JPS6061150A - Foreseeing method of breakout in continuous casting - Google Patents

Foreseeing method of breakout in continuous casting

Info

Publication number
JPS6061150A
JPS6061150A JP16756183A JP16756183A JPS6061150A JP S6061150 A JPS6061150 A JP S6061150A JP 16756183 A JP16756183 A JP 16756183A JP 16756183 A JP16756183 A JP 16756183A JP S6061150 A JPS6061150 A JP S6061150A
Authority
JP
Japan
Prior art keywords
vibration
mold
breakout
acceleration sensor
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16756183A
Other languages
Japanese (ja)
Inventor
Shigeru Matsunaga
松永 滋
Norio Hoshi
星 記男
Fumitaka Nakashige
中重 文隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP16756183A priority Critical patent/JPS6061150A/en
Publication of JPS6061150A publication Critical patent/JPS6061150A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable foreseeing of breakout by taking out the oscillation input and output signals of an oscillating system for a casting mold by an acceleration sensor of oscillation and issuing an alarm when the transmission function of the specific higher harmonic component in a resonance frequency band exceeds a reference range. CONSTITUTION:Oscillation input and output signals are respectively taken out by an acceleration sensor 10 secured to an arm 9 for exciting a casting mold 1 and an acceleration sensor 15 secured to the mold 1 and the acceleration waveforms of both signals are Fourier-transformed to a basic wave and the higher harmonic corresponding to the same by a spectrum analyzer 18. An amplitude ratio and a phase difference are continuously analyzed with respect to the frequency component existing in the resonance frequency band of the oscillation system in the Fourier spectrum and the monitoring signal thereof is inputted to a microcomputer 19 by which the signal is compared with a reference value. An alarm device 21 for breakout is triggered when either of the amplitude ratio or the phase difference exceeds the reference range. The foreseeing of the breakout is thus made possible with extremely high probability.

Description

【発明の詳細な説明】 本発明は、鋳型に振動を付与しなから溶湯例えば溶鋼を
連続鋳造するさいのブレークアウト事故を予め検知する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting breakout accidents in advance during continuous casting of molten metal, such as molten steel, without applying vibration to a mold.

溶鋼の連続鋳造において、ブレークアウト(凝固シェル
の破断による漏鋼)事故は、連鋳操業トラブルの中でも
最も大きな事故であり、これが発生すると、設備の修復
、屑の発生、生産性の低下等、製鋼工程に与える影響が
甚大である。近年。
In continuous casting of molten steel, a breakout accident (steel leakage due to rupture of the solidified shell) is the most serious accident in continuous casting operation. The impact on the steelmaking process is enormous. recent years.

連鋳スラブの無手入れ化や直送圧延が進展しつつあるが
、この場合には鋳造条件が種々の制約を受け、ブレーク
アウトが発生しやすくなる傾向にある。従って、このよ
うな鋳造条件を満足しかつ安全な操業を続けるために、
鋳型と鋳片間の温情状態を定常的に監視し、ブレークア
ウトを予め予知してこれの発生を防止する技術の確立が
強く望まれている。
Maintenance-free continuous casting slabs and direct rolling are progressing, but in this case, casting conditions are subject to various restrictions and breakouts tend to occur more easily. Therefore, in order to satisfy these casting conditions and continue safe operations,
There is a strong desire to establish a technology that constantly monitors the thermal conditions between the mold and the slab, predicts breakouts in advance, and prevents them from occurring.

これまでにも、このブレークアウトの予知あるいは鋳型
と鋳片間の潤滑異常の監視処方として種々の提案がなさ
れているが未だ技術的に確立したものはない。従来提案
されたものを類別すると次のようなものがある。
Up to now, various proposals have been made for predicting this breakout or for monitoring abnormalities in lubrication between the mold and the slab, but none have been technically established yet. The categories of what has been proposed so far are as follows.

(1)、歪ゲージによる振動歪の測定 (2)、差動トランスによる振動波形測定(3)、加速
度計による鋳型振動測定 (4)、ロードセルによる鋳型支持力測定(5)、熱電
対による鋳型温度の測定 いづれの処方も一長一短があるが、基本的には(11,
(2)、 (41および(5)の処方は、鋳型振動装置
の機械的強度や構造にその検出値が左右されるのでその
測定結果の信頼性に問題があり、特に極めて微少な変化
を検出してこれに基づいて定量的な判断をするには危険
が伴うであろう。これに対して(3)の加速度計によっ
て鋳型の振動状況を監視し、その波形解析から異常を検
出する方法は最も信頼性が高いと言える。この処方に属
すると考えられる公知例としては2例えば、特開昭57
−25269号、特開昭57−3’2866号および特
開昭57444456号公報記載の方法がある。
(1), Measurement of vibration strain using a strain gauge (2), Vibration waveform measurement using a differential transformer (3), Mold vibration measurement using an accelerometer (4), Mold support force measurement using a load cell (5), Mold using a thermocouple There are advantages and disadvantages to each prescription for temperature measurement, but basically (11,
(2), (41) and (5) have problems with the reliability of the measurement results because the detected values depend on the mechanical strength and structure of the mold vibrating device, especially when detecting extremely small changes. However, it would be risky to make quantitative judgments based on this.On the other hand, the method (3) of monitoring the vibration status of the mold using an accelerometer and detecting abnormalities from the waveform analysis is It can be said that it is the most reliable.There are two known examples that are considered to belong to this prescription, for example, JP-A-57
There are methods described in Japanese Patent Application Laid-Open No. 57-3'2866, Japanese Patent Application Laid-Open No. 57444456.

本発明も、原則的にはこの加速度計によって鋳型の振動
状況を監視してブレークアウトを予知するものであるが
、前記公報記載の処方とは異なった原理を採用すること
によって安定かつ確実にブレークアウトを予知する方法
を開発したものである。すなわち1本発明は、鋳型に振
動を付与する加振アームに固着した振動加速度センサー
により連続鋳造中の鋳型への振動入力信号を取り出すと
共に、鋳型に直接固着した振動加速度センサーにより連
続鋳造中における鋳型の振動出力信号を取り出し9両信
号の加速度波形をフーリエ変換して基本波成分からその
高調波成分までの振幅伝達関数(振幅比)および/また
は位相伝達関数(位相差)をスペクトラムアナライザー
で連続的に解析し、高調波成分のうちのある特定の周波
数の振幅比および/または位相差が基準域を越えたとき
に警報を発するようにしたことを特徴とする。
In principle, the present invention also uses this accelerometer to monitor the vibration status of the mold and predict breakout, but by adopting a principle different from the prescription described in the above publication, breakout can be stably and reliably predicted. We have developed a method to predict outs. That is, 1 the present invention extracts a vibration input signal to the mold during continuous casting using a vibration acceleration sensor fixed to a vibrating arm that applies vibration to the mold, and also extracts a vibration input signal to the mold during continuous casting using a vibration acceleration sensor fixed directly to the mold. Extract the vibration output signals of the 9 signals, Fourier transform the acceleration waveforms of both signals, and continuously measure the amplitude transfer function (amplitude ratio) and/or phase transfer function (phase difference) from the fundamental wave component to its harmonic components using a spectrum analyzer. The present invention is characterized in that an alarm is issued when the amplitude ratio and/or phase difference of a certain frequency among the harmonic components exceeds a reference range.

以下に本発明の詳細な説明するが、鋳型への振動入力信
号として振動装置の加振アームに固設した加速度センサ
ーからこれを取り出すようにした点や伝達関数のうち高
調波成分のうちのある特定の周波数の振幅比および/ま
たは位相差が基準域を越えたときに警報を発するように
する点などは前述の特開昭57−25269号、特開昭
57−32866号および特開昭57−44456号公
報などには記載のない本発明で採用する特徴的な処方で
あり、これによって極めて高い確率でブレークアウトを
正確かつ十分な予告時間をもって予知することができる
ようになったものである。
The present invention will be explained in detail below, but it will be noted that the vibration input signal to the mold is taken out from an acceleration sensor fixed to the vibration arm of the vibration device, and that some of the harmonic components of the transfer function The point that an alarm is issued when the amplitude ratio and/or phase difference of a specific frequency exceeds a reference range is disclosed in the aforementioned Japanese Patent Application Laid-Open No. 57-25269, No. 57-32866, and Japanese Patent Laid-Open No. 57-57. This is a unique prescription employed in the present invention, which is not described in Publication No. 44456, etc., and allows breakouts to be predicted accurately and with sufficient advance notice with an extremely high probability. .

第1図は溶鋼の連続鋳造設備における鋳型への振動付与
装置の一例を示したものである。周知のように、鋳型か
ら鋳片を引き抜く際に鋳型内面と鋳片とのスティッキン
グを防止するために、鋳型に所定周期の上下往復運動が
付与されるが、このオシレーションとしてはサインカー
ブ方式が機構的にも簡単で問題が少ないことから一般に
採用されている。第1図はこれを★現する一例であり。
FIG. 1 shows an example of a device for applying vibration to a mold in continuous casting equipment for molten steel. As is well known, when pulling a slab out of a mold, the mold is given a vertical reciprocating motion at a predetermined period in order to prevent sticking between the inside of the mold and the slab. It is generally adopted because it is mechanically simple and has few problems. Figure 1 is an example of this.

鋳型1とこれを一体となって支持する振動テーブル2と
からなる振動系(バランサー3を介して上下動可能に設
置される)に対し、モータ4の回転動力をトランスミッ
ションギヤ5およびクランクシャフト6やクランクアー
ム7を介して直線往復運動に変換したあとリンク機構を
介して上下振動を付与する。本発明では、このような加
振装置のうちの直線往復運動する部分、より具体的には
A vibration system consisting of a mold 1 and a vibration table 2 that integrally supports the mold 1 (installed so as to be movable up and down via a balancer 3) is supplied with rotational power from a motor 4 to a transmission gear 5 and a crankshaft 6. After converting into linear reciprocating motion via the crank arm 7, vertical vibration is applied via the link mechanism. In the present invention, the part of such a vibrating device that makes linear reciprocating motion, more specifically.

振動アーム9に加速度センサー10を固設する。なお第
1図において、11は支点ビン、12は親ピン。
An acceleration sensor 10 is fixed to the vibrating arm 9. In FIG. 1, 11 is a fulcrum pin, and 12 is a parent pin.

13はストローク調整機構を示している。13 indicates a stroke adjustment mechanism.

加速度センサー10はサーボ型のものを使用し。The acceleration sensor 10 uses a servo type.

これを加振装置の直線往復運動部分(リンクモーション
部分)、よめ具体的には、振動アーム9に取付けること
によって、連続鋳造中における振動系(鋳型)への振動
入力信号を取り出すようにした点に本発明の一つの特徴
がある。一方、振動系の振動出力信号は、鋳型1の銅板
(長片側の両銅板)に直接固設した加速度センサー15
によってこれを直接的に取り出すようにする。
By attaching this to the linear reciprocating motion part (link motion part) of the vibration excitation device, specifically the vibration arm 9, it is possible to extract vibration input signals to the vibration system (mold) during continuous casting. There is one feature of the present invention. On the other hand, the vibration output signal of the vibration system is detected by an acceleration sensor 15 directly fixed to the copper plate of the mold 1 (both copper plates on the long side).
This can be retrieved directly by

第2図は1両加速度センサー10と15からの振動入力
信号と振動出力信号から本発明法に従ってブレークアウ
トを予知するのに使用する代表的な装置の例を系統的に
示したものである。第2図中の1〜15は第1図で説明
したのと同じ装置要素であり、16は振動アンプ、17
は絶縁アンプ、18はスペクトラムアナライザー、19
はマイクロコンピュータ、20はD10変換器、21は
警報装置を示している。すなわち2両加速度センサー1
0と15から振動系への入力信号と振動系の出力信号と
をを振動アンプ16および絶縁アンプ17を経て、マル
チチャンネルスペクトラムアナライザー18に同時にサ
ンプリングし、振動系が有している伝達関数を時系列デ
ータから知得する。より具体的には両顎速度センサー1
0と15で測定した加速度波形をスペクトラムアナライ
ザー18で基本波とこの基本波に対応する高調波にフー
リエ変換し、このフーリエ変換さされたフーリエスペク
トラムの鋳型振動系共振周波数帯域にある周波数成分に
ついて1両者の振幅比と位相差を連続的に解析し、これ
を記録する。
FIG. 2 systematically shows an example of a typical apparatus used to predict breakout in accordance with the method of the present invention from vibration input and output signals from single acceleration sensors 10 and 15. 1 to 15 in FIG. 2 are the same device elements as explained in FIG. 1, 16 is a vibration amplifier, 17
is an isolated amplifier, 18 is a spectrum analyzer, 19
2 shows a microcomputer, 20 a D10 converter, and 21 an alarm device. In other words, 2 car acceleration sensor 1
The input signal to the vibration system from 0 and 15 and the output signal of the vibration system are simultaneously sampled to the multi-channel spectrum analyzer 18 via the vibration amplifier 16 and the isolation amplifier 17, and the transfer function of the vibration system is measured over time. Learn from series data. More specifically, both jaw speed sensor 1
The acceleration waveforms measured at 0 and 15 are Fourier-transformed into a fundamental wave and harmonics corresponding to this fundamental wave using the spectrum analyzer 18, and the frequency components in the mold vibration system resonance frequency band of the Fourier-transformed Fourier spectrum are The amplitude ratio and phase difference between the two are continuously analyzed and recorded.

マイクロコンピュータ19は鋳造条件の各種データの入
出力並びにコントロール入出力の演算と制御を行う。
The microcomputer 19 performs input/output of various data regarding casting conditions as well as calculation and control of control input/output.

本発明者らはこのような機器構成のもとて長年にわたっ
て鋳型振動状況を監視し、操業中の信号を記録すると共
にブレークアウト発生時点でその前に何等かの予告信号
が存在するか否かを詳細に分析検討した。その結果、鋳
型振動系共振周波数帯域にある特定の周波数成分の伝達
関数(振幅比と位相差)が定常安定時と比較して変動を
示すこきを知見した。この変動が現れる特定の周波数成
分は、操業条件によっても異なるが1例えば鋳型の振動
数(基本周波数)が63.8cpm (= 1.061
1z)でステンレス鋼を連続鋳造する場合に、 14.
211zの高調波成分についてのみ大きな変動が現れる
The present inventors have been monitoring mold vibration conditions for many years using this equipment configuration, recording signals during operation, and determining whether there is any warning signal before a breakout occurs. was analyzed and discussed in detail. As a result, we found that the transfer function (amplitude ratio and phase difference) of a specific frequency component in the resonance frequency band of the mold vibration system showed fluctuations compared to when it was stable. The specific frequency component in which this fluctuation appears varies depending on the operating conditions, but for example, the vibration frequency (fundamental frequency) of the mold is 63.8 cpm (= 1.061
1z) When continuously casting stainless steel, 14.
Large fluctuations appear only in the harmonic components of 211z.

第3図と第4図はこの関係を示しており、多数の高調波
成分のうち、 11.0.12.0.13.0.14.
2゜15.2tlzの周波数成分についてだけ取り出し
て、ブレークアウト240秒前の時間帯での振幅比(第
3図)と位相差(第4図)をプロットしたものである。
Figures 3 and 4 show this relationship, and among the many harmonic components, 11.0.12.0.13.0.14.
Only the frequency component of 2°15.2 tlz is extracted, and the amplitude ratio (Fig. 3) and phase difference (Fig. 4) in the time period 240 seconds before breakout are plotted.

ただし、鋳片断面; 155 X 1035mm、鋳造
温度i 1552°C1鋳造速度; 0.70 m/m
in、鋳型振動数;63.8cpm (= 1.061
1z)で5tlS430ステンレス鋼を鋳造した時のデ
ータである。両図から明らかなように、 14.211
zの周波数成分についてだけが、ブレークアウト約60
秒前に2その振幅比は基準値+50%の範囲を大きく外
れ、また位相差は基準値−40゜(度)の範囲を大きく
外れたあと再び基準値範囲に戻っている。
However, slab cross section: 155 x 1035 mm, casting temperature i: 1552°C, casting speed: 0.70 m/m
in, mold vibration frequency; 63.8 cpm (= 1.061
This is data when 5tlS430 stainless steel was cast with 1z). As is clear from both figures, 14.211
Only for the frequency component of z, the breakout is about 60
2 seconds ago, the amplitude ratio was far out of the range of +50% of the reference value, and the phase difference had returned to the range of the reference value again after being far out of the range of -40° (degrees) than the reference value.

従ってこの操業条件の場合には、高調波14.211z
の周波数成分の振幅伝達関数(振幅比)および/または
位相伝達関数(位相差)の変動を常時監視し、その監視
信号をマイクロコンピュータ19に入力して基準値と比
較し、そのいづれか一方または両者が基準値の範囲を外
れた時点で、警報信号を出力し、これをD10変換器2
0を経て警報装置21を作動させれば、ブレークアウト
の約60秒前でブレークアウトを予知することができ、
鋳片の引抜き速度を下げたりモールドパウダーの供給量
を調整したりしてブレークアウトを未然に防止すること
ができる。
Therefore, under this operating condition, the harmonic 14.211z
constantly monitors fluctuations in the amplitude transfer function (amplitude ratio) and/or phase transfer function (phase difference) of the frequency components, inputs the monitoring signal to the microcomputer 19 and compares it with a reference value, When the value is out of the reference value range, an alarm signal is output and this is sent to the D10 converter
If the alarm device 21 is activated after 0, a breakout can be predicted approximately 60 seconds before the breakout occurs.
Breakout can be prevented by lowering the drawing speed of the slab or adjusting the amount of mold powder supplied.

操業条件が前例とは異なる場合についても、その操業条
件毎にどの高調波成分の伝達関数がブレークアウト前に
変動が現れるかを予め知得しておれば、これを常時監視
して前例と同様にブレークアウトを予知することができ
る。本発明者らの経験によると2本発明に従って、鋳型
に振動を付与する加振アームに固着した振動加速度セン
サー10により連続鋳造中の鋳型への振動入力信号を取
り出し、鋳型に直接固着した振動加速度センサー15に
より連続鋳造中における鋳型の振動出力信号を取り出す
ようにした場合に、鋳型振動系共振周波数帯域の10〜
1511zの範囲にある高調波周波数成分における振幅
伝達関数(振幅比)および/または位相伝達関数(位相
差)の変動を監視すれば極めて高い確率でブレークアラ
l−を予知できることが判明した。すなわちこの10〜
15Hzの範囲にある高調波周波数成分の伝達関数の異
常変動が、ブレークアウト前の鋳型と鋳片の潤滑異常に
対応するシグナルとして非常に信頼度の高いものである
ことを見いだすことができた。
Even if the operating conditions are different from the previous example, if you know in advance which harmonic component transfer function changes before breakout for each operating condition, you can constantly monitor this and use the same method as the previous example. A breakout can be predicted. According to the experience of the present inventors, 2 In accordance with the present invention, a vibration input signal to the mold during continuous casting is extracted by a vibration acceleration sensor 10 fixed to a vibrating arm that applies vibration to the mold, and vibration acceleration directly fixed to the mold is detected. When the sensor 15 is used to extract the vibration output signal of the mold during continuous casting, the resonance frequency band of the mold vibration system is 10 to 10.
It has been found that breakage l- can be predicted with extremely high probability by monitoring fluctuations in the amplitude transfer function (amplitude ratio) and/or phase transfer function (phase difference) in harmonic frequency components in the range of 1511z. In other words, these 10~
It was found that abnormal fluctuations in the transfer function of harmonic frequency components in the 15 Hz range are highly reliable as a signal corresponding to abnormal lubrication of the mold and slab before breakout.

以上のようにして1本発明によると、連続鋳造の最も大
きな操業トラブルであるブレークアウトを、そのブレー
クアウト防止対策を実行するに十分な時間前に、確実に
予知することができるようになり、ブレークアウト発生
による多大の損失を回避できると共に、連続鋳造中の鋳
型と鋳片の潤滑状態も常時把握できるので、この分野に
おいて多大の貢献ができる。
As described above, according to the present invention, breakout, which is the most serious operational trouble in continuous casting, can be reliably predicted in advance of sufficient time to take measures to prevent breakout. This makes it possible to avoid large losses due to breakout occurrences, and to constantly monitor the lubrication status of the mold and slab during continuous casting, making a significant contribution to this field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造装置における振動系とこれに振動を付
与する加振装置の例を示す機器配置図。 第2図は本発明法を実施する装置例を示す機器配置系統
図、第3図は特定の高調波成分のブレークアウト前での
振幅比の変動を示す図、第4図は特定の高調波成分のブ
レークアウト前での位相差の変動を示す図である。 1・・鋳型、2・・振動テーブル、3・・バランサー、
4・・モータ、5・・トランスミッションギヤ、6・・
クランクシャフト、7・・クランクアーム、9・・振動
アーム。 10および15・・加速度センサー。 16・・振動アンプ、17・・絶縁アンプ。 18・・スペクトラムアナライザー。 19・・マイクロコンピュータ、20・・D10変換器
、21・・警報装置。 1 第1図
FIG. 1 is an equipment layout diagram showing an example of a vibration system in a continuous casting apparatus and a vibration device that applies vibration to the vibration system. Fig. 2 is an equipment layout system diagram showing an example of equipment for implementing the method of the present invention, Fig. 3 is a diagram showing fluctuations in amplitude ratio before breakout of a specific harmonic component, and Fig. 4 is a diagram showing a variation in the amplitude ratio before breakout of a specific harmonic component. FIG. 3 is a diagram showing fluctuations in phase difference before component breakout. 1. Mold, 2. Vibration table, 3. Balancer,
4...Motor, 5...Transmission gear, 6...
Crankshaft, 7...crank arm, 9...vibration arm. 10 and 15... Acceleration sensor. 16...Vibration amplifier, 17...Isolation amplifier. 18...Spectrum analyzer. 19...Microcomputer, 20...D10 converter, 21...Alarm device. 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 鋳型に振動を付与する加振アームに固着した振動加速度
センサーにより連続鋳造中の鋳型への振動入力信号を取
り出すと共に、鋳型に直接固着した振動加速度センサー
により連続鋳造中における鋳型の振動出力信号を取り出
し9両信号の加速度波形をフーリエ変換して基本波成分
から高調波成分までの振幅伝達関数(振幅比)および/
または位相伝達関数(位相差)をスペクトラムアナライ
ザーで連続的に解析し、高調波成分のうちのある特定の
周波数の振幅比および/または位相差が基準域を越えた
ときに警報を発するようにした連続鋳造におけるブレー
クアウト予知方法。
A vibration acceleration sensor fixed to the vibration arm that applies vibration to the mold extracts the vibration input signal to the mold during continuous casting, and a vibration acceleration sensor fixed directly to the mold extracts the vibration output signal of the mold during continuous casting. 9. Fourier transform the acceleration waveforms of both signals to obtain the amplitude transfer function (amplitude ratio) from the fundamental wave component to the harmonic component and /
Alternatively, the phase transfer function (phase difference) is continuously analyzed using a spectrum analyzer, and an alarm is issued when the amplitude ratio and/or phase difference of a certain frequency among harmonic components exceeds a reference range. Breakout prediction method in continuous casting.
JP16756183A 1983-09-13 1983-09-13 Foreseeing method of breakout in continuous casting Pending JPS6061150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16756183A JPS6061150A (en) 1983-09-13 1983-09-13 Foreseeing method of breakout in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16756183A JPS6061150A (en) 1983-09-13 1983-09-13 Foreseeing method of breakout in continuous casting

Publications (1)

Publication Number Publication Date
JPS6061150A true JPS6061150A (en) 1985-04-08

Family

ID=15852005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16756183A Pending JPS6061150A (en) 1983-09-13 1983-09-13 Foreseeing method of breakout in continuous casting

Country Status (1)

Country Link
JP (1) JPS6061150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363562A (en) * 1986-09-05 1988-03-19 Sumitomo Heavy Ind Ltd Oscillation method for mold in continuous casting
WO2018074249A1 (en) * 2016-10-19 2018-04-26 株式会社東海理化電機製作所 Device for detecting state of vehicle operator
US11018225B2 (en) 2016-06-28 2021-05-25 International Business Machines Corporation III-V extension by high temperature plasma doping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363562A (en) * 1986-09-05 1988-03-19 Sumitomo Heavy Ind Ltd Oscillation method for mold in continuous casting
US11018225B2 (en) 2016-06-28 2021-05-25 International Business Machines Corporation III-V extension by high temperature plasma doping
WO2018074249A1 (en) * 2016-10-19 2018-04-26 株式会社東海理化電機製作所 Device for detecting state of vehicle operator

Similar Documents

Publication Publication Date Title
CA1270618A (en) Method and apparatus for preventing cast defects in continuous casting plant
CN2786670Y (en) Continuous-casting mold friction on-line monitoring equipment
CN100389906C (en) Vibration detection and control method of plate blank continuous casting crystallizer vibration platform
JPS6061150A (en) Foreseeing method of breakout in continuous casting
KR101714942B1 (en) Method for determining a stretch of casting line including the closing position of the liquid cone of a continuously cast metal product
DK0885675T3 (en) Method and device for early detection of breakthroughs by strand casting of steel with an oscillating mold
Chen et al. Vibration style ladle slag detection method based on discrete wavelet decomposition
Grosselle et al. Correlation between microstructure and mechanical properties of Al-Si cast alloys
CN101987351B (en) Ladle slag roughing vibration detection device and method
US6487504B1 (en) Method of determining the friction between strand shell and mold during continuous casting
JP6995290B2 (en) Method of measuring frictional force between mold and slab in continuous casting
Chandra Heat transfer, oil lubrication and mould tapers in steel billets casting machines
JPS58218364A (en) Predicting method of restraining breakout in continuous casting
JPH0663716A (en) Device for monitoring friction force between mold for continuous casting and cast slab
KR100965975B1 (en) The method on the prediction the falling of clogging material in the submerged entry nozzle and operation method of finishing line at continuous casting
KR100895070B1 (en) Diagnosis method of segment roll in continuous casting
CN201437150U (en) Device for detecting molten slag
Seifert et al. Horizontal continuous casting of metals with mould excited by ultrasonic waves
JPS60133960A (en) Method for predicting breakout in continuous casting
KR19990046912A (en) Breakout prediction device and method in resonant casting machine
Wang et al. Online measurement and application of mould friction in continuous slab casting
JPS5813260B2 (en) Igata no Shindo Hakeikanshi Ni Yoru Renzokuchi Yuzohou
JPS6083759A (en) Foreseeing method of breakout in continuous casting
Shen et al. An experimental study of deformation of a columnar dendritic mushy zone using a transparent succinonitrile-acetone alloy
JPS602142B2 (en) How to prevent breakout in continuous casting equipment