JP7312688B2 (en) Hydrocarbon production device, hydrocarbon production method, and computer program
JP7129321B2 (en) Hydrogen production device, hydrogen production device operation method, and hydrogen production device operation program
JPH03131258A (en) Apparatus for making carbonated spring