JPS6060952A - Manufacture of coated optical fiber - Google Patents

Manufacture of coated optical fiber

Info

Publication number
JPS6060952A
JPS6060952A JP58170185A JP17018583A JPS6060952A JP S6060952 A JPS6060952 A JP S6060952A JP 58170185 A JP58170185 A JP 58170185A JP 17018583 A JP17018583 A JP 17018583A JP S6060952 A JPS6060952 A JP S6060952A
Authority
JP
Japan
Prior art keywords
coating layer
optical fiber
coated optical
layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58170185A
Other languages
Japanese (ja)
Inventor
Kazuaki Yoshida
和昭 吉田
Masao Nishimura
西村 真雄
Mikio Oda
幹夫 小田
Nobuo Inagaki
稲垣 伸夫
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP58170185A priority Critical patent/JPS6060952A/en
Publication of JPS6060952A publication Critical patent/JPS6060952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To obtain a product maintaining its satisfactory and stable transmission characteristics for a long term without requiring any special coating means by bringing the primary coating layer of a coated optical fiber into contact with water, removing harmful gases, and forming a secondary coating layer. CONSTITUTION:A coated optical fiber 3 having a coating layer 2 of silicone resin is introduced into a heating furnace 12, where it is heated. At this time, atmospheric gas contg. water is fed to the furnace 12 to bring the layer 2 into contact with water unless moisture is absorbed in the layer 2 by contact with water. Si-H groups in the layer 2 are converted into stable Si-O-Si bonds through Si-OH groups, so the problem of OH groups is solved. The fiber 3 is then introduced into a harmful gas removing vessel 13, and the vessel 13 is evacuated to remove harmful gases such as H2 from the layer 2. A coating layer 4 of nylon or the like is formed around the layer 2 with a coating means 15 provided with an extrusion molding machine 14A to obtain a product 5.

Description

【発明の詳細な説明】 本発明は良好かつ安定な伝送特性が長期にわたって保持
できる被覆光ファイバの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a coated optical fiber that can maintain good and stable transmission characteristics over a long period of time.

通信用の光ファイバはこれの紡糸直後、ただちに被覆が
ほどこされる。
Optical fibers for communications are coated immediately after they are spun.

この被覆光ファイバをそのままケーブル化し、光線路と
して用いることもあるが、通常では紡糸直後に形成され
る上記第1被覆層に続き、補強のための第2被覆層がそ
の第1被榎層の上に形成される。
This coated optical fiber may be made into a cable as it is and used as an optical path, but normally, following the first coating layer formed immediately after spinning, a second coating layer for reinforcement is applied to the first coating layer. formed on top.

第1被覆層に°はシリコーン樹脂、ポリウレタン樹脂、
エポキシ樹脂、アクリル樹脂、ポリ弗化ビニリデン樹脂
などが用いられ、これらは塗布後の熱硬化、光硬化など
により所定の物性をもった被膜となる。
The first coating layer is silicone resin, polyurethane resin,
Epoxy resins, acrylic resins, polyvinylidene fluoride resins, etc. are used, and these become films with predetermined physical properties by heat curing, photocuring, etc. after application.

第2被覆層としてはナイロン、ポリエレン、PVCなど
の熱可塑性樹脂を押出成形することにより形成されるが
、上述した硬化性の樹脂が採用されることもある。
The second coating layer is formed by extrusion molding a thermoplastic resin such as nylon, polyethylene, or PVC, but the above-mentioned curable resin may also be used.

ところでこの際の被覆では、第1の被覆後、第2の被覆
がほどこされるまでの間、第1被覆層に塵埃や傷をつけ
たり、吸湿や吸ガスを起さないよう注意しなければなら
ない。
By the way, when coating at this time, care must be taken not to cause dust or scratches on the first coating layer, or to cause moisture absorption or gas absorption, between after the first coating and before the second coating is applied. .

例えば、第1被覆層が吸湿すると、これがのちの工程で
光ファイバの機械的特性を劣化させたり、被ml’l(
を変質させたりする。
For example, if the first coating layer absorbs moisture, this may deteriorate the mechanical properties of the optical fiber in later steps or cause the first coating layer to absorb moisture.
or alter it.

また、その被薇材としてシリコーン樹脂を用が次式によ
ってH2を発生させ、これが光フアイバ中に拡散し、O
H基を生成させて伝送ロス増をもたらすことになる。
In addition, when silicone resin is used as the covering material, H2 is generated according to the following equation, which is diffused into the optical fiber and O
This results in the generation of H groups, resulting in an increase in transmission loss.

〜S i H+H20+H3i〜→〜Si ’OSi+
Hz・・・(2゜従来技術では、第2被覆層が形成され
るまでの間、第1被覆後の被覆光ファイバを清浄な環境
で保存する努力がはられれていたが、これだけでは不充
分であり、そのため第2被覆工程前、洗浄工程にてその
被覆光ファイバを洗浄することも行なわれたが、被覆光
ファイバの高品質、高特性を確保し得る対策として充分
な成果をあげていない。
~S i H+H20+H3i~→~Si 'OSi+
Hz...(2゜In the conventional technology, efforts have been made to store the coated optical fiber after the first coating in a clean environment until the second coating layer is formed, but this alone is insufficient. Therefore, the coated optical fiber has been cleaned in a cleaning process before the second coating process, but this method has not achieved sufficient results as a measure to ensure the high quality and high characteristics of the coated optical fiber. .

特に上記1または2式を長期にわたって起こさせると、
水分に起因した光フアイバ表面の脆化も起きる。
In particular, if formula 1 or 2 above is allowed to occur over a long period of time,
Embrittlement of the optical fiber surface due to moisture also occurs.

本発明の目的は被覆光ファイバを製造するとき、その光
ファイバの被覆手段に格別の工夫をほどこすことにより
、良好かつ安定な伝送特性が長期にわたって保持できる
被覆光ファイバが得られるようにしたものである。
The object of the present invention is to make it possible to obtain a coated optical fiber that can maintain good and stable transmission characteristics over a long period of time by applying special innovations to the coating means of the optical fiber when manufacturing a coated optical fiber. It is.

本発明の特徴とするところは、被覆光ファイバの被覆層
を水と接触反応させた後、その既設の被覆層中から有害
ガス成分を除去して当該被覆層の外周にさらに被覆層を
形成することにある。
The feature of the present invention is that after the coating layer of the coated optical fiber is brought into contact reaction with water, harmful gas components are removed from the existing coating layer and a further coating layer is formed around the outer periphery of the coating layer. There is a particular thing.

以下本発明の実施例につき、図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図1光ファイバ1の外周に被覆層2が形成されてい
る被覆光ファイバ3を示し、第2図はその被覆光ファイ
バ3の外周にさらに被覆層4が形成された被り光ファイ
バ5を示す。
FIG. 1 shows a coated optical fiber 3 in which a coating layer 2 is formed on the outer periphery of the optical fiber 1, and FIG. 2 shows a covered optical fiber 5 in which a coating layer 4 is further formed on the outer periphery of the coated optical fiber 3. show.

上記被覆光ファイバ3の場合、紡糸直後の光ファイバ1
をダイス型コーテイング機、硬化炉へ通すことにより、
その外周に被覆層2が形成できるのであり、光ファイバ
1はコア、クラッドを備えた石英系からなるとともに被
覆層2は前記第1被覆層の被MUとして各種例示した任
意の樹脂からなる。
In the case of the above-mentioned coated optical fiber 3, the optical fiber 1 immediately after spinning
By passing it through a die-type coating machine and a curing furnace,
A coating layer 2 can be formed on its outer periphery, and the optical fiber 1 is made of a quartz-based material having a core and a cladding, and the coating layer 2 is made of any of the various resins listed as the MU of the first coating layer.

光ファイバ1の外周に形成されている被覆層2はプライ
マリコート、バッファコートのいずれか一方または両方
の機能を備えており、また、当該被覆層2がプライマリ
用、バッファ用のいずれか一方であるとき、その他方の
被覆層が別途形成されることがあるとともに被覆層4が
形成されるまでの間、光フアイバ外周の被覆層がさらに
増数されることもある。
The coating layer 2 formed on the outer periphery of the optical fiber 1 has the function of either a primary coat or a buffer coat, or both, and the coating layer 2 is either a primary coat or a buffer coat. In some cases, the other coating layer may be formed separately, and the number of coating layers around the outer periphery of the optical fiber may be further increased until the coating layer 4 is formed.

バッファ用被覆層としては耐側圧性を得るためそのヤン
グ率10匂/−以下、好ましくは2Ky/−以下である
のがよい。
The buffer coating layer preferably has a Young's modulus of 10 Ky/- or less, preferably 2 Ky/- or less, in order to obtain lateral pressure resistance.

上記被覆層2の外周にさらに被覆層4を形成することに
より得られる被覆光ファイバ5の場合、その被覆層4は
前記第2被覆層の被覆相として各種例示した樹脂中の任
意のものからなり、当該被覆層4は補強、保護機能を奏
する。
In the case of a coated optical fiber 5 obtained by further forming a coating layer 4 on the outer periphery of the coating layer 2, the coating layer 4 is made of any one of the various resins listed as the coating phase of the second coating layer. , the coating layer 4 performs reinforcing and protective functions.

つぎに述べる本発明の実施例では、光ファイバ1の外周
にあらかじめ被覆層2を形成しておき、これにより得ら
れた被覆光ファイバ3の外周に被覆層4を形成するよう
にしている。
In the embodiment of the present invention described below, a coating layer 2 is previously formed on the outer periphery of an optical fiber 1, and a coating layer 4 is formed on the outer periphery of the thus obtained coated optical fiber 3.

つまり被覆層2を形成する工程と、被覆層4を形成する
工程とを別のライン立てにより行なっているが、これら
両工程をタンデムに結合して連続的に実施してもよい。
That is, although the process of forming the coating layer 2 and the process of forming the coating layer 4 are performed on separate lines, these two processes may be combined in tandem and performed continuously.

また、前述した事項ならびに後述する事項は単心の被覆
光ファイバに関しているが、テープ型などと称する多心
の被覆光ファイバについてもこれらの事項がすべて応用
できる。
Further, although the above-mentioned matters and the matters to be described later relate to a single-core coated optical fiber, all of these matters can also be applied to a multi-core coated optical fiber called a tape type or the like.

第3図の実施例において、被覆光ファイバ3はサプライ
ボビン10に巻きとられており、ここから巻きもどされ
る。
In the embodiment of FIG. 3, the coated optical fiber 3 is wound onto a supply bobbin 10 from which it is unwound.

巻きもどされた被覆光ファイバ3は、2つあるローラの
一方がその他方に対して接近離遠(移動)する張力制御
機11を経由し、その後、加熱炉12内へ進入する。
The unwound coated optical fiber 3 passes through a tension controller 11 in which one of two rollers approaches and moves away from the other, and then enters a heating furnace 12.

ヒータを備え、内部に雰囲気ガス(Arb He、N2
など)が通流している上記加熱炉12では、その炉内を
通る被覆光ファイバ3を400℃以下の温度に加熱する
Equipped with a heater, atmospheric gas (Arb He, N2
The coated optical fiber 3 passing through the furnace is heated to a temperature of 400° C. or lower.

この場合、被覆光ファイバ3がすでに水との接触を終え
、吸湿しているならばあえて必要ないが、通常は加熱炉
12内に水(湿気)を含む雰囲気ガスを供給し、当該炉
内にて被覆層2を水と接触反応させる。
In this case, if the coated optical fiber 3 has already come into contact with water and has absorbed moisture, this is not necessary, but normally an atmospheric gas containing water (humidity) is supplied into the heating furnace 12. The coating layer 2 is caused to contact and react with water.

ここでいう水とは常温の水、加熱された水、水蒸気等を
いう。
Water here refers to water at room temperature, heated water, steam, etc.

このようにして被覆層2を水と接触させた場ることとな
り、したがってこれによりOH基の問題はまず解決され
たといえる。
In this way, the coating layer 2 was brought into contact with water, and thus it can be said that the problem of OH groups was solved for the first time.

加熱炉12を通過した被覆光ファイバ3はっぎの有害ガ
ス除去器13内に入る。
The coated optical fiber 3 that has passed through the heating furnace 12 enters the harmful gas remover 13.

この除去器13は上記被覆層2中のN2など有害ガス成
分を除去すべく用いられ、これには図示しない真空引き
ポンプが連結されている。
This remover 13 is used to remove harmful gas components such as N2 from the coating layer 2, and is connected to a vacuum pump (not shown).

したがって被覆光ファイバ3が上記除去器13内を通過
することにより、被覆層2中の有害ガス成分が脱気され
、除去される。
Therefore, when the coated optical fiber 3 passes through the remover 13, the harmful gas components in the coating layer 2 are degassed and removed.

なお、この有害ガス除去工程は、無害なガス中、例えば
不活性ガス中を被覆光ファイバ3が低速で通過するよう
にしても達成することができ、このような手段をとる場
合、上記除去器13内を真空引きすることなく、その内
部に既知の不活性ガスを供給すれば、有害ガスは無害ガ
スと置換される。
Note that this harmful gas removal step can also be achieved by passing the coated optical fiber 3 through a harmless gas, for example an inert gas, at a low speed, and when such a means is taken, the remover If a known inert gas is supplied to the inside of 13 without evacuation, the harmful gas is replaced with harmless gas.

もちろん、脱気とガス置換とを併用してもよく、また、
前述した加熱炉12内を真空引きするようにすれば、除
去器13を省略した態様にて、つまり加熱炉12内にて
、発生した有害ガスがただちに除去できる。
Of course, deaeration and gas replacement may be used together, and
By evacuating the inside of the heating furnace 12 as described above, the harmful gas generated within the heating furnace 12 can be immediately removed without using the remover 13.

上記のようにして被覆層2を処理した後は、その被覆光
ファイバ3を押出成形機14Aからなる被覆手段16に
かけて上記被覆層2の外周に被覆層4を形成し、これに
より被覆光ファイバ5を得る。
After the coating layer 2 has been treated as described above, the coated optical fiber 3 is applied to a coating means 16 consisting of an extrusion molding machine 14A to form a coating layer 4 around the outer periphery of the coating layer 2, thereby forming a coated optical fiber 5. get.

その後、被覆光ファイバ6は外径測定器16、冷却槽1
7.キャプスタン18、アキュームレータ19を経て巻
取機20により巻きとられる。
After that, the coated optical fiber 6 is passed through the outer diameter measuring device 16 and the cooling tank 1.
7. It passes through a capstan 18 and an accumulator 19 and is wound up by a winder 20.

上記において冷却槽17により被覆光ファイバ5を冷却
するとき、室温または室温以下の冷却媒体(例えば水)
を用いることもあるが、この際の冷却媒体として室温以
上の温水を用いた場合、伝送特性上好ましい結果の得ら
れることが実験により明らかである。
In the above, when the coated optical fiber 5 is cooled by the cooling bath 17, a cooling medium (for example, water) at or below room temperature is used.
However, it is clear from experiments that favorable results in terms of transmission characteristics can be obtained when hot water at room temperature or higher is used as the cooling medium.

なお、前記において除去器13を用い、その内部を減圧
するときの減圧度は、45cmHg以下が望ましく、除
去器13と押出成形機14Aとが連結しているとき、除
去器13の減圧度は25〜45αHgであるのがよく、
除去器13が押出成形機14Aに影響を与えないとき、
該器13内はできるだけ真空に近い方がよい。
In the above, the degree of pressure reduction when using the remover 13 to reduce the pressure inside it is preferably 45 cmHg or less, and when the remover 13 and the extrusion molding machine 14A are connected, the degree of pressure reduction of the remover 13 is 25 cmHg or less. ~45αHg is good,
When the remover 13 does not affect the extruder 14A,
It is preferable that the inside of the container 13 be as close to vacuum as possible.

また、被覆光ファイバ3の外周に被覆層4を形成して被
覆光ファイバ5を得るとき、これらの張力を30〜30
0g、望ましくは50〜150gに設定するのがよい。
Further, when forming the coating layer 4 on the outer periphery of the coated optical fiber 3 to obtain the coated optical fiber 5, the tension is set to 30 to 30
It is preferable to set the weight to 0 g, preferably 50 to 150 g.

その理由として、張力30g以下では光ファイバにうね
り曲がり(マイクロベンド)が生じて被覆時に伝送ロス
増が起こり、張力が300gを超えるとテンションが大
きくなりすぎ、光ファイバが破断することがある。
The reason for this is that if the tension is less than 30 g, the optical fiber will be undulated (microbend), which will increase transmission loss during coating, and if the tension exceeds 300 g, the tension will become too large and the optical fiber may break.

つぎに第4図の実施例について説明する。Next, the embodiment shown in FIG. 4 will be explained.

この第4図の実施例では、前記第3図の実施例と比べ、
′被覆手段16が相異している。
In the embodiment shown in FIG. 4, compared to the embodiment shown in FIG.
'The covering means 16 are different.

すなわち第3図の被覆手段16は押出成形機14Aから
なり、熱可塑性樹脂製の被覆層4が形成されるのに対し
、第4図の被覆手段15はダイス型コーティング器14
B1硬化炉14Cからなり、熱硬性または光硬化性樹脂
製の被覆層4が形成されることになる。
That is, the coating means 16 in FIG. 3 consists of an extrusion molding machine 14A and forms the coating layer 4 made of thermoplastic resin, whereas the coating means 15 in FIG. 4 consists of a die-type coater 14.
The B1 curing furnace 14C is used to form a coating layer 4 made of thermosetting or photocurable resin.

また、第4図の実施例では第3図の冷却槽17がなく、
アキュームレータ19に代え、ダンサローラ21が備え
られている。
Furthermore, the embodiment shown in FIG. 4 does not have the cooling tank 17 shown in FIG.
A dancer roller 21 is provided instead of the accumulator 19.

この第4図の実施例も、上記相異点を除き、第3図の実
施例と同様にして被覆光ファイバ6が製造される。
In the embodiment shown in FIG. 4, the coated optical fiber 6 is manufactured in the same manner as in the embodiment shown in FIG. 3, except for the above-mentioned differences.

つぎに本発明の具体例とその比較例について説明する。Next, specific examples of the present invention and comparative examples thereof will be explained.

具体例1 コア直径50μmφ、外径125μmφの石英系光ファ
イバ1の外周に、シリコーンゴムによる外径400μm
φの被覆層2が形成された被覆光ファイバ3を用意し、
その被覆光ファイバ3の外周には、第3図に示す手段に
よりナイロン12からなる外径900μmφの被覆層4
を形成して被覆光ファイバ5を得た。
Specific example 1 A silica-based optical fiber 1 with a core diameter of 50 μmφ and an outer diameter of 125 μmφ is coated with silicone rubber with an outer diameter of 400 μm on the outer periphery.
Prepare a coated optical fiber 3 on which a coating layer 2 of φ is formed,
A coating layer 4 having an outer diameter of 900 μmφ made of nylon 12 is coated on the outer periphery of the coated optical fiber 3 by means shown in FIG.
A coated optical fiber 5 was obtained.

この際の線速は平均30m/分とし、被覆層4の外径は
外径測定器16により測定した値をキャプスタン18の
引取速度にフィードバックして制御した。
The linear speed at this time was 30 m/min on average, and the outer diameter of the coating layer 4 was controlled by feeding back the value measured by the outer diameter measuring device 16 to the take-up speed of the capstan 18.

張力制御機11は75gの張力となるよう設定した。The tension controller 11 was set to provide a tension of 75 g.

加熱炉12は240m長のものを用い、その炉内温度を
260℃、その雰囲気を室温25℃、湿度85%の大気
とした。
The heating furnace 12 was 240 m long, and the temperature inside the furnace was 260° C., and the atmosphere was an atmosphere with a room temperature of 25° C. and a humidity of 85%.

除去器13の減圧度は35t7nHgとし、冷却槽17
は70℃の温水を冷却媒体として被ff1lfJ4の急
冷を避けるようにした。
The degree of reduced pressure in the remover 13 is 35t7nHg, and the cooling tank 17
In this case, hot water at 70°C was used as a cooling medium to avoid rapid cooling of the ff1lfJ4.

得られた被覆光ファイバ6の諸性性は表に示す。The properties of the obtained coated optical fiber 6 are shown in the table.

具体例2〜6と比較例 表に示す条件以外は具体例1と同様にしてこれら各図を
実施し、それぞれ被覆光ファイバ6を得た。
Each of these figures was carried out in the same manner as in Specific Example 1 except for the conditions shown in Specific Examples 2 to 6 and Comparative Example Table, and coated optical fibers 6 were obtained respectively.

表中、高温による伝送Pス増とは被覆光ファイバ6を8
0℃で10日間加熱した後、光ファイバ1の伝送ロス増
を波長0.85μmにて測定・したものである。
In the table, the increase in transmission Ps due to high temperature means coated optical fiber 6 and 8
The increase in transmission loss of the optical fiber 1 was measured at a wavelength of 0.85 μm after heating at 0° C. for 10 days.

以下における「高温における伝送ロス増」もこれをいう
This also refers to "increase in transmission loss at high temperatures" below.

実施例1〜6、比較例とも被覆層4を形成した後の伝送
ロスは2. s dB/Km (波長0.85μm)で
あって伝送ロス増は認められなかったが、比較例の場合
、高温による伝送ロス増がかなり大きくなっている。
In both Examples 1 to 6 and the comparative example, the transmission loss after forming the coating layer 4 was 2. s dB/Km (wavelength: 0.85 μm), and no increase in transmission loss was observed, but in the case of the comparative example, the increase in transmission loss due to high temperature was considerably large.

冷却槽17内の冷却媒体(温水)に関して、70℃の具
体例1と30℃の具体例2とでは、具体例1が一30℃
における伝送ロス増が6dB、4m未満であったのに対
し、具体例2のそれは7d13J+++以上になってし
まった。
Concerning the cooling medium (hot water) in the cooling tank 17, in concrete example 1 at 70°C and concrete example 2 at 30°C, concrete example 1 is at 130°C.
The increase in transmission loss in Example 2 was 6 dB, less than 4 m, whereas that in Example 2 was more than 7 d13 J+++.

具体例7 被覆層4をポリブチレンテレフタレート樹脂製とした他
は具体例1と同様にして被覆光ファイバ6を得た。
Specific Example 7 A coated optical fiber 6 was obtained in the same manner as in Specific Example 1 except that the coating layer 4 was made of polybutylene terephthalate resin.

この具体例の場合、被覆層4を形成した後の伝送ロスは
2.5 dB/hI(波長0.85μゎ)であり、高温
による伝送ロス増は0.5dB/Kmであった。
In this specific example, the transmission loss after forming the coating layer 4 was 2.5 dB/hI (wavelength: 0.85 .mu.㎎), and the increase in transmission loss due to high temperature was 0.5 dB/Km.

具体例8 第4図の手段を用い、被覆層4をエポキシアクリレート
系の光硬化性樹脂製とした他は具体例1と同様にして被
覆光ファイバ6を得た。
Concrete Example 8 A coated optical fiber 6 was obtained in the same manner as in Concrete Example 1, except that the coating layer 4 was made of an epoxy acrylate photocurable resin using the means shown in FIG.

この具体例の場合、被覆層4を形成した後の伝送ロスは
2.5 dB/Km(’波長0.8 ’5 μm ) 
であり、高温によ、る伝送ロス増は0.1dB/Kmで
あった。
In this specific example, the transmission loss after forming the coating layer 4 is 2.5 dB/Km ('wavelength 0.8'5 μm)
The increase in transmission loss due to high temperature was 0.1 dB/Km.

具体例9 被覆層4をシリコーンアクリレート系熱硬化性樹脂製と
した他は具体例8と同様にして被覆光ファイバ5を得た
Specific Example 9 A coated optical fiber 5 was obtained in the same manner as in Specific Example 8, except that the coating layer 4 was made of a silicone acrylate thermosetting resin.

この具体例の場合、被覆層4を形成した後の伝送口、X
増は2.5 dB/Km (波長0.85μr=z )
であり、冒温による伝送ロス増はO,WB/KIrlで
あった。
In this specific example, the transmission port after forming the coating layer 4,
The increase is 2.5 dB/Km (wavelength 0.85μr=z)
The increase in transmission loss due to temperature increase was O, WB/KIrl.

以上説明した通り、本発明によるときは被覆光ファイバ
の被覆層を水と接触反応させた後、その既設の被覆層中
から有害ガス成分を除去して当該既設被覆層の外周にさ
らに被覆層を形成するから、良好かつ安定な伝送特性が
長期にわたって保持できる被覆光ファイバが得られるこ
ととなる。
As explained above, according to the present invention, after the coating layer of a coated optical fiber is brought into contact reaction with water, harmful gas components are removed from the existing coating layer, and an additional coating layer is added around the outer periphery of the existing coating layer. As a result, a coated optical fiber that can maintain good and stable transmission characteristics over a long period of time can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における1次被覆光ファイバの断面図、
第2図は本発明により製造された2次被覆光ファイバの
断面図、第3図、第4図は本発明の各実施例を暗示した
説明図である。 1110・@L光ファイバ 2・・・・・被覆層(1次) 3・・・・・被覆光ファイバ(1次) 4・・・・・被覆層(2次) 6・・・・・被覆光ファイバ(2次) 12・・・・・加熱炉 13・・・・・有害ガス除去器 16・・・・・被覆手段 手続補正書(−7:1t) 1.事件の表示 特願昭58−1701852 発明の
名称 被覆光ファイバの製造方法3、補正をする者 事件との関係 特許出願人 古河電気工業株式会社 4復代 理 人 〒100 6 、 ’Xi ’rl:、I)対象 委任状、明細書全文及び図面 7 補正の内容 別紙の通シ委任状、タイプ浄書した明細書全文(内容に
変更なし)及びトレースした図面(内容に変更なし)を
提出します。 以 上
FIG. 1 is a cross-sectional view of a primary coated optical fiber according to the present invention;
FIG. 2 is a sectional view of a secondary coated optical fiber manufactured according to the present invention, and FIGS. 3 and 4 are explanatory diagrams hinting at various embodiments of the present invention. 1110・@L optical fiber 2...Coating layer (primary) 3...Coated optical fiber (primary) 4...Coating layer (secondary) 6...Coating Optical fiber (secondary) 12...Heating furnace 13...Harmful gas remover 16...Coating means procedure amendment (-7:1t) 1. Indication of the case Patent application 1701852/1982 Title of the invention Method for manufacturing coated optical fiber 3, person making the amendment Relationship to the case Patent applicant Furukawa Electric Co., Ltd. , I) Subject power of attorney, full text of the specification, and drawing 7 Contents of the amendment Submit the attached power of attorney, typewritten full text of the specification (no change in content), and traced drawings (no change in content). that's all

Claims (6)

【特許請求の範囲】[Claims] (1)被覆光ファイバの被覆層を水と感触反応させた後
、その既設の被覆層中から有害ガス成分を除去して当該
既設被覆層の外周にさらに被覆層を形成する被覆光ファ
イバの製造方法。
(1) Manufacture of a coated optical fiber by causing the coating layer of the coated optical fiber to react with water, removing harmful gas components from the existing coating layer, and forming an additional coating layer around the outer periphery of the existing coating layer. Method.
(2)有害ガス成分を脱気により除去する特許請求の範
囲第1項記載の被覆光ファイバの製造方法。
(2) A method for manufacturing a coated optical fiber according to claim 1, wherein harmful gas components are removed by degassing.
(3)有害ガス成分を他の無害なガスと置換することに
より除去する特許請求の範囲第1項記載の被覆光ファイ
バの製造方法。
(3) The method for manufacturing a coated optical fiber according to claim 1, wherein the harmful gas component is removed by replacing it with another harmless gas.
(4)既設の被覆層の常温でのヤング率が2Kf/+g
A以下である特許請求の範囲第1rj4記載の被覆光フ
ァイバの製造方法。
(4) Young's modulus of the existing coating layer at room temperature is 2Kf/+g
The method for manufacturing a coated optical fiber according to claim 1rj4, which is A or less.
(5)既設の被覆層が熱硬化性または光硬化性の樹脂か
らなる特許請求の範囲第1項または第4項記載の被覆光
ファイバの製造方法。
(5) The method for manufacturing a coated optical fiber according to claim 1 or 4, wherein the existing coating layer is made of a thermosetting or photocurable resin.
(6)既設の被覆層の外周には押出成形機を介して被覆
層を形成し、該被覆層を温水により徐冷する特許請求の
範囲第1項記載の被覆光ファイバの製造方法。
(6) A method for manufacturing a coated optical fiber according to claim 1, wherein a coating layer is formed on the outer periphery of an existing coating layer using an extrusion molding machine, and the coating layer is slowly cooled with hot water.
JP58170185A 1983-09-14 1983-09-14 Manufacture of coated optical fiber Pending JPS6060952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170185A JPS6060952A (en) 1983-09-14 1983-09-14 Manufacture of coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170185A JPS6060952A (en) 1983-09-14 1983-09-14 Manufacture of coated optical fiber

Publications (1)

Publication Number Publication Date
JPS6060952A true JPS6060952A (en) 1985-04-08

Family

ID=15900257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170185A Pending JPS6060952A (en) 1983-09-14 1983-09-14 Manufacture of coated optical fiber

Country Status (1)

Country Link
JP (1) JPS6060952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345150A (en) * 1986-08-08 1988-02-26 Sumitomo Electric Ind Ltd Method of secondary coating for optical fiber and device therefor
JP2016206211A (en) * 2015-04-15 2016-12-08 住友電気工業株式会社 Method for manufacturing optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345150A (en) * 1986-08-08 1988-02-26 Sumitomo Electric Ind Ltd Method of secondary coating for optical fiber and device therefor
JP2016206211A (en) * 2015-04-15 2016-12-08 住友電気工業株式会社 Method for manufacturing optical fiber

Similar Documents

Publication Publication Date Title
GB1570624A (en) Optical fibre transmission arrangements
US8374473B2 (en) Tight-buffered optical fiber having improved fiber access
JPH05203848A (en) Plastic package optical fiber
US4874415A (en) Method of manufacturing a high mechanical strength optical fiber by drawing under high tension
CN113292256B (en) Polyimide coating process for resisting high temperature and hydrogen loss on surface of optical fiber
JP2635475B2 (en) Optical fiber coating forming method
JPS6060952A (en) Manufacture of coated optical fiber
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JP2928723B2 (en) Optical fiber manufacturing method
JPH09268033A (en) Production of optical fiber
CN109910282A (en) A kind of slotted core cable blocks water longitudinal tubing device
JPH07309633A (en) Method of augmenting tensile strength of polymer-coated optical fiber
JPS6057811A (en) Manufacture of plastic optical fiber cord
JPS615211A (en) Production for optical tape-type unit
JP2006178086A (en) Optical fiber cord and manufacturing method thereof
JPH05241052A (en) Coated optical fiber
JPH04224144A (en) Manufacture of hermetically-coated fiber and its device thereof
JPH04333809A (en) Coated optical fiber and production thereof
JP2578928Y2 (en) Optical fiber resin coating equipment
JPS6111713A (en) Method and device for producing plastic optical fiber cord
JPH07113918A (en) Drawing method for ribbon type fiber preform
JPS6218509A (en) Fiber for optical transmission
JPS61145514A (en) Optical fiber core
JP2021116223A (en) Manufacturing method of optical fiber
JPS6148126B2 (en)