JPS6062352A - Steel and concrete synthetic durable wall - Google Patents

Steel and concrete synthetic durable wall

Info

Publication number
JPS6062352A
JPS6062352A JP58169982A JP16998283A JPS6062352A JP S6062352 A JPS6062352 A JP S6062352A JP 58169982 A JP58169982 A JP 58169982A JP 16998283 A JP16998283 A JP 16998283A JP S6062352 A JPS6062352 A JP S6062352A
Authority
JP
Japan
Prior art keywords
steel
concrete
load
wall
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58169982A
Other languages
Japanese (ja)
Other versions
JPH0123621B2 (en
Inventor
光雄 坂本
邦昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP58169982A priority Critical patent/JPS6062352A/en
Publication of JPS6062352A publication Critical patent/JPS6062352A/en
Publication of JPH0123621B2 publication Critical patent/JPH0123621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、両側の表面とそれらを緊結する鉄骨と、内
部に充填された無筋コンクリートの合成効果により耐力
を発揮する土木建築構造物における鋼・コンクリ−1−
合成耐力壁に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention is applicable to civil engineering and architectural structures that exhibit strength due to the composite effect of the surfaces on both sides, the steel frame that connects them, and the unreinforced concrete filled inside. Steel/concrete-1-
It concerns composite load-bearing walls.

(発明の解決しようとする問題) 土木建築構造物における従来の耐力壁は、内部に縦、横
方向の鉄筋を自する二lンクリ−1−によるものである
。特に大規模な鉄筋コンクリート造構築物のような大空
間をもつ構造物で、かつ大きな耐震性能が要求される場
合の耐力壁は、極めて壁厚の1′yい耐力壁となる。
(Problems to be Solved by the Invention) Conventional load-bearing walls in civil engineering and architectural structures are constructed of two-inch concrete walls each having vertical and horizontal reinforcing bars inside. In particular, load-bearing walls for structures with large spaces such as large-scale reinforced concrete structures that require high seismic performance are extremely thick.

待に下層階においては、厚ざが3Mにものぼるものがあ
る。
In fact, some of the lower floors are as thick as 3M.

この発明は、従来の鉄筋に替えて、鉄骨を効果的に配置
し、コンクリ−1・の良い性能である圧縮強度が発揮す
るようにl二人し、従来の耐力壁よりも軽量化をばがろ
ことにより、耐震性能をさらに向上させ、さらに各種の
施工の合理化をはかったものである。
This invention effectively arranges steel frames instead of conventional reinforcing bars, and makes them lighter than conventional load-bearing walls. This structure further improves seismic performance and streamlines various construction processes.

従来の大規模で耐震要求の大きい耐力壁の壁厚の決定は
、日本建築学会・鉄筋コンクリ−1−構造計算基準・同
解説の耐震壁の項を参考に行っている。すなわち壁の断
面積に対する縦、横それぞれの補強筋比の上限を1゜2
%とし、地震力に対する剪断応力度としては、その補強
筋比に補強筋に用いる鉄筋の強度3000kg/cJを
乗じた値36kg/−を上限に考えている。一方これら
の耐力壁は同時に鉛直荷重を受けることがら壁厚の決定
に際しては、地震力に対し、上記36kg/−を下回る
24kg/c艷程度(一般に設計基準強度Fc= 24
0 kg/−を用いるので0.I Pcに相当)に押え
て計画する。
The wall thickness of conventional large-scale load-bearing walls with high seismic resistance requirements is determined by referring to the section on shear walls in the Architectural Institute of Japan's Reinforced Concrete 1 - Structural Calculation Standards and Commentary. In other words, the upper limit of the ratio of vertical and horizontal reinforcing bars to the cross-sectional area of the wall is 1°2.
%, and the upper limit of the shear stress against earthquake force is considered to be 36 kg/-, which is the value obtained by multiplying the reinforcing bar ratio by the strength of the reinforcing bars used for the reinforcing bars, 3000 kg/cJ. On the other hand, since these load-bearing walls are subject to vertical loads at the same time, when determining the wall thickness, the earthquake force should be approximately 24 kg/cm (generally design standard strength Fc = 24 kg/-), which is lower than the above 36 kg/-
Since 0 kg/- is used, 0. (equivalent to IPc).

すなわち、設計用の地震力を壁の断面積で除した値を2
4kg/cJ程度に押え、壁の断面積に対して1%程度
の補強筋を縦横に配置しているのである。(第1図参照
。) これらの手法によれば、耐震性能を向上させるために、
設計地震力を大きくとると、剪断応力度を一定に押える
ために壁厚を増さなければならない。壁厚を増すと、建
屋の重量が増え、さらに地震力が増大するという悪循環
となる。ちなみに大規模な鉄筋コンクリート造構築物に
おいては、その重置の大計をコンクリートが占めるので
ある。
In other words, the value obtained by dividing the design seismic force by the cross-sectional area of the wall is 2
The weight is kept at about 4 kg/cJ, and reinforcing bars of about 1% of the cross-sectional area of the wall are placed vertically and horizontally. (See Figure 1.) According to these methods, in order to improve seismic performance,
If the design seismic force is increased, the wall thickness must be increased to keep the shear stress level constant. Increasing the wall thickness increases the weight of the building, which further increases the seismic force, creating a vicious cycle. By the way, in large-scale reinforced concrete structures, concrete accounts for the bulk of the structure.

これらの問題を解決するには、理論上、建屋の重量すな
わち耐力壁の重量を軽減するとともに、耐力壁の耐力を
向」−させることが望ましい。そのためには、コンクリ
−1−に比べ重量に対して耐力の問い鋼板を多く用いれ
ば容易であるが、tllll材はその価格の点で難点が
ある。そこでこの発明は、なるべく少い調料と圧縮に強
いコンクリ−1の利点を組合−1゛(、鋼・コンクリー
ト合成壁とし、上記の目的を達成したものである。
In order to solve these problems, it is theoretically desirable to reduce the weight of the building, that is, the weight of the load-bearing walls, and to increase the load-bearing strength of the load-bearing walls. To this end, it would be easier to use more steel plates, which have higher yield strength relative to weight than concrete 1-, but Tllll material has a drawback in terms of its price. Therefore, this invention achieves the above object by combining the advantages of concrete 1, which requires as little preparation as possible and is resistant to compression, into a steel/concrete composite wall.

一方、大規模なプラントにおいては、数多くの機器、配
管があり、それらの支持金物を耐力壁に取付けたり、配
管などが耐力壁を貫通したりすることが多い。特に、支
(,1金物を耐力壁に取付ける場合には、従来は第2図
に示すような莫大な数の鋼板すなわち埋込金物を鉄筋コ
ンクリート耐力壁の表面にコンクリート打設前に予め取
付けておき、コンクリートの打設、硬化後支持金物を取
付ける。しかしながら、埋込金物が取付けられる位置が
さまざまなうえに、機器1.配管の設置の時点での取付
は位置の変更も多く、従来の方法は施工上や設計上問題
点が多い。これに対し、この発明は、耐力壁の表面に鋼
板が規則的な形状で露出しており、それらを利用して工
場や現場で支持金物を取付けることができ、上記の問題
点を解決したものである。
On the other hand, in large-scale plants, there are many pieces of equipment and piping, and their supporting hardware is often attached to load-bearing walls, or the piping and the like often penetrate through the load-bearing walls. In particular, when attaching supports (1) to load-bearing walls, conventionally a huge number of steel plates, or embedded hardware, as shown in Figure 2, were attached to the surface of the reinforced concrete load-bearing wall in advance before concrete was poured. , place the concrete, and install the supporting hardware after it hardens.However, the positions where the embedded hardware is installed vary, and there are many changes in the installation position at the time of equipment 1. piping installation. There are many problems in construction and design.In contrast, in this invention, steel plates are exposed in a regular shape on the surface of the load-bearing wall, and supporting hardware can be installed in the factory or on site using them. This solves the above problems.

(発明の構成およびその実施例) この発明の要旨とする構成は前記特許請求の範囲の欄に
記載の通り、構造物の鉛直力、剪断力および曲げモーメ
ントを受ける耐力壁において、その両表面に鉄骨を格子
状に組み、それらの支点を鉄骨で緊結して、内部にはコ
ンクリートを充填しであることを特徴とする鋼・コンク
リート合成耐力壁である。
(Structure of the invention and embodiments thereof) As described in the claims section, the structure of the present invention is applied to both surfaces of a load-bearing wall that receives vertical force, shear force, and bending moment of a structure. It is a steel/concrete composite load-bearing wall that is constructed of steel frames arranged in a lattice pattern, the supporting points of which are tied together with steel frames, and the interior is filled with concrete.

その実施例は第3図以下に示す通りであり、その詳細を
図面に示す実施例について説明する。
The embodiment is as shown in FIG. 3 and subsequent figures, and the details will be described with respect to the embodiment shown in the drawings.

第3図における鉄骨の構成は、壁の両面に′r型の形状
を有する鉄骨lを格子状に組の、その支点を士型の形状
の鉄骨2で緊結して、第4図に示すように内部にはコン
クリ−1−3を充填しである。鉄骨の構成には、耐力壁
の設計上の各種の条件により、第5図I〜IVに示すよ
うな形状とすることもある。また壁表面を鋼板4で塞い
でしまう場合もある。その塞ぎ方としては、第6図1の
ように両面全面にわたる場合、第6図11の片「】1全
面にわたる場合、第6図■の壁の端部伺近と木じ1を塞
ぐ場合、また必要に応じ第6図IV、VのJ:うにそれ
ぞれ部分的に片面だり塞ぐ場合と部5j的に両面塞ぐ場
合とがある。
The structure of the steel frame in Fig. 3 is as shown in Fig. 4, in which steel frames L having an R-shape are set up in a lattice on both sides of the wall, and their fulcrums are fastened together by steel frames 2 having an A-shape. The inside was filled with concrete 1-3. The structure of the steel frame may be shaped as shown in FIGS. 5 I to IV depending on various design conditions of the load-bearing wall. Further, the wall surface may be covered with the steel plate 4. As for how to close it, if it covers the entire surface of both sides as shown in Fig. 6 1, if it covers the entire surface of piece 1 in Fig. 6 11, if it covers the area near the end of the wall and the wood edge 1 in Fig. 6 (■), Further, if necessary, the sea urchin (J) in FIG.

一方、第7図は、表面の鉄骨を相互に緊結する部材の鉛
直方向の鋼板4を連続させたものである。
On the other hand, FIG. 7 shows a continuous vertical steel plate 4 that is a member that connects the steel frames on the surface to each other.

次にこの発明の鉄骨骨組の構築方法について説明すると
、鉄骨の組立ては、工場における制作と、現場における
組立てとからなるが、工場における制作は、現場への運
搬上許容される最大の大きさか、現場での揚重の能力の
大きさの両者を考えて外形寸法を決定する。
Next, to explain the method of constructing a steel frame according to the present invention, assembling a steel frame consists of production in a factory and assembly on site. The external dimensions are determined by considering both the size of the lifting capacity at the site.

それらの−条件より、この発明の骨組の現場での接合位
置Cを示したのが第8図である。第8図■両表面の骨組
に、十状の緊結材を現場で接合するタイプで工場制作が
比較的容易である。第8図■は、両表面の鉛直部材と十
状の緊結材からなる骨組に、両表面の水平材を現場で接
合するタイプで、現場での接合数が多くなるが、工場で
の制作ユニットは単純なものとなり運搬も容易な形状で
ある。第8図。
Based on these conditions, FIG. 8 shows the on-site joining position C of the frame of the present invention. Fig. 8■ This is a type in which ten-shaped binding materials are joined on-site to the framework on both surfaces, and is relatively easy to manufacture in a factory. Figure 8 (■) is a type in which horizontal members on both sides are joined on-site to a frame consisting of vertical members on both sides and ten-shaped fastening members. Although the number of connections required on-site is large, the manufacturing unit at the factory is It has a simple shape and is easy to transport. Figure 8.

■は、表面の鉄骨と緊結材を一体とした単数又は複数の
H状の制作を工場で行い、現場では表面の水平材を接合
するだけであり、現場での接合数は最も少いタイプであ
る。第8図IVは表面の鉄骨と緊結材を1゛状に制作し
たもので壁厚が厚くなった場合の接合数の少いタイプと
なる。また第9図は、接合部の接合方法を示したもので
あり、Iはボルト、■は溶接、■はボルトと溶接の併用
である。第10図は配管支持金物5の取イづげの例であ
り、第11図は貫通孔6がある場合の詳細例である。
■ is a type in which one or more H-shaped pieces are made in a factory by integrating the surface steel frame and binding materials, and only the horizontal materials on the surface are joined on-site, and the number of joints on-site is the least. be. Figure 8 IV shows a type in which the surface steel frame and fastening material are made in a 1-shape shape, and the number of connections is small when the wall thickness becomes thick. FIG. 9 shows the method of joining the joints, where I indicates bolts, ▪ indicates welding, and ▪ indicates a combination of bolts and welding. FIG. 10 shows an example of how the piping support hardware 5 is removed, and FIG. 11 shows a detailed example of the case where there is a through hole 6.

なお鉄骨lの断面形状は1゛形、L形、 I−1形。The cross-sectional shapes of the steel frame L are 1゛ shape, L shape, and I-1 shape.

C形等とすることかでき、また鉄骨2の断面形状は十形
、H形1口形等とすることができる。
The steel frame 2 may have a C-shape or the like, and the cross-sectional shape of the steel frame 2 may be a ten-shape, an H-shape, a one-mouth shape, or the like.

(発明の作用) 次にこの発明の特徴である、鋼とコンクリートの合成効
果による地震力のような水平方向の力に対する耐力につ
いて説明する。第4図のA断面を第12図に示す。この
壁の面内剪断耐力の評価は第13図1に示されるような
壁の表面に格子状に組まれた鉄骨1と、充填されたコン
クリ−1・3の圧縮斜材で形成されるトラスとして評価
できる。そしてこのI−ラスのコンクリート圧縮斜材の
有効幅Wは、第13図Hに示す部分Bとして評価できる
(Function of the Invention) Next, the strength against horizontal forces such as seismic forces due to the composite effect of steel and concrete, which is a feature of the present invention, will be explained. A section A in FIG. 4 is shown in FIG. 12. The evaluation of the in-plane shear strength of this wall is based on a truss made of steel frames 1 set in a lattice pattern on the surface of the wall and compressed diagonals of filled concrete 1 and 3 as shown in Fig. 13. It can be evaluated as The effective width W of this I-lath concrete compression diagonal member can be evaluated as part B shown in FIG. 13H.

これは第12図の鉄骨2の対角線方向の投影幅である。This is the projected width of the steel frame 2 in the diagonal direction in FIG.

このようにこの発明は、鋼材をうまく構成することによ
り、コンクリートの圧縮に強い性質を効果的に用いるも
のである。
In this manner, the present invention effectively utilizes the compression-resistant properties of concrete by appropriately structuring steel materials.

ここで、この発明による耐力壁がコンクリート圧縮斜材
により強度が決定されたケースを例にとり、従来の鉄筋
により剪断補強を行う鉄筋コンクリート耐力壁と所要壁
厚の比較をしてみる。外力は地震のような水平力のみと
する。第14図に示すように従来の耐力壁として、壁厚
を2.0mとし、補強筋が両面合わせて4段038mm
φ間隔250mmのものを仮定する。これは、補強筋比
が0.91%となり、日本建築学会・鉄筋コンクリート
構造計算の耐力算定式により、鉄筋の材質を8035と
すると、27.4kg / cnlの許容水平剪断力と
なる。これを単位長さ当りの剪断力にすると548t/
mである。
Here, taking as an example the case where the strength of the load-bearing wall according to the present invention is determined by concrete compression diagonals, the required wall thickness will be compared with that of a conventional reinforced concrete load-bearing wall that is shear reinforced with reinforcing bars. External forces are assumed to be only horizontal forces such as earthquakes. As shown in Figure 14, as a conventional load-bearing wall, the wall thickness is 2.0 m, and the reinforcing bars are 038 mm in 4 stages on both sides.
Assume that the φ interval is 250 mm. This means that the reinforcement ratio is 0.91%, and according to the strength calculation formula of the Architectural Institute of Japan/Reinforced Concrete Structure Calculation, if the material of the reinforcing bars is 8035, the allowable horizontal shearing force is 27.4 kg/cnl. If this is a shearing force per unit length, it is 548t/
It is m.

これと同等の耐力を有するこの発明にょる壁厚をめる。The wall thickness according to the present invention having the same yield strength is increased.

第15図に格r−状に区画された1ユニツトを取り出し
た図を示す。この例では、格子状の鉄・け1を縦、横と
も150cm間隔とし、格子状鉄骨を緊結する鉄骨2の
半分幅を30cmとする。またコンクリ−1−の強度を
240kg/−とし、許容応力度を2/3X240= 
160 kg / cn!とする。これらの条件で第1
3甲中のコンクリート圧縮斜材の耐力をめると、678
8X壁厚t(kg)となる。
FIG. 15 shows a diagram of one unit partitioned into an r-shape. In this example, the lattice-shaped steel beams 1 are spaced 150 cm apart both vertically and horizontally, and the half width of the steel frame 2 that connects the lattice-shaped steel frames is 30 cm. In addition, the strength of concrete 1- is 240 kg/-, and the allowable stress is 2/3 x 240 =
160 kg/cn! shall be. Under these conditions, the first
When considering the strength of the concrete compression diagonal members in the 3rd deck, it is 678
8X wall thickness t (kg).

この値の水平成分と前述の548 t / m X 1
.5mを等しいと置いて、所要壁jl、l:をめると、
171cmとなる。すなわち、従来の2.0 Mの壁厚
に対し、この発明の工法によれば1.7Mで十分となる
。また、壁)γが減じればm星が減り、地震力も減るこ
ととなるのでさらに減少することとなる。また格子状の
鉄骨の間隔と十字型緊結材の大きさを変化させることに
より壁厚の8111整が可能である。一方、第6図1お
よびHのように表面が連続した鋼板で構成される場合は
、表面の鋼板が引張斜材の効果も発揮するのでさらに壁
厚を減じることができる。またこの発明の耐力壁のコン
クリート部分には、コンクリートが露出する場合にひび
われ防止筋程度の配筋は必要とするが、従来のような多
量の鉄筋は不要となる。ひびわれ防止筋7の配筋法につ
いては第16図I〜■に示すような口状、口状のものを
内部に設けるものと、表面の格子状鉄骨の外側に設ける
ものとがある。
The horizontal component of this value and the previously mentioned 548 t/m x 1
.. If we set 5m as equal and take the required walls jl and l:, we get
It will be 171cm. That is, compared to the conventional wall thickness of 2.0 M, according to the construction method of the present invention, 1.7 M is sufficient. Also, if the wall) γ decreases, the number of m stars decreases, and the seismic force also decreases, so it will decrease further. Furthermore, by changing the spacing between the lattice-shaped steel frames and the size of the cross-shaped tie members, it is possible to adjust the wall thickness by 8111 degrees. On the other hand, if the surface is made of a continuous steel plate as shown in FIGS. 1 and 6H, the steel plate on the surface also exhibits the effect of a tensile diagonal member, so that the wall thickness can be further reduced. In addition, although the concrete portion of the load-bearing wall of the present invention requires reinforcement to prevent cracking when the concrete is exposed, it does not require a large amount of reinforcing bars as in the past. Regarding the method of arranging the crack prevention reinforcements 7, there are two methods: one is to provide openings inside the crack-preventing reinforcements 7 as shown in FIGS.

(発明の効果) この発明は以上の構成からなり、コンクリ=1・の圧縮
強度を効果的に利用した鋼・コンクリート合成耐力壁と
して、従来の鉄筋コンクリートによる耐力壁より大きな
耐力を有するため壁厚の軽減につながり、ひいては、耐
震性の向上に寄与するものである。・ また、プレファブ化された鉄骨と充填コンクリートより
なるため、施工においては、型枠、配筋の大幅な減少に
よる合理化がはかられ、工程の短縮に寄与する。
(Effects of the Invention) The present invention has the above-mentioned configuration, and is a steel/concrete composite load-bearing wall that effectively utilizes the compressive strength of concrete = 1.It has a greater bearing capacity than conventional reinforced concrete load-bearing walls, so the wall thickness can be reduced. This leads to mitigation, and in turn contributes to improving earthquake resistance.・ In addition, since it is made of prefabricated steel frames and filled concrete, the construction process can be streamlined by significantly reducing the number of formwork and reinforcement, contributing to shortening the construction process.

一方、大規模なプラントにおいては、複雑な機器、配管
システムのため、耐力壁に多種多様の取付は金物又は、
貫通が生じる。この発明は、壁表面に設けられた鉄骨を
利用して直接取付けられるため、従来繁雑であったそれ
らの作業が大幅に合理化される。
On the other hand, in large-scale plants, due to complex equipment and piping systems, a wide variety of attachments to load-bearing walls are required using hardware or
Penetration occurs. Since this invention can be directly attached using a steel frame provided on the wall surface, the conventionally complicated work can be greatly streamlined.

もう1つの効果として、水密、気密が要求される場合に
は、1114扱で寒くごとにより、容易に解決が可能で
ある。
Another effect is that if watertightness or airtightness is required, it can be easily solved by handling 1114 in cold weather.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例の斜視図と一部断面図、第3図
以下はこの発明に関する図面であり、第3図は鉄骨の斜
視図、第4図は・部コンクリ−1・を充填した場合の斜
視図、第5図1.Il、■1、■は格子形状の概要図、
第6図1. 11. ill、IV、Vは鋼板で塞いだ
場合の概要断面図、第7図は鋼板で”’l!> <他の
実施例の概要断面図、第8図1. II、III、IV
ば構築方法の概要図、第9図1.n、IIIは接合部の
概要図、第10図、第11図は他の実施態様の断面図と
正面図、第12図は鉄骨縦断面図、第13図1. uは
作用説 明図、第14図は従来構造、第15図は作用 
説明図、第16図1.11.111はひび割れ防止筋の
配置状態断面図である。 1・・鉄骨、 2・・鉄骨、 3・・コンクリート、4・・鋼板、 5・・ 支持金物、 6・・貫通孔、 7・・ひびわれ防止筋。 第1図 !a42 図1 第 t 図 八 第10図 第11図 第12図 つ I 第13図 ■ 第114図 図
Figures 1 and 2 are perspective views and partial sectional views of the conventional example, Figure 3 and subsequent figures are drawings related to the present invention, Figure 3 is a perspective view of the steel frame, and Figure 4 is the concrete part 1. Fig. 5 is a perspective view of the case filled with 1. Il, ■1, ■ are schematic diagrams of the lattice shape,
Figure 6 1. 11. ill, IV, and V are schematic cross-sectional views when closed with steel plates, and Figure 7 is a schematic cross-sectional view of steel plates.
A schematic diagram of the construction method, Figure 9 1. 1.n and III are schematic diagrams of joints, FIGS. 10 and 11 are sectional views and front views of other embodiments, FIG. 12 is a vertical sectional view of the steel frame, and FIG. 13 is a 1. u is a diagram explaining the action, Fig. 14 is the conventional structure, and Fig. 15 is the action.
The explanatory drawing, FIG. 16, 1.11.111 is a sectional view of the arrangement of crack prevention bars. 1. Steel frame, 2. Steel frame, 3. Concrete, 4. Steel plate, 5. Support hardware, 6. Through hole, 7. Crack prevention bar. Figure 1! a42 Figure 1 Figure 8 Figure 10 Figure 11 Figure 12 I Figure 13 ■ Figure 114

Claims (3)

【特許請求の範囲】[Claims] (1) 構造物の鉛直力、剪断力および曲げモーメント
を受ける耐力壁において、その両表面に鉄骨を格子状に
組み、それらの支点を鉄骨で緊結して、内部にはコンク
リートを充填しであることを特徴とする鋼・コンクリー
ト合成耐力壁。
(1) In a load-bearing wall that receives the vertical force, shear force, and bending moment of a structure, steel frames are set up in a lattice pattern on both surfaces, their supporting points are tied together with steel frames, and the inside is filled with concrete. A steel/concrete composite load-bearing wall characterized by:
(2) 耐力壁の表面において、鉄骨の空隙部分の一部
、もしくは全部を鋼板で塞いだことを特徴とする特許請
求の範囲第1項記載の鋼・コンクリート合成耐力壁。
(2) The steel/concrete composite load-bearing wall according to claim 1, wherein on the surface of the load-bearing wall, some or all of the voids in the steel frame are closed with steel plates.
(3) 表面の鉄骨を緊結する鉄骨の鉛直方向を連続し
た鋼板で構成することを特徴とする特許請求の範囲第1
項記載の鋼・コンクリート合成耐力壁。
(3) Claim 1, characterized in that the steel frame that connects the surface steel frame is constructed of continuous steel plates in the vertical direction.
Steel/concrete composite load-bearing walls as described in Section 1.
JP58169982A 1983-09-14 1983-09-14 Steel and concrete synthetic durable wall Granted JPS6062352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169982A JPS6062352A (en) 1983-09-14 1983-09-14 Steel and concrete synthetic durable wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169982A JPS6062352A (en) 1983-09-14 1983-09-14 Steel and concrete synthetic durable wall

Publications (2)

Publication Number Publication Date
JPS6062352A true JPS6062352A (en) 1985-04-10
JPH0123621B2 JPH0123621B2 (en) 1989-05-08

Family

ID=15896402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169982A Granted JPS6062352A (en) 1983-09-14 1983-09-14 Steel and concrete synthetic durable wall

Country Status (1)

Country Link
JP (1) JPS6062352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237864A (en) * 2008-03-27 2009-10-15 Yazaki Corp In-vehicle device, in-vehicle measuring instrument device, and measuring instrument device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4529409Y1 (en) * 1967-02-23 1970-11-12
JPS5235204B2 (en) * 1972-05-26 1977-09-08
JPS58222243A (en) * 1982-06-21 1983-12-23 株式会社東芝 Production of building wall

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235204A (en) * 1975-09-16 1977-03-17 Kao Corp Clear high viscous liuid shampoo composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4529409Y1 (en) * 1967-02-23 1970-11-12
JPS5235204B2 (en) * 1972-05-26 1977-09-08
JPS58222243A (en) * 1982-06-21 1983-12-23 株式会社東芝 Production of building wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237864A (en) * 2008-03-27 2009-10-15 Yazaki Corp In-vehicle device, in-vehicle measuring instrument device, and measuring instrument device

Also Published As

Publication number Publication date
JPH0123621B2 (en) 1989-05-08

Similar Documents

Publication Publication Date Title
CN108978949A (en) The plug-in filling wall construction system of steel frame, assembled filled-in panel and construction method
US20090282753A1 (en) Shock-Resisting Steel Concrete Structure
CN107524251B (en) Prestress steel strip masonry faced wall
CN215211690U (en) Buckling-restrained steel plate shear wall
KR20120087640A (en) Remodelling Construction Method by Inserting External Precast Concrete Wall Panel into the Internal Area of Beam-column Frame of Building and that Precast Concrete Panel
CN106437261B (en) A kind of concrete frame seismic reinforcing structure using expanded metal lath
US20060137277A1 (en) System and method for constructing modular wall structures
US11332928B2 (en) Panel of compound sheets for the construction of light-weight one-way joist slabs
Kunisue et al. Retrofitting method of existing reinforced concrete buildings using elasto-plastic steel dampers
JPS6062352A (en) Steel and concrete synthetic durable wall
CN213390660U (en) One shot forming's secret close rib structure light weight wallboard
CN211473496U (en) Reinforced structure of brick-concrete structure house
CN111395575A (en) One-step formed light wallboard with hidden rib structure and manufacturing method
JP2559342B2 (en) Reinforcement structure of existing concrete floor slab
KR100301305B1 (en) Composite floor structure of high-rise building and its construction method
Ozturk et al. An experimental study on the strengthening of RC frames with soft storey irregularities with different types of steel diagonals
CN220954030U (en) Flexible connection assembly autoclaved aerated concrete outer wall large plate system for integrated construction
CN214696225U (en) Prefabricated wallboard of assembled
JPS603844Y2 (en) reinforced concrete structure
JPH04330137A (en) Aseismatic wall structure
JPH0444541A (en) Steel frame-reinforced concrete structure and building
JPH04237743A (en) Unit house
JPS5915282Y2 (en) Lightweight earthquake-resistant wall
JPS6411796B2 (en)
JP2003161041A (en) Aseismatic reinforcing structure of existing building and execution method therefor