JPS6062052A - Medical mass spectrometer - Google Patents

Medical mass spectrometer

Info

Publication number
JPS6062052A
JPS6062052A JP58169228A JP16922883A JPS6062052A JP S6062052 A JPS6062052 A JP S6062052A JP 58169228 A JP58169228 A JP 58169228A JP 16922883 A JP16922883 A JP 16922883A JP S6062052 A JPS6062052 A JP S6062052A
Authority
JP
Japan
Prior art keywords
heater
level
current
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169228A
Other languages
Japanese (ja)
Inventor
Satoshi Aida
聡 相田
Ayao Ito
伊藤 阿耶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58169228A priority Critical patent/JPS6062052A/en
Publication of JPS6062052A publication Critical patent/JPS6062052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To enable stable analysis to be performed for a long period of time by interchangeably using plural heaters under proper conditions by connecting a power supply circuit to an auxiliary heater when the current level of the heater exceeds a set level. CONSTITUTION:The current output of a heater power supply 6-1 is controlled by the output of a control-voltage-producing circuit. The current level of the power supply 6-1 is converted into a voltage signal by means of a current-detecting circuit 6-3. Next, the voltage signal is compared with a level set in a reference- voltage-producing circuit 6-2 to deliver a voltage output when the voltage signal exceeds the set level. The thus delivered voltage output is then received by a pulse converter 6-5 which converts the voltage output into a step-like pulse which is then delivered from the pulse converter 6-5. Thus produced pulses are accumulated in a counter 6-6 and the pulse level corresponding to the heater that should be selected is delivered to a decorder 6-7 to achieve the changeover of a switch group 6-8 for selecting heaters. By thus measuring the current level of the heater and connecting the power supply circuit to an auxiliary heater when the above current level exceeds a set level, it is possible to perform stable measurement for a long period of time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は医用質量分析計に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to a medical mass spectrometer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年肺機能検査や患者監祝の分野で、酸素消費量や炭酸
ガス派生量の測定のニーズが高まっている。これらの測
定を行なうためには、呼吸ガス中の酸素と炭酸ガス濃度
の測定が不可欠であり、その測定には、質量分析計がす
ぐれている。
In recent years, there has been an increasing need to measure oxygen consumption and carbon dioxide production in the fields of pulmonary function testing and patient supervision. In order to perform these measurements, it is essential to measure the oxygen and carbon dioxide concentrations in the breathing gas, and mass spectrometers are excellent for this measurement.

しかし、質量分析計には、取扱いが複雑で、保守性が悪
いという問題がある。特に問題となるのは消耗品として
扱われる熱電子放出用のヒータである。ヒータからの熱
電子放出量は時間的に変化して低下し、充分な精度を持
ったガス分析が行なえなくなる。そのだめ、従来の質量
分析計では、出力の時間的変化をおさえるために、出力
又は侶号雑音比あるいは直接ガスのイオン化にたずされ
る実効熱電子放出量などを検出し、その値によシ、ヒー
タ電流を制御する機構をそなえている、したがって時間
が経過するにつれヒータが疲労し、熱電子放射量が低下
していくと、ヒータ電流が増加する傾向にある。そしで
ある電流値以上でヒータの疲労は限界となシ断絆して測
定を続ける事が不可能となる。ヒータの交換は通常分析
管の真空を破るため当然その取扱いは複雑なものとなる
。したがってなるべくヒータの交換を避けたいわけで、
従来の質量分析計のイオンソースでは、複数のヒータが
装備され、主のヒータが断線した場合外部のスイッチに
より予備のヒータに切シ替える手段が用いられている。
However, mass spectrometers have problems in that they are complicated to handle and have poor maintainability. Particularly problematic are thermoelectron emission heaters, which are treated as consumables. The amount of thermionic emissions from the heater changes over time and decreases, making it impossible to perform gas analysis with sufficient accuracy. Therefore, in order to suppress temporal changes in output, conventional mass spectrometers detect the output, noise ratio, or effective amount of thermionic emission caused by direct gas ionization, and use these values to suppress temporal changes in output. The heater current is equipped with a mechanism for controlling the heater current. Therefore, as the heater becomes fatigued over time and the amount of thermionic radiation decreases, the heater current tends to increase. If the current exceeds a certain value, the fatigue of the heater reaches its limit, and it becomes impossible to continue measurements. Replacing the heater usually breaks the vacuum in the analysis tube, so handling it is naturally complicated. Therefore, I would like to avoid replacing the heater as much as possible.
The ion source of a conventional mass spectrometer is equipped with a plurality of heaters, and uses an external switch to switch to a spare heater when the main heater is disconnected.

しかし、ヒータが断線する直前には熱電子放出量は急激
に減少し、出力の信頼性が失なわれるという欠点があシ
、シかも、断線後はデータの収集が不可能となる。
However, just before the heater burns out, the amount of thermionic emissions decreases rapidly, resulting in a loss of output reliability, and data collection becomes impossible after the heater burns out.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、複数のヒータを適切な条件で交換する
ことで、長期間安定に計測することのできる医用質量分
析計を提供することを目的とする。
An object of the present invention is to provide a medical mass spectrometer that can perform stable measurements over a long period of time by replacing a plurality of heaters under appropriate conditions.

〔発明の概要〕[Summary of the invention]

本発明ではヒータ電流の値を測定し、その値が設定値を
越えると電源回路を予備ヒータに切シ替えるようにしだ
ものである。
In the present invention, the value of the heater current is measured, and when the value exceeds a set value, the power supply circuit is switched to the standby heater.

〔発明の効果) 本発明によれば、ヒータ電流の最大値が決定され、ヒー
タ電源が保護されるとともに、ヒータ断線前後の無測定
時間を著しく減少させるため、長期間の安定計測が可能
となる。すなわち信号雑音比等によシ、ヒータ電源を制
御する場合、ヒータが極度に疲労している時には、過大
電流がヒータを流れ、ヒータ電源は過負荷状態となるが
、ヒータ電流が設定値を越えたところで新しいヒータに
切り替えることによシ、熱電子放出効率が上が9、制御
機構によシヒータ電流は減少し電源が保護される。
[Effects of the Invention] According to the present invention, the maximum value of the heater current is determined, the heater power source is protected, and the non-measurement time before and after the heater burnout is significantly reduced, making stable measurement possible over a long period of time. . In other words, when controlling the heater power supply depending on the signal-to-noise ratio, etc., when the heater is extremely fatigued, an excessive current flows through the heater and the heater power supply becomes overloaded, but the heater current exceeds the set value. However, by switching to a new heater, the thermionic emission efficiency increases, and the control mechanism reduces the heater current and protects the power supply.

−1゜ また、ヒータを限界点以前で交換するため、断線する直
前の熱電子放出の不安定な状態や、断線後の測定不可能
な状態で装置を作動することがなくなシ、長期間安定な
計測が行なわれる。
-1゜In addition, since the heater is replaced before the breaking point, the device does not operate in an unstable state of thermionic emission just before the wire breaks, or in a state where measurements cannot be made after the wire breaks, and this eliminates the need for long periods of time. Stable measurements are performed.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図に示す。第1図は90度磁場偏
向型の医用質量分析計のブロック図を示したものである
。呼吸ガスは導入チューブ(1)を経てパルプ(2)を
通p1細管(3)により分析管(4)内のイオンチャン
バ(5)に導入される。一方ヒータ電源(6)によシ供
給された電流でヒータ(7)が加熱されて熱電子が放出
されイオンチャンバ(5)に導かれる。これによシイオ
ンチャンバ(5)内で熱電子価突を生じ、′ 呼吸ガス
がイオン化される。イオン化された呼吸ガスに含まれる
望素(Nz)+酸素(OtL炭酸ガス(co、3の各気
体分子は、イオン加速電源(8)によシ供給された電圧
によシイオン銃(9)で加速され、マグネッ)41tl
)よりなる磁場に入る。
An embodiment of the invention is shown in FIG. FIG. 1 shows a block diagram of a 90 degree magnetic field deflection type medical mass spectrometer. The breathing gas is introduced via the inlet tube (1) through the pulp (2) into the ion chamber (5) in the analysis tube (4) by means of the p1 capillary (3). On the other hand, the heater (7) is heated by the current supplied by the heater power source (6), and thermoelectrons are emitted and guided to the ion chamber (5). This causes thermionic valence collisions in the ion chamber (5), and the breathing gas is ionized. Each gas molecule of nitrogen (Nz) + oxygen (OtL) and carbon dioxide (co, 3) contained in the ionized breathing gas is ionized by the ion gun (9) by the voltage supplied by the ion accelerating power source (8). accelerated, magnetic) 41tl
) enters a magnetic field consisting of

・fオン化された各分子はこの磁場によシ質量数に応じ
て偏向を受け各コレクタ11−+ t 11−2 + 
11−sに集められる。この例ではそれぞれN2,02
.CO□のチャンネルとなっている。集められたイオン
は各々の増幅器(12−+ + 12−2112−3 
)によシ増幅され、各々のガス濃度に比例した電圧VN
2. Vo2. Vco2を出力する。
・Each molecule that has been turned on is deflected by this magnetic field according to its mass number, and each collector 11-+ t 11-2 +
11-s. In this example, N2,02 respectively.
.. It is a CO□ channel. The collected ions are transferred to each amplifier (12-+ + 12-2112-3
) is amplified by the voltage VN proportional to each gas concentration.
2. Vo2. Outputs Vco2.

各出力波形は連続的に計測を繰返してゆくと、ヒータの
劣化に伴う熱電子放出量の減少によシ徐々にイオン化さ
れる分子の量が減少し、雑音の目立つ波形に変ってゆく
。この時、コレクタの出力電圧ハバイパスフィルタu3
)とローパスフィルタ(14)ニ加えられる。バイパス
フィルタ(I3)は雑音信号のみを描出したもので振幅
検出回路αつに加えられる。
As each output waveform is continuously measured, the amount of ionized molecules gradually decreases due to a decrease in the amount of thermionic emission due to deterioration of the heater, and the waveform changes to a waveform with noticeable noise. At this time, the output voltage of the collector is
) and a low-pass filter (14) are added. The bypass filter (I3) depicts only the noise signal and is added to the amplitude detection circuits α.

割算回路仕eはローパスフィルタU・υの出力と振幅検
出回路は最の出力を受けて信号雑音比を演舞、シ出力す
る。この値は、比較回路(11)に与えられ、信号雑音
比設定回路(1〜に設定された値と比較される。比較回
路(I7)の出力は制御電圧発生回路住翅に与えられ、
その出力を制御する。すなわち、・箔号雑音比が設に値
よシ低下している場合は、ヒータ(7)の電流が増加す
るようにヒータ電源が制御される。
The divider circuit e receives the output of the low-pass filter U·υ and the amplitude detection circuit receives the highest output, calculates the signal-to-noise ratio, and outputs the signal-to-noise ratio. This value is given to the comparator circuit (11) and compared with the signal-to-noise ratio setting circuit (a value set from 1 to 1).The output of the comparator circuit (I7) is given to the control voltage generation circuit Sumitomo,
Control its output. That is, if the foil number noise ratio is lower than the initial value, the heater power source is controlled so that the current of the heater (7) increases.

第2図はヒータ電源内部のブロック図を示したものであ
る。制御電圧発生回路U@の出力によってヒータ用電源
(6−1)の電流出力が制御される。
FIG. 2 shows a block diagram inside the heater power supply. The current output of the heater power source (6-1) is controlled by the output of the control voltage generating circuit U@.

この電流値は電流検出回路(6−3)によシミ圧イa号
に変換され比較回路(6−4)によシ基準電圧発生回路
(6−3)に設定された値と比較され、設定値を越えた
場合電圧を出力する。パルス変換器(6−5)はこの出
力を受けステップ状のパルスに変換して出力する。この
パルスをカウンタ(6−6)にて累積し切り替えるべき
ヒータに対応した値をデコーダ(6−7)に出力し、ヒ
ータを選択するスイッチ群(6−8)を切り替える。
This current value is converted into stain voltage a by the current detection circuit (6-3), and compared with the value set in the reference voltage generation circuit (6-3) by the comparison circuit (6-4). Outputs voltage if it exceeds the set value. A pulse converter (6-5) receives this output, converts it into a step-like pulse, and outputs it. A counter (6-6) accumulates these pulses and outputs a value corresponding to the heater to be switched to a decoder (6-7) to switch a group of switches (6-8) for selecting the heater.

又、質量分析計の電源の遮断及び再投入に伴なうヒータ
選択のやり直しという無駄を省くため(6−6)には、
該カウンタの状態を記憶するメモリ(6−9)と電源遮
断時、該メモリを駆動するだめの電源(6−10)が接
続されている。
Also, in order to avoid the waste of having to reselect the heater when turning off and turning on the power to the mass spectrometer (6-6),
A memory (6-9) that stores the state of the counter is connected to a power source (6-10) that drives the memory when the power is cut off.

このように本発明はヒータ電流値を測定しその値が設定
値を越えたときに電源回路を予備ヒータに切シ替えるよ
うにしたものであり、長期間の安定な4測が口]能であ
る。
In this way, the present invention measures the heater current value and switches the power supply circuit to the standby heater when the value exceeds the set value, making it possible to perform four stable measurements over a long period of time. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のブロック図、第2図は実施例
のヒータ電源の詳細なブロック図である。 1・・・導入チューブ 15・・・振幅検出回路4・・
・分析管 19・・・制御電圧発生回路5・・・イオン
チャンバ 6−2・・・基準電圧発生回路6・・・ヒー
タ電源 6−3・・パ亀流検出回路7・・・ヒータ 6
−6・・・カウンタ11・・・コレクタ 6−8・・・
スイッチ群代理人 弁理士 則 近 憲 佑 (ほか1名)
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a detailed block diagram of a heater power source of the embodiment. 1...Introduction tube 15...Amplitude detection circuit 4...
-Analysis tube 19...Control voltage generation circuit 5...Ion chamber 6-2...Reference voltage generation circuit 6...Heater power supply 6-3...Pacific current detection circuit 7...Heater 6
-6...Counter 11...Collector 6-8...
Switch Group Agent Patent Attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】 ガスが導入されるイオンチャンバと、このイオンチャン
バ内に導入された前記ガスをイオン化するヒータ電源と
、このヒータ電源より供給される前記ヒータ電流の値を
検出する手段と、とのヒータ電流の値を予め定められた
基準値と比較する手段と、この手段によシ前記ヒータ電
流の値が基準電圧以上に々ったことが検出されたとき前
記ヒーて 夕電源を他のヒータに切シ替え鳩ヒータ電流を供給する
手段とを備えることを4?徴とする医用質量分析計。
[Scope of Claims] An ion chamber into which gas is introduced, a heater power source for ionizing the gas introduced into the ion chamber, and means for detecting the value of the heater current supplied from the heater power source. means for comparing the value of the heater current with a predetermined reference value; 4? means for supplying switching heater current to the heater; Medical mass spectrometer.
JP58169228A 1983-09-16 1983-09-16 Medical mass spectrometer Pending JPS6062052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169228A JPS6062052A (en) 1983-09-16 1983-09-16 Medical mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169228A JPS6062052A (en) 1983-09-16 1983-09-16 Medical mass spectrometer

Publications (1)

Publication Number Publication Date
JPS6062052A true JPS6062052A (en) 1985-04-10

Family

ID=15882594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169228A Pending JPS6062052A (en) 1983-09-16 1983-09-16 Medical mass spectrometer

Country Status (1)

Country Link
JP (1) JPS6062052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315474A (en) * 1988-06-13 1994-11-15 Marvin B Bacaner Small-sized mass spectrometer
US6966465B2 (en) 2001-01-22 2005-11-22 Seong Ill Kang Pumping device and cosmetic spray having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315474A (en) * 1988-06-13 1994-11-15 Marvin B Bacaner Small-sized mass spectrometer
US6966465B2 (en) 2001-01-22 2005-11-22 Seong Ill Kang Pumping device and cosmetic spray having the same

Similar Documents

Publication Publication Date Title
Wasserburg et al. A programmable magnetic field mass spectrometer with on‐line data processing
US4755669A (en) Vacuum monitoring apparatus
Baum et al. Measurement of spin asymmetries in the electron impact ionisation of alkali atoms
JPH07505247A (en) Plasma flow and plasma device control method
GB2479621A (en) Device for measuring the concentration of paramagnetic gases
US5270009A (en) Method of and apparatus for measuring oxygen concentration with limiting current oxygen sensor
JP4206598B2 (en) Mass spectrometer
JPS6062052A (en) Medical mass spectrometer
JPH10213509A (en) Pressure measuring device
JPS6062053A (en) Medical mass spectrometer
US6606899B1 (en) Total impurity monitor for gases
JP2009244073A (en) Ionization type gas sensor
HU181194B (en) Arrangement to put vacuum gauge operation into practice of the quadrupol mass spectrometer
JP2000057990A (en) Mass spectrometer
US5528362A (en) Atomic absorption spectrophotometer for providing background corrected atomic absorbance-data
Looney Laser Photoionization Measurements of Pressure in Vacuum
Hill et al. Effect of water vapour on the sensitivity of a macro-argon ionization detector
JP2000315474A (en) Mass spectrometer
JPS5986148A (en) Mass spectrometer for medical use
Isler A stabilized electron‐bombardment ion source
JPH075266A (en) Proportional counter capable of correcting measurement error due to fluctuation of voltage between electrodes
JP2672950B2 (en) Emission control device
JP2697932B2 (en) Vacuum measurement device
Krafft et al. Electron-beam diagnostics for Jefferson Lab's high power free electron laser
Tanguay et al. Ion bombardment magnetron furnace for atomic spectroscopy