JPS6062053A - Medical mass spectrometer - Google Patents

Medical mass spectrometer

Info

Publication number
JPS6062053A
JPS6062053A JP58169229A JP16922983A JPS6062053A JP S6062053 A JPS6062053 A JP S6062053A JP 58169229 A JP58169229 A JP 58169229A JP 16922983 A JP16922983 A JP 16922983A JP S6062053 A JPS6062053 A JP S6062053A
Authority
JP
Japan
Prior art keywords
heater
thermionic
ratio
ion source
thermionic current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169229A
Other languages
Japanese (ja)
Inventor
Ayao Ito
伊藤 阿耶雄
Satoshi Aida
聡 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58169229A priority Critical patent/JPS6062053A/en
Publication of JPS6062053A publication Critical patent/JPS6062053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To increase the life of a heater by preventing any wear of the heater which might be caused by an ineffective thermionic current by judging whether the positional relationship between the heater and an ion source is good or bad. CONSTITUTION:The ratio of a thermionic current flowing into a trap electrode 6 to the total thermionic current discharged from a heater 4 is obtained in order to judge whether the positional relationship between the heater 4 and the slit 5 of an ion source is good or bad. The level of the thus obtained ratio is displayed on a displayer 17. At the same time, it enters one of the input terminals of a comparator 18 and compared with a predetermined threshold level (E119) to drive an alarm circuit 20 when the above level is not higher than the threshold level or a thermionic current which can contribute to ionization decreases to below a certain percentage level. When an alarm is produced by the alarm circuit 20, it is possible to introduce thermions discharged from the heater 4 efficiently into the ion source by controlling the positional relationship between the heater 4 and the slit 5.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は医用質量分析計に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to a medical mass spectrometer.

[発明の技術的背景とその問題点] 近年、肺機能検査や患者監視の分野で酸素消費量や炭酸
ガス産生量の測定のニーズが高まっている。これらの測
定を行うためには、呼吸ガス中の酸素と炭酸ガスの濃度
測定が不可欠である。分析側としては、赤外線吸収法、
電極法等を用いたものが開発されているが、゛酸素と炭
酸ガスを同時にかつ精度よく測定する方法としては質量
分析法力5すぐれている。
[Technical background of the invention and its problems] In recent years, there has been an increasing need for measuring oxygen consumption and carbon dioxide production in the fields of pulmonary function testing and patient monitoring. In order to perform these measurements, it is essential to measure the concentrations of oxygen and carbon dioxide in the breathing gas. On the analysis side, infrared absorption method,
Although methods using electrode methods and the like have been developed, mass spectrometry is the superior method for measuring oxygen and carbon dioxide simultaneously and with high precision.

しかし、この質量分析法にも問題がある。すなわち水沫
により精度のよい測定を実現するためには、安定に呼吸
ガスをイオン化するととカS必要である。イオン化は熱
電子の衝突によって行なわれるため精度のよい測定を維
持する7’Cめには十分な1Prの収束された熱電子の
ビームが必要となる。このため通常ヒータより放射され
る熱電子ビームをスリットを介してイオンソースに導く
方法をとっている。しかしながら、ヒータとスリットの
最適な位置関係を判断することが難しいため、ヒータよ
り放射される熱電子を効率よくイオンソースに送りとま
ない状態で計測されることがあるのそこで、このような
状態を防ぎ、精度のよい測定を維持するためにはヒ丁夕
からの熱電子放出量の増加が要求される。しかし、この
場合ヒータよシ放出された熱電子のうちスリットに妨げ
られた無効熱電子電流によるヒータの消耗が増加し、ヒ
ータの寿命が短くなるという問題がある。
However, this mass spectrometry method also has problems. That is, in order to achieve highly accurate measurement using water droplets, it is necessary to stably ionize the breathing gas. Since ionization is carried out by the collision of thermionic electrons, a beam of focused thermionic electrons of sufficient 1Pr is required for 7'C to maintain accurate measurement. For this reason, a method is generally used in which a thermionic beam emitted from a heater is guided to an ion source through a slit. However, because it is difficult to determine the optimal positional relationship between the heater and the slit, the thermoelectrons emitted from the heater are sometimes measured without being efficiently sent to the ion source. In order to prevent this and maintain accurate measurements, an increase in the amount of thermionic emission from the electron beam is required. However, in this case, there is a problem that the consumption of the heater increases due to the inactive thermionic current blocked by the slit among the thermionic electrons emitted by the heater, and the life of the heater is shortened.

[発明の目的] との発明は上述した従来の分析計の欠点を改良したもの
で、ヒータより放出された熱電子が効率よくイオンソー
ス内に導びかれているか判定し得るようにした医用質量
分析計を提供することを目的とするものである [発明の概J9] この発明はヒータより放出された熱電子のうちイオンソ
ース内に導力島れた熱電子電流とスリットに妨げられて
無効になってしまった熱電子電流を計測、両者の比の値
よりヒータとイオンソースのスリットとの位置関係の良
否を判定し、ヒータより放出された熱電子が効率よくイ
オンソース内に導かれているか否か判定するようにした
ものである。
[Purpose of the Invention] The invention improves the drawbacks of the conventional analyzer described above, and is a medical mass analyzer that can determine whether thermionic electrons emitted from the heater are being efficiently guided into the ion source. [Summary of the Invention J9] This invention aims to provide an analyzer in which thermionic electrons emitted from a heater are obstructed by conductive islands and slits in the ion source and are therefore ineffective. Measure the thermionic current that has become irradiated, and determine whether the positional relationship between the heater and the slit of the ion source is good or bad based on the ratio of the two, and determine whether the thermionic electrons emitted from the heater are efficiently guided into the ion source. It is designed to determine whether or not there is a vehicle.

[発明の効果] 本発明によれはヒータとイオンソースのスリットとの位
置関係の良否を判定しうるため、無効な熱電子電流によ
るヒータの消耗を防止できるためヒータを寿命を延ばす
ことが可能となる。
[Effects of the Invention] According to the present invention, since it is possible to determine whether the positional relationship between the heater and the slit of the ion source is good or bad, it is possible to prevent the heater from being worn out due to an invalid thermionic current, thereby extending the life of the heater. Become.

また、いったん取付けられたヒータは経時的に変形して
しまうこともあシヒータ自身の構造の最適設計への指針
ともなりうる。
Furthermore, the fact that the heater, once installed, deforms over time can serve as a guideline for optimal design of the structure of the heater itself.

[発明の実施例] 以下、この発明を図面の実施例を参照して詳細に説明す
る。ガス導入パイプ(1)により導かれた試料ガスは分
析管(2)に入シイオンチャンバー(3)内に送り込ま
れる。イオンチャンバー(3)は電圧■1に保たれてい
る。試料ガスをイオン化する熱電子はヒータ(4)より
供給される。ヒータ(4)は電流■にょ夛加熱されてお
シイオンチャンバー(3)より電圧V2?(け低電圧に
保たれている0ヒータ(4)より放出された熱電子はイ
オンチャンバー(3)のスリブ)(51によりそのビー
ムを収束させられるが、一部はイオンチャンバー(3)
に流れ込んでしまう。残りの大部分の熱電子はイオンチ
ャンバー(3)内で試料ガスに衝突し、ガスをイオン化
した後正面のトラップ電極(6)に流れ込む。トラップ
電極(6)はイオンチャンバー(3)よりa圧■4だけ
高電圧に保たれている。イオン化された気体分子はりベ
ラ電i (7)により押し出され、スリット(8)を介
してイオンレンズ(9)に送り込まれる。リベラ電極(
7)はイオンチャンバー(3)よシミ圧■5だけ高電圧
に保たれている。
[Embodiments of the Invention] Hereinafter, the present invention will be described in detail with reference to embodiments of the drawings. A sample gas led through a gas introduction pipe (1) enters an analysis tube (2) and is sent into an ion chamber (3). The ion chamber (3) is maintained at voltage ■1. Thermionic electrons for ionizing the sample gas are supplied from the heater (4). The heater (4) is heated by an electric current, and the voltage V2 from the ion chamber (3) is applied. (Thermionic electrons emitted from the heater (4), which is kept at a low voltage, are focused on the ion chamber (3) by the sleeve of the ion chamber (3).
It flows into. Most of the remaining thermoelectrons collide with the sample gas in the ion chamber (3), ionize the gas, and then flow into the front trap electrode (6). The trap electrode (6) is kept at a higher voltage than the ion chamber (3) by a pressure 4. The ionized gas molecules are pushed out by the beam force (7) and sent into the ion lens (9) through the slit (8). Libera electrode (
7) is kept at a higher voltage than the ion chamber (3) by the stain pressure ■5.

さてトラップ電極(6)に流れ込んだ電流は抵抗RId
lにより電圧として検出され絶縁増幅器Iにて増幅され
る。一方、トラップ電極(6)とイオンチャンバー(3
)K流れ込んだ熱電子電流すなわちヒータ(4)から放
出された全熱電子電流は抵抗RJ3により電圧として検
出され、絶縁増幅器a3にて増幅される。
Now, the current flowing into the trap electrode (6) is caused by the resistance RId
It is detected as a voltage by I and amplified by an isolation amplifier I. On the other hand, the trap electrode (6) and the ion chamber (3)
)K flowing in, that is, the total thermoelectron current emitted from the heater (4), is detected as a voltage by the resistor RJ3, and is amplified by the isolation amplifier a3.

次に絶縁増幅器1ll) 、 Q31の出力は各々の値
が表示器(1→、(へ)に表示されると同時に割算回路
QIK入力され、両者の比すなわちトラップ電極(6)
に流れ込んだガスのイオン化に寄与した熱電子電流と、
ヒータ(4)から放出された全熱電子電流の比が割算回
路aeより出力される。この比の値は表示器αηにより
表示されると同時に、比較器θ樽の一方の入力端に入シ
予め設定された閾値E1α1と比較され、閾値以下すな
わち、イオン化に寄与する熱電子電流がある割合以下に
減少すると、警報回路■を駆動する。警報回路(イ)に
より警報が発生されたときKはヒータ(4)とスリット
(5)の位置関係を調整することKより、ヒータ(4)
より放出された熱電子が効率よくイオンソース内に導か
れるように調整することができる。
Next, the outputs of the isolation amplifier 1ll) and Q31 are input to the divider circuit QIK at the same time that each value is displayed on the display (1→, (to)), and the ratio of the two, that is, the trap electrode (6)
The thermionic current that contributed to the ionization of the gas flowing into the
The ratio of the total thermal electron current emitted from the heater (4) is output from the divider circuit ae. The value of this ratio is displayed by the indicator αη and at the same time is compared with a preset threshold value E1α1 entered at one input terminal of the comparator θ barrel. When it decreases below the percentage, the alarm circuit (■) is activated. When an alarm is generated by the alarm circuit (A), K adjusts the positional relationship between the heater (4) and the slit (5).
Adjustment can be made so that the emitted thermoelectrons can be guided into the ion source more efficiently.

尚、上記実施例においては、トラップ電極(6)K流れ
込んだ熱電子電流とヒータ(4)から放出された′全熱
電子電流の比をとることによりヒータ(4)とイオンソ
ースのスリット(5)の位置関係の良否を判定するよう
にしたが、ヒータ(4)よりイオンチャンバー (3)
 K流れ込む熱電子電流値を検出し、トラップ(6)に
流れ込む熱電子電流との比をめるようにすることも可能
である。
In the above embodiment, the heater (4) and the ion source slit (5) are determined by taking the ratio of the thermionic current flowing into the trap electrode (6) and the total thermionic current emitted from the heater (4). ), but the ion chamber (3) is more sensitive than the heater (4).
It is also possible to detect the value of the thermionic current flowing into K and to calculate the ratio with the thermionic current flowing into the trap (6).

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例のブロック図である01・・・ガ
ス導入パイプ、 3・・・イオンチャンバー、4・・・
ヒータ、 5・・スリット、 6・・・トラップ電極、11..13・・絶縁増幅器、
16・・・割算回路。 代理人 弁理士 則 近 憲 佑 (ほか1名)
The drawing is a block diagram of an embodiment of the present invention. 01... Gas introduction pipe, 3... Ion chamber, 4...
Heater, 5...Slit, 6...Trap electrode, 11. .. 13...Isolated amplifier,
16...Division circuit. Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)気体が導入されるイオンチャンバーと、このイオ
ンチャンバー内の前記気体をイオン化するだめの熱電子
を放出するヒータと、このヒータより放出されイオンチ
ャンバー内を貫通する熱電子をとらえるトラップ電極と
、このトラップ電極に流れ込んだ熱電子電流を検出する
手段と、この手段により検出された熱電子流量の前記ヒ
ータから放出された熱電子電流量に対する割合を算出す
る演算手段とを備えることを特徴とする医用質量分析計
(1) An ion chamber into which gas is introduced, a heater that emits thermionic electrons to ionize the gas in the ion chamber, and a trap electrode that captures thermionic electrons released from the heater and penetrating the ion chamber. , comprising means for detecting the thermionic current flowing into the trap electrode, and calculation means for calculating the ratio of the thermionic flow rate detected by the means to the amount of thermionic current emitted from the heater. Medical mass spectrometer.
(2)演算手段は、ヒータから放出される全熱電子電流
を検出し、この全熱電子電流に対する前記トラップ電極
に流れ込んだ熱電子電流の比をとるものであることを特
徴とする特許請求の範囲第1項記載の医用質量分析計。
(2) The calculation means detects the total hot electron current emitted from the heater, and calculates the ratio of the hot electron current flowing into the trap electrode to the total hot electron current. A medical mass spectrometer according to scope 1.
(3)演算手段は、ヒータからイオンチャンバーに流れ
込む熱電子電流を検出し、この熱電子電流に対する前記
トラップ電極に流れ込んだ熱電子電流の比をとるもので
あることを特徴とする特許請求の範囲第1項記載の医用
質量分析計0
(3) A claim characterized in that the calculation means detects the thermionic current flowing into the ion chamber from the heater, and calculates the ratio of the thermionic current flowing into the trap electrode to this thermionic current. Medical mass spectrometer 0 described in paragraph 1
JP58169229A 1983-09-16 1983-09-16 Medical mass spectrometer Pending JPS6062053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169229A JPS6062053A (en) 1983-09-16 1983-09-16 Medical mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169229A JPS6062053A (en) 1983-09-16 1983-09-16 Medical mass spectrometer

Publications (1)

Publication Number Publication Date
JPS6062053A true JPS6062053A (en) 1985-04-10

Family

ID=15882614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169229A Pending JPS6062053A (en) 1983-09-16 1983-09-16 Medical mass spectrometer

Country Status (1)

Country Link
JP (1) JPS6062053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966465B2 (en) 2001-01-22 2005-11-22 Seong Ill Kang Pumping device and cosmetic spray having the same
JP2007258025A (en) * 2006-03-23 2007-10-04 Shimadzu Corp Ionization device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966465B2 (en) 2001-01-22 2005-11-22 Seong Ill Kang Pumping device and cosmetic spray having the same
JP2007258025A (en) * 2006-03-23 2007-10-04 Shimadzu Corp Ionization device
JP4654954B2 (en) * 2006-03-23 2011-03-23 株式会社島津製作所 Ionizer

Similar Documents

Publication Publication Date Title
US5455417A (en) Ion mobility method and device for gas analysis
US5561344A (en) Photo-ionization detector for detecting volatile organic gases
Voisin et al. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition
JPH09510550A (en) Respiratory gas analyzer
JP4024494B2 (en) Method and apparatus for measuring nitrogen in gas
US9784714B2 (en) Discharge ionization current detector and tuning method for the same
US20150129760A1 (en) Methods and devices for calibrating the mobility axis of an ion mobility spectrum
KR102136004B1 (en) Breath alcohol analyzer capable of estimating remaining life of a sensing part
JP2001056395A (en) Minus ion radiation method and device
JPS6062053A (en) Medical mass spectrometer
Allain et al. Evaluation of inductively coupled mass spectrometry for the determination of platinum in plasma
KR100977031B1 (en) Measuring device of compounds using the photo-ionization detector
KR19990072147A (en) Method and apparatus for measuring ethanol vapor concentration
US7400406B2 (en) Microchip measurement device
EP1611437A2 (en) Gas detector with modular detection and discharge source calibration
JPH05119006A (en) Device for measuring concentration of hydrogen carbide
JP2006266774A (en) Analyzing method and analyzing apparatus for mixed gas
JPH10213509A (en) Pressure measuring device
JP2009244073A (en) Ionization type gas sensor
US4810877A (en) Mass spectrometer with means to correct for threshold carbon dioxide
JP6004535B2 (en) Gas detector
KR20210091857A (en) Breath alcohol analyzer with exhalation temperature measurement function
US20220132645A1 (en) X-ray generating device, and diagnostic device and diagnostic method therefor
JP2946701B2 (en) Filament life prediction device
JPS6062052A (en) Medical mass spectrometer