JPS606091A - Vane type rotary compressor - Google Patents

Vane type rotary compressor

Info

Publication number
JPS606091A
JPS606091A JP11271383A JP11271383A JPS606091A JP S606091 A JPS606091 A JP S606091A JP 11271383 A JP11271383 A JP 11271383A JP 11271383 A JP11271383 A JP 11271383A JP S606091 A JPS606091 A JP S606091A
Authority
JP
Japan
Prior art keywords
cam ring
rotor
vane type
type rotary
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11271383A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ibaraki
茨木 善朗
Hideo Nakae
秀雄 中江
Yozo Nakamura
中村 庸蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11271383A priority Critical patent/JPS606091A/en
Publication of JPS606091A publication Critical patent/JPS606091A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at preventing burning damage and abrasion of a vane type compressor, by fabricating a cam ring, a rotor, etc. with ceramic materials. CONSTITUTION:A vane type compressor comprises a front side plate 1, a rear side plate 2 and a cam ring clamped therebetween. Further, a rotor 5 made of ceramic materials is rotatably disposed in the cam ring. The cam ring 3 may be made of ceramic materials, or of cast aluminum materials with zirconium oxide as a ceramic material being flamecoated to the inner surface of the cam ring.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動車用空調機などに使用されるべ〜ン型ロー
クリ圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vane-type rotary compressor used in automobile air conditioners and the like.

〔発明の背景□〕[Background of the invention□]

従来ベーン型ロータリ圧縮機のカムリングは、加工性の
点で鋳鉄を用い、ロータは強度の点で鉄鋼を使用してい
た。しかし、高速回転領域でのべ一/先端とカムリング
内周面とのしゆう動により、カムリング内周面が摩耗し
て、ロータとカムリングの最小すき才(以下、接線シー
ルギャップといり)が犬とな9、その結果、性能が低下
するという欠点があった。1だ、ロータとカムリングの
熱膨張係数差に起因する高速IL!1転領域でのロータ
の焼損防止を目的に、接線シールギャップを大きく取っ
ていた。このため、運転温度の低い低速回転領域で効率
が低いという欠点があった。
Conventionally, the cam ring of a vane-type rotary compressor has been made of cast iron for its workability, and the rotor has been made of steel for its strength. However, due to the movement between the rotor/tip and the inner circumferential surface of the cam ring in the high-speed rotation range, the inner circumferential surface of the cam ring wears out, and the minimum clearance between the rotor and the cam ring (hereinafter referred to as the tangential seal gap) becomes narrower. As a result, there was a drawback that the performance deteriorated. 1, high-speed IL due to the difference in thermal expansion coefficient between the rotor and cam ring! The tangential seal gap was made large in order to prevent rotor burnout in the first rotation area. For this reason, there was a drawback that the efficiency was low in the low speed rotation range where the operating temperature was low.

〔発明の目的〕[Purpose of the invention]

本発明の目的は圧縮機の高速回転領域での焼損防止と、
カムリング内周面の摩耗防止による耐久性向上と、低速
回転領域での性能向上がはかれるベーン型ロータリ圧縮
機全提供することにある。
The purpose of the present invention is to prevent burnout in the high speed rotation region of the compressor,
The purpose of the present invention is to provide a complete vane type rotary compressor that improves durability by preventing wear on the inner circumferential surface of the cam ring and improves performance in the low-speed rotation range.

〔発明の概要〕[Summary of the invention]

本発明の圧縮機はカムリング全セラミックスで構成する
か、カムリングおよびロータの両方をセラミックスで構
成し/Cものである。
The compressor of the present invention has a cam ring made entirely of ceramics, or both a cam ring and a rotor made of ceramics.

本発明の別9圧縮機は、材料金鉄系あるいはアルミニウ
ム系とするカムリングの内周面にセラミックスを溶射し
たものである。
Another 9 compressor of the present invention is one in which ceramics are sprayed on the inner circumferential surface of a cam ring made of a metal-iron-based material or an aluminum-based material.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図IH1を用いて説明する。 Embodiments of the present invention will be described below using FIG. IH1.

第1図はセラミックスヲ祠料としたカムリングとロータ
を備えたベーン型1ノータリ圧益i@を示すものである
。ベーン型ロータリ圧縮機は、フロント側グレー)1と
リア側プレート2とその間に締結されたカムリング3と
で空間部が形成され、この空間部には、リア側及びフロ
ント側グレート1゜2に設けた軸受4によりセラミック
を材料としたロータ5が回転可能に配設されている。こ
のロータ5には外周部に放射状に複数の溝6が設けられ
ている。この溝6内には滑動n]能にベーン7が設置さ
れている3、駆動軸8は電磁クラッチ等(図示せず)を
介(7てエンジノ等によりベルトで駆動される。址だフ
ロント[11プレート]、リア側プレート2およびセラ
ミックを材料としたカムリング3はボルト(図示せず)
によってフロントカバー10に固定され、更に、その周
囲をチャンバー11によって櫟われている。フロントカ
バー10とチャンバー11とは01Jング12で気密を
保たれていると共に、駆動軸8に結合された回転子13
とフロントカバー10に固定されたカバーグレート14
とItinl+シールヶ形成している。
FIG. 1 shows a vane type one-notary press i@ equipped with a cam ring and rotor made of ceramics. In the vane type rotary compressor, a space is formed by a front gray) 1, a rear plate 2, and a cam ring 3 fastened therebetween, and in this space, a space is provided on the rear and front gray 1°2. A rotor 5 made of ceramic is rotatably disposed by a bearing 4. This rotor 5 is provided with a plurality of radial grooves 6 on its outer circumference. A sliding vane 7 is installed in this groove 6, and the drive shaft 8 is driven by a belt by an engine or the like via an electromagnetic clutch (not shown). 11 plate], the rear plate 2 and the cam ring 3 made of ceramic are bolts (not shown).
is fixed to the front cover 10 by a chamber 11, and further surrounded by a chamber 11. The front cover 10 and the chamber 11 are kept airtight by an 01J ring 12, and a rotor 13 connected to a drive shaft 8
and a cover grate 14 fixed to the front cover 10.
and Itinl + seal are formed.

このようなベーン式圧縮機において、冷凍サイクルから
圧縮機へ帰還した冷媒iJ、’ 7.、y I:Iシト
カバー10に形1)〜、゛さオし7こ冷媒吸込[コ15
より、フロントガバーlOに形成さgだ低圧至16に流
入する、。
In such a vane compressor, the refrigerant iJ returned from the refrigeration cycle to the compressor, '7. , y I: I seat cover 10 with form 1) ~, ゛ 7 refrigerant suction
Therefore, the low pressure formed in the front cover 10 flows into the low pressure 16.

同冷媒はカムリング3とロータ5とで形成される圧縮室
17の数だけフロント’Iff!lプレート1に設けら
れた通孔18(この例では2個)とカムリング3に設け
られた通孔19(この例では2個)並びに通孔19と圧
縮室17とを連通ずる吸込ボート20全経て圧縮室17
に流入する。冷媒はロータ5に組込れたベーン7の間で
圧縮され、カムリング3に設けられた吐出ボート21及
び吐出弁22を経てチャンバー11内の吐出王室に吐き
出され、ここでチャンバー11内に設けた油分離器によ
り油全分離し、チャンバー11に設けちれた冷媒吐出口
23より冷凍サイクルへ流出する。なお軸受等の摺動部
の潤滑は油だめ24の油を差圧により油入257よシ吸
込んで行う。
The same refrigerant is applied to the front 'If!' as many times as there are compression chambers 17 formed by the cam ring 3 and the rotor 5. The through holes 18 (two in this example) provided in the l plate 1, the through holes 19 (two in this example) provided in the cam ring 3, and the suction boat 20 that communicates between the through holes 19 and the compression chamber 17. Through compression chamber 17
flows into. The refrigerant is compressed between the vanes 7 incorporated in the rotor 5, and is discharged through the discharge boat 21 and discharge valve 22 provided in the cam ring 3 to the discharge royal chamber in the chamber 11, where the refrigerant is discharged into the discharge royal chamber in the chamber 11. The oil is completely separated by the oil separator and flows out into the refrigeration cycle through the refrigerant discharge port 23 provided in the chamber 11. The sliding parts such as bearings are lubricated by sucking oil from the oil reservoir 24 through the oil reservoir 257 using a differential pressure.

第2図と第3図は温度(回転数)と接線シールギャップ
との関係を示す。温度は回転数とほぼ比例して上昇する
。第2図はカムリングの材料をアルミニウム鋳物とし、
内周面にセラミックス(酸化ジルコニウム)全溶射しk
ものである。実線(1)で示した従来のロータは、鋼を
使用しているため、実線(2)で示す従来のカムリング
(材料:鋳鉄)より熱膨張係数が太きい。最高温度(最
高回転数)で接線シールギャップがOとならないように
するため、低温度(アイドリンク回転数)では接線シー
ルギャップfaのように大きくとらねばならないが、本
発明では破線(3)に示すように、カッ・リング材料に
従来のカムリング材料(鋳鉄:熱膨張係数9〜10 X
 10−6/lZ’)より熱膨張係数の大きいアルミニ
ウム鋳物(熱膨張係数15〜18X10=/’?:)i
使用しているため、b、のように小さい接線シールギヤ
ラグでも最高回転時に接線シールギャップは0とならな
い。才た、従来のカムリングとロータでは、異状に高い
外気温度、′異状な吸入過熱等の場合には接線シールギ
ャップが0となり圧縮機が焼揖することもあった。
Figures 2 and 3 show the relationship between temperature (rotational speed) and tangential seal gap. The temperature increases almost in proportion to the rotation speed. Figure 2 shows the cam ring material being cast aluminum.
Ceramic (zirconium oxide) is completely sprayed on the inner surface.
It is something. Since the conventional rotor shown by the solid line (1) uses steel, it has a larger coefficient of thermal expansion than the conventional cam ring (material: cast iron) shown by the solid line (2). In order to prevent the tangential seal gap from becoming O at the highest temperature (maximum rotational speed), the tangential seal gap must be made large at low temperatures (idling rotational speed), as in the case of the broken line (3). As shown, conventional cam ring material (cast iron: coefficient of thermal expansion 9~10
Aluminum castings with a larger coefficient of thermal expansion than 10-6/lZ') (coefficient of thermal expansion 15-18X10=/'?:)i
Because of this, the tangential seal gap does not become 0 at maximum rotation even with a small tangential seal gear lug like b. With conventional cam rings and rotors, if there is an abnormally high outside temperature or abnormal suction overheating, the tangential seal gap may become zero and the compressor may burn out.

次に第3図は熱膨張係数がそれぞれ一点鎖線(3)。Next, in Figure 3, the coefficient of thermal expansion is shown by the dashed-dotted line (3).

(4)で示さ【るようにカムリングとロータを窒化珪素
(熱膨張係数5〜6 X、10−6/lr )とした例
である。この場合は初期に付与した接線シールギャップ
bが高温度(高速回転数)でもほとんど変化しない。
As shown in (4), this is an example in which the cam ring and rotor are made of silicon nitride (thermal expansion coefficient of 5 to 6 X, 10-6/lr). In this case, the initially provided tangential seal gap b hardly changes even at high temperatures (high speeds).

第4図と第5図は運転時間と接線シールギャップの関係
を示す。力l、リング℃内周面は前述したように運転時
間の経過と共に摩耗が進行し、これに供ない接線シール
ギャップが増大してゆく。第4図は高速回転領域での接
線シールギヤソゲの増大孕示したものである。実an 
(1)で示される従来品fd: Idf耗が時間と共に
増大するが一点錯綜(2)で示される本発明品は坤?T
hが非常に少々い/こめ長時間運転後も接線シールギャ
ップの変化が小さい。第5図は低速N転領域での接線シ
ールギャップと運転時間の関係を同様に示した。
Figures 4 and 5 show the relationship between operating time and tangential seal gap. As described above, the wear of the inner circumferential surface of the ring increases with the passage of operating time, and the tangential seal gap increases accordingly. FIG. 4 shows the increase in tangential seal gear wear in the high speed rotation range. Real an
Conventional product fd shown in (1): Idf wear increases with time, but does the product of the present invention shown in (2) have a one-point complication? T
The change in the tangential seal gap is small even after long hours of operation. FIG. 5 similarly shows the relationship between the tangential seal gap and the operating time in the low speed N rotation range.

第6図は長時間運転後の接線ソールギャップと体積効率
の関係を示す。接線ソールギャップが大きくなると体積
効率は+Pi線的に低下する。従来品を長時間運転した
後は第4図と第5図に示したように非常に大きな接線シ
ールギャップと々るため、体積効率は高速、低速N転領
域とも非常に悪い。
FIG. 6 shows the relationship between the tangential sole gap and the volumetric efficiency after long-term operation. As the tangential sole gap increases, the volumetric efficiency decreases along the +Pi line. After a conventional product has been operated for a long time, a very large tangential seal gap is created as shown in FIGS. 4 and 5, so the volumetric efficiency is very poor in both high speed and low speed N rotation regions.

一方、本発明品は長時間運転後でも接線シールギャップ
が小さいため、体積効率の低下は非常に少ない。特に低
速回転領域で高い体積効率を保つことができる。
On the other hand, since the product of the present invention has a small tangential seal gap even after long-term operation, there is very little decrease in volumetric efficiency. Particularly high volumetric efficiency can be maintained in the low-speed rotation region.

本発明により、低速回転領域での体積効率を初期から長
時間運転後棟で置く保てるため、圧縮機の小型化、軽量
化が可能になる。まだ、焼損の可能性もなくな、す、摩
れが少なくなり耐久性も大幅に白土する。
According to the present invention, the volumetric efficiency in the low-speed rotation region can be maintained from the initial stage to the end of long-term operation, making it possible to reduce the size and weight of the compressor. However, there is no possibility of burnout, there is less wear and tear, and the durability is significantly improved.

本実施例ではカムリング相料ロータ月11を〜窒化珪素
とし76例と、カムリング材料をアルミニウムとし、酸
化ジルコニウムを内周溶射した例を・示したが、他のセ
ラミックでも、強度、摺動特性、ロータとカムリング材
料の熱膨張係数差を壱足するアルミナ、縦化珪素などで
も同様な紀1果が得られる。
In this example, 76 examples are shown in which the cam ring phase material rotor 11 is made of silicon nitride, and an example in which the cam ring material is aluminum and zirconium oxide is sprayed on the inner circumference, but other ceramics may also be used to improve strength, sliding properties, Similar results can be obtained with alumina, vertically oriented silicon, etc., which minimize the difference in thermal expansion coefficient between the rotor and cam ring materials.

〔発明の効果〕〔Effect of the invention〕

以上■1述したように、本発明によれば圧縮機の高速回
転領域での焼損防IEと、カムリング内周面の摩耗μJ
・1にによる例久性向」こと、IJ【速回転穎域での性
能VbJ上を同時に達成することかできる。
As described above (1), according to the present invention, burnout prevention IE in the high speed rotation region of the compressor and wear μJ of the inner circumferential surface of the cam ring are achieved.
・It is possible to simultaneously achieve higher performance (VbJ) in the high speed rotation range (IJ).

4 図面の併i単i税明 第1図は本発明のセラミック全拐料としたカムリングと
ロータ全備えたベーン型ロータリ圧縮機の構造を示す縦
断面図、第2図と第3図は温度と接線シールギャップの
関係、第4図と第5図eま運転時間と接線シールギャッ
プの関係、第6図は」妾第 Zr2 0 温厚 軸転執り 第 3 図 η 4 図 第 5 図 OdY申云 8寺間 1S 乙 「ンA fφ辛緊 −−IL キ゛ヤ、7ノ・
Figure 1 is a vertical sectional view showing the structure of a vane type rotary compressor that is completely equipped with a cam ring and a rotor made of a ceramic material according to the present invention, and Figures 2 and 3 are temperature diagrams. The relationship between the operating time and the tangential seal gap, Figures 4 and 5, and the relationship between the operating time and the tangential seal gap, Figure 6. 8 Terama 1S Otsu ``NA fφshinkin --IL Kiya, 7 no.

Claims (1)

【特許請求の範囲】 1、ロータおよびカムリングから構成される空調用ベー
ン型ロークリ圧m機においで、カムリング金セラミック
によって構成したことを特徴とするベーン型ロータリ圧
縮機。 2、特許請求の範囲第1項記載の圧縮機において、ロー
タをセラミックによって構成したことを特徴とするベー
ン型ロータリ圧縮機。 3、ロータおよびカムリングから構成される空調用ベー
ン型ロータリ圧縮機において、カムリングを鉄系もしく
はAt系利料によって構成し、前記カムリング内周面を
セラミックコーティングしたこと全特徴とするベーン型
ロータリ圧縮機。 4、特許請求の範囲第3項記載の圧縮機において、ロー
タをセラミックによって構成したことを特徴とするベー
ン型ロータリ圧縮機。
[Scope of Claims] 1. A vane type rotary compressor for air conditioning comprising a rotor and a cam ring, characterized in that the cam ring is made of gold ceramic. 2. A vane type rotary compressor according to claim 1, wherein the rotor is made of ceramic. 3. A vane type rotary compressor for air conditioning that is composed of a rotor and a cam ring, the cam ring being made of iron-based or At-based material, and the inner peripheral surface of the cam ring being coated with ceramic. . 4. A vane type rotary compressor according to claim 3, wherein the rotor is made of ceramic.
JP11271383A 1983-06-24 1983-06-24 Vane type rotary compressor Pending JPS606091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11271383A JPS606091A (en) 1983-06-24 1983-06-24 Vane type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11271383A JPS606091A (en) 1983-06-24 1983-06-24 Vane type rotary compressor

Publications (1)

Publication Number Publication Date
JPS606091A true JPS606091A (en) 1985-01-12

Family

ID=14593640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11271383A Pending JPS606091A (en) 1983-06-24 1983-06-24 Vane type rotary compressor

Country Status (1)

Country Link
JP (1) JPS606091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046783U (en) * 1990-04-28 1992-01-22
GB2486007A (en) * 2010-12-01 2012-06-06 Itt Mfg Enterprises Inc Sliding vane pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046783U (en) * 1990-04-28 1992-01-22
GB2486007A (en) * 2010-12-01 2012-06-06 Itt Mfg Enterprises Inc Sliding vane pump
US9556870B2 (en) 2010-12-01 2017-01-31 Xylem Ip Holdings Llc Sliding vane pump
GB2486007B (en) * 2010-12-01 2017-05-10 Itt Mfg Enterprises Inc Sliding vane pump

Similar Documents

Publication Publication Date Title
US4198195A (en) Rotary fluid pump or compressor
US5411385A (en) Rotary compressor having oil passage to the bearings
JP2001271651A (en) Turbocharger
US5251593A (en) Thermodynamic liquid ring machine
JPH0549831B2 (en)
KR880002419B1 (en) Vane type compressor with fluid pressure blased vanes
US4594062A (en) Vane type rotary compressor with rotary sleeve
US4564344A (en) Rotary compressor having rotary sleeve for rotation with vanes
JPS606091A (en) Vane type rotary compressor
US4548558A (en) Rotary compressor housing
US4008014A (en) Piston seals for rotary mechanisms
US4003682A (en) Rotary piston engine having continuous torque characteristics
JPS58162794A (en) Vane compressor
JPH0138314Y2 (en)
JPS59119087A (en) Compressor
US4558999A (en) Vane type pump device
JPH0222237B2 (en)
US4657493A (en) Rotary-sleeve supporting apparatus in rotary compressor
JPS59206693A (en) No-lubrication type vane vacuum pump
JPS58183881A (en) Compressor
JPS61169690A (en) Compressor
JPS6166882A (en) Compressor with ceramic rotor
JPS60132091A (en) Rotary compressor
JPS646355B2 (en)
JPS59213982A (en) Device for fluidly supporting rotary sleeve in rotary compressor