JPS6060776A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6060776A
JPS6060776A JP58169791A JP16979183A JPS6060776A JP S6060776 A JPS6060776 A JP S6060776A JP 58169791 A JP58169791 A JP 58169791A JP 16979183 A JP16979183 A JP 16979183A JP S6060776 A JPS6060776 A JP S6060776A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
electrode
optical semiconductor
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169791A
Other languages
Japanese (ja)
Inventor
Takeo Fukatsu
深津 猛夫
Masaru Takeuchi
勝 武内
Kazuyuki Goto
一幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58169791A priority Critical patent/JPS6060776A/en
Publication of JPS6060776A publication Critical patent/JPS6060776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent the formation of a pin hole due to residue by the projection of energy beams by dividing each photoelectric conversion region in an electrode layer by the projection of energy beams after an optical semiconductor layer is laminated. CONSTITUTION:A first electrode layer 11 and an optical semiconductor 12 consisting of an amorphous semiconductor are formed on the surface of an insulating substrate 10 made of glass. The layers 11, 12 are removed through the projection of laser beams, and an adjacent space section 13 is formed. One part of a first electrode layer 11b is removed by a YAG laser. A second electrode layer 14 is shaped. The layer 14 in the space section 13 is removed through the projection of laser beams to form separate second electrode layers 14a, 14b.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽光等の元エネルギを直接電気エネルギ(=
変換する光起電力装置の製造方法I:関する。
[Detailed description of the invention] (a) Industrial application field The present invention converts source energy such as sunlight directly into electrical energy (=
Converting Photovoltaic Device Manufacturing Method I: Relating.

幹)従来技術 光エネルギを直接電気エネルギに変換する光起電力装置
、所謂太陽電池は無尽蔵な太陽光を主たるエネルギ源と
しているため(二、エネルギ91の枯渇が問題となる中
で脚光を浴でいる。
Main) Conventional technology Photovoltaic devices that directly convert light energy into electrical energy, so-called solar cells, use inexhaustible sunlight as their main energy source. There is.

第1図は斯る光起電力装置を示し、(1)はガラス・透
光性ブラステンク等の絶縁基板、(2a)(21))(
20)は該絶縁基板(1)の−主面!−並設された複数
の光電変換領域で、該変換領域(2a)(21))(2
0)の各々は、絶縁基板(1)側から酸化スズ(SnO
2)、酸化インジウムスズ(In2015−SnO2)
等の透明酸化電極材の第1電極! (5a)(3b)(
gc)と、例えば光入射側からPIN接合を有するアモ
ルファスシリコン等の膜状光半導体1i1(4a)(4
1))(4Q)と、該光半導体層(4IL)(4b)(
4c)とオーミック接触するアルミニウムA7等の第2
電極層(5a) (5b) (5’)と、を順次重畳せ
しめた積層構造を成している。更C:、上記並設された
光電変換領域(2a)(2’tl)(2c)は右隣1)
ノ元半導体@(41))(40)下面から絶縁基板(1
)上に露出した第1電極層(3b) (5c)の露出部
(5b’) (3c’)−二、左隣シの光半導体層(4
a)(41))上面から延出して来た第2電極層(5a
)(5b)の延長部(5e:) (51)’)が厘接結
合し、従って複数の光電変換領域(2a)(211) 
(2Q)は電気的に直列接続される。
Figure 1 shows such a photovoltaic device, in which (1) is an insulating substrate such as glass or transparent brass, (2a) (21)) (
20) is the -main surface of the insulating substrate (1)! - A plurality of photoelectric conversion regions arranged in parallel, the conversion regions (2a) (21)) (2
0) from the insulating substrate (1) side.
2), Indium tin oxide (In2015-SnO2)
The first electrode of transparent oxide electrode material such as! (5a) (3b) (
gc) and a film-like optical semiconductor 1i1 (4a) (4
1)) (4Q) and the optical semiconductor layer (4IL) (4b) (
4c) of aluminum A7 etc. in ohmic contact with
It has a laminated structure in which electrode layers (5a), (5b), and (5') are sequentially overlapped. Further C:, the above-mentioned parallel photoelectric conversion areas (2a) (2'tl) (2c) are on the right side 1)
Original semiconductor @ (41)) (40) Insulating substrate (1) from the bottom surface
) Exposed parts of the first electrode layer (3b) (5c) (5b') (3c')
a) (41)) The second electrode layer (5a) extending from the top surface
) (5b) extensions (5e:) (51)') are coupled together, thus forming a plurality of photoelectric conversion regions (2a) (211).
(2Q) are electrically connected in series.

この様な装置に於いて、光利用効率を左右する一つの要
因は、装置全体の受光面積(即ち、基板面積)に対し、
実際に発電に寄与する光電変換領域(2a)(2’b)
(2c) の総面積c7)占メル割合いである。然るに
各光電変換領域(21L) (21))(20)の隣接
間隔に必然的C:存在する分離領域は上記面積割合いを
低下させる。
In such a device, one factor that affects the light utilization efficiency is the light receiving area (i.e. substrate area) of the entire device.
Photoelectric conversion areas (2a) (2'b) that actually contribute to power generation
(2c) The total area of c7) is the occupied mel ratio. However, the separation regions that inevitably exist at adjacent intervals between the photoelectric conversion regions (21L), (21), and (20) reduce the above-mentioned area ratio.

従って、光利用効率を向上させるためには各光電変換領
域(2a) (2b) (2a)の隣接間隔である分離
領域を小さくしなければならない。
Therefore, in order to improve the light utilization efficiency, it is necessary to reduce the separation region, which is the interval between adjacent photoelectric conversion regions (2a) (2b) (2a).

斯る間隔縮小は各層の加工精度で決まり、従って、細密
加工性に優れている写真蝕刻技術が有望である。この技
術による場合、基板(1)全面への第1電極層の被着工
程と、フォトレジスト及びエツチングC二よる各個別の
第1電極層(!1a)(51)> (30)の分離、即
ち各第1電極層(3a)(5°b)Coo)の隣接間隔
部分の除去工程と、を順次重た後、同様の被着工程及び
除去工程を光半導体層(4a)(411)C40)並び
に第2電極&(5a)(51))(5c)inついても
各々再度縁り返し行なうこと(二なる。
Such space reduction is determined by the processing accuracy of each layer, and therefore, photolithography, which has excellent precision processing properties, is promising. In the case of this technique, a step of depositing the first electrode layer on the entire surface of the substrate (1), separation of each individual first electrode layer (!1a) (51)> (30) by photoresist and etching C2, That is, after sequentially repeating the step of removing adjacent spaced portions of each first electrode layer (3a) (5°b)Coo), the same adhesion step and removal step are performed on the optical semiconductor layer (4a)(411)C40. ) and the second electrode &(5a)(51))(5c)in.

然し乍ら、上記写真蝕刻技術は水洗い等のウェットプロ
セスを含むために、膜状を成す光半導体層(4a)(4
’b)(4a) にピンホールが形成されることがあり
、次工程で被着される第2電極材が斯るピンホールを介
して第1電極層(5a)(3t’) (5o) +:到
達する結果、該第1電極層(5a)(3’t+)(5Q
)は当該光電変換領域(21L)(2b)(2o)の光
半導体層(4a)(4b) (4C)を挾んで対向する
第2電極層(5IL)(5b)(50)と電気的に短絡
する事故を招いていた。また、第2電極層(58)(5
b)(5C)かオーミック接触する光半導体l5ij(
4a)(41))(4C)の接触面は上記写真蝕刻技術
によるフォトレジストの塗布・剥離及び水洗いに於いて
ピンホールが形成されないまでも膜質が劣化せしめられ
ると共(:、水洗いC:使用した水が僅かながら残留し
次工程で被着される第2電極層(5a)(5−o)(5
c)を腐食する危惧を有してt)だ。
However, since the photo-etching technique described above involves a wet process such as washing with water, the photo-semiconductor layer (4a) (4) is formed in a film-like manner.
'b) Pinholes may be formed in (4a), and the second electrode material deposited in the next step passes through the first electrode layer (5a) (3t') (5o) +: As a result, the first electrode layer (5a) (3't+) (5Q
) is electrically connected to the second electrode layer (5IL) (5b) (50) that faces the photoelectric conversion region (21L) (2b) (2o) with the optical semiconductor layer (4a) (4b) (4C) sandwiched therebetween. This caused an accident due to a short circuit. In addition, the second electrode layer (58) (5
b) (5C) or optical semiconductor l5ij (
The contact surfaces of 4a), (41), and (4C) deteriorate the film quality even if no pinholes are formed during the coating and peeling of the photoresist using the above-mentioned photolithography technique and washing with water (:, washing with water C: use). A small amount of the water remaining in the second electrode layer (5a) (5-o) (5-o) will be deposited in the next step.
There is a risk of corroding c) and t).

特開昭57−12568号公報(−開示された先行技術
は、レーザビーム照射による層の焼き切シで、上記隣接
間隔を設けるものであシ、写真蝕刻技術を使わないその
技法は上記の課題を解決する上で極めて有効である。
Japanese Unexamined Patent Publication No. 57-12568 (-The disclosed prior art involves cutting away layers by laser beam irradiation to provide the above-mentioned adjoining spacing, but that technique, which does not use photolithography, does not address the above-mentioned problems. It is extremely effective in solving problems.

斯るレーザ技術(二よシ第1図の如き光起電力装置を製
造する場合、第1電極層、光半導体層及び第2電極層は
各層被着工程終了後(1各光電変換領域(2a) (2
t’) (2’)毎にレーザビームの照射によシ分離さ
れる。このレーザビームの照射による分離に於いて留意
しなければならないことは、斯るレーザビームの照射1
:よシ除去される膜(層)の溶融物等の残留物が除去部
分近傍(=残存付着したシ、或いは飛散して後工程で被
着される膜(層)にピンホールを形成せしめたシするこ
とである。特I:光半導体層(4a) (4b) (4
When manufacturing a photovoltaic device as shown in FIG. ) (2
It is separated by laser beam irradiation every t') (2'). What must be kept in mind when separating by laser beam irradiation is that the laser beam irradiation 1
:Residues such as molten material of the film (layer) to be removed are in the vicinity of the removed part (=residual adhesion or scattering and forming pinholes in the film (layer) to be applied in the subsequent process) Special I: Optical semiconductor layer (4a) (4b) (4
.

)にピンホールが形成されると、前に述べた如く該光半
導体層(4a) (4b) (40)を挾ンテ対向する
第1電極& (3a)(5’b)(5c)と第2電極I
Ei&(5a)(5t))(50)とカミ熱的に短絡す
る。しかも、光半導体層(4a)(4b)(40)の膜
厚は他の電極層(3a)・・・、(5a)・・・のそれ
1:比して光電変換に有効!二作用するない。
) When a pinhole is formed in the photo-semiconductor layer (4a) (4b) (40), the opposing first electrode & (3a) (5'b) (5c) and the 2 electrodes I
Ei&(5a)(5t))(50) and is thermally short-circuited. Moreover, the film thickness of the optical semiconductor layers (4a), (4b), and (40) is more effective for photoelectric conversion than that of the other electrode layers (3a), (5a), and so on! There are no two effects.

C/→ 発明の目的 本発明は斯る点(1錯みて為されたものであって、光半
導体層へのピンホールの発生を招くことなく細密加工性
(=富むエネルギビームの利用を可能ならしめることを
目的としている。
C/→ Purpose of the Invention The present invention has been made in consideration of the above point (1), and it is possible to achieve fine processing without causing pinholes in the optical semiconductor layer (= utilizing a rich energy beam). It is intended to tighten.

に)発明の構成 複数の膜状光電変換領域が基板の絶縁表面に於いて電気
的(:直列接続された本発明光起電力装置の製造方法は
、上記基板の絶縁表面(1第1電極層及び光半導体層を
重畳被着した後、上記第1電極層及び光半導体層を両者
の加工しきい値エネルギ密度以上のエネルギのエネルギ
ビームを照射して複数の光電変換領域毎(−分離すると
共(−1次いで光半導体層の加工しきい値エネルギ密度
以上であって第1電極脂のそれ未満のエネルギビームを
光半導体層C二照射して被覆状態C−あった第1電極層
の一部を選択的(二露出せしめる構成(二ある。
2) Structure of the Invention A method for manufacturing a photovoltaic device of the present invention in which a plurality of film-like photoelectric conversion regions are electrically connected in series on an insulating surface of a substrate (1). After superimposing and depositing the first electrode layer and the photosemiconductor layer, the first electrode layer and the photosemiconductor layer are irradiated with an energy beam having an energy higher than the processing threshold energy density of both to separate each of the photoelectric conversion regions (- and (-1) Next, the photosemiconductor layer C2 is irradiated with an energy beam that is equal to or higher than the processing threshold energy density of the photosemiconductor layer and less than that of the first electrode fat, and the part of the first electrode layer that was in the covered state C-1 There are two configurations that selectively expose (two).

健1実施例 第2図乃至第7図は本発明実施例方法を工程順に示して
いる。
Embodiment 1 FIGS. 2 to 7 show the method of the embodiment of the present invention in the order of steps.

第2図の工程では厚み18〜”、wm程度の透明なガラ
ス製絶縁基板叫の表面全域C1厚み500λ〜4000
Aの酸化インジウムスズから成る第1電極層0]1が電
子ビーム蒸着により被着される。
In the process shown in Fig. 2, the entire surface area of a transparent glass insulating substrate with a thickness of about 18" and 1500 cm is 500 λ to 4000 cm.
A first electrode layer 0]1 of indium tin oxide of A is deposited by electron beam evaporation.

第3図の工程では、上記第1電極脂aυを分割すること
なく直ち(二七の表面を含む絶縁基板(I■上全全面二
例えばシリコン化合物雰囲気中でのグロー放電により、
厚み5000A〜7000Aのアモルファスシリコンの
如きアモルファス半導体から成る光半導体層azが連続
的(二重畳被着される。斯る光半導体層haはその内部
(=膜面(=平行な周知の半導体接合例えばPIN接合
を含み、従ってよシ具体的には、P型のアモルファスシ
リコン層が被着され、−次いでI型及びN型のアモルフ
ァスシリコン層か順次積層被着される。上記P型及びN
型の制御、即ち価電子制御は反応ガス雰囲気(二P型決
足不純物を含むジボラン(B 2 H6)を、またN型
決定不純物を含むホスフィン(PH3)を適宜機敏添加
することにより容易!1行なうことかできる。
In the process shown in FIG. 3, the first electrode fat aυ is immediately removed without dividing it (the entire surface of the insulating substrate (I) including the surface of
An optical semiconductor layer az made of an amorphous semiconductor such as amorphous silicon and having a thickness of 5000 to 7000 A is deposited continuously (in double layers). In particular, a P-type amorphous silicon layer is deposited, followed by a sequential deposition of I-type and N-type amorphous silicon layers.
Control of type, that is, control of valence electrons, is easy by appropriately adding diborane (B 2 H6), which contains an impurity that determines the 2P type, and phosphine (PH3), which contains an impurity that determines the N type, in the reaction gas atmosphere!1 I can do what I do.

第4図の工程では、隣接間隔部a3の光半導体層(17
J及び第1電極1曽(1]1か大気中或いは酸素ガス、
吹付けられた状態でレーザビームの照射f二よシ同時?
=除去されて個別の各第1電極層(11a)(11b)
・・・及び光半導体層(12a) (12b)・・・が
分離形成される。
In the process shown in FIG. 4, the optical semiconductor layer (17
J and the first electrode 1 (1) 1 or in the atmosphere or oxygen gas,
Laser beam irradiation f2 while being sprayed at the same time?
=Removed and individual first electrode layers (11a) (11b)
... and optical semiconductor layers (12a) (12b)... are formed separately.

使用されるレーザは波長106μmのNa:YAGレー
ザが適当であり照射せしめられるレーザビームのエネル
ギ密度は除去すべき第1電極層(111及び光半導体層
azの加工しきい値エネルギ密度が各々7X107φW
/i、4 X 107 W/cjである点を考慮して両
者の加工しきい値エネルギ密度以上の8X107W/a
Jで絶縁基板00が移動可能(二装置せしめられるXY
ステージの移動C二よって走査速度5Qm/BeQ(二
よシ加工される。このレーザ加工により除去される第1
電極層[111及び光半導体@任りの幅(Wl)ま約5
0μm(:設定される。尚個別C:分離形成された各第
1電極膓(11!L) (11’b入及び光半導体層(
12m)(t2b)−の界面には帰かなからも酸化膜が
形成されている。
The appropriate laser to be used is a Na:YAG laser with a wavelength of 106 μm, and the energy density of the irradiated laser beam is such that the processing threshold energy density of the first electrode layer (111 and optical semiconductor layer az) to be removed is 7×107φW, respectively.
/i, 4 x 107 W/cj, 8 x 107 W/a which is higher than the processing threshold energy density of both.
Insulating substrate 00 can be moved with J (XY
The stage is moved C2 at a scanning speed of 5Qm/BeQ (secondary processing is performed.
Electrode layer [111 and optical semiconductor @ arbitrary width (Wl) ~5
0 μm (: set.Individual C: Separately formed first electrodes (11!L) (11'b included and optical semiconductor layer (
An oxide film is formed on the interface of 12m)(t2b)- even though it does not return.

第5図の工程では、上記レーザ加工(:続いて上記除去
部分に隣接した一方の光半導体1til(12t))・
・・が、不活性ガス雰囲気中1−於いて該光半導体r=
a’aの加工しきい値エネルギ密度以上であって第1電
極層ttnのそれ未満のエネルギ密度、即ら4×1o’
w/、7pl上7x107w/c++未満のEa:YA
C)レーザの照射Cユより除去されて、被覆状態(二あ
った第1電極層(11’b)・・・の一部が選択的(二
露出せしめられる。斯る光半導体Qtl’:つみな除去
の対象としたレーザ加工は、光半導体@(1z及び第1
電極層任Jを除去の対象とする先のレーザ加工C二対し
て、レーザビームのエネルギー密度を制御するだけで連
続的に施すことができる。このレーザ加工(二より除去
せしめられる光半導体層(12b)・・・の幅(Wl)
、即ち第1電極層(111))・・・の露出部の幅(W
l)は約150μm(;設定される。
In the process shown in FIG.
. . is the optical semiconductor r= in an inert gas atmosphere 1-
The energy density is equal to or higher than the processing threshold energy density of a'a and lower than that of the first electrode layer ttn, that is, 4×1o'
w/, Ea less than 7x107w/c++ on 7pl: YA
C) A part of the first electrode layer (11'b) which was in the covered state (2) is selectively exposed (2) by being removed by the laser irradiation (C). The laser processing targeted for removal was optical semiconductor @ (1z and 1st
The laser processing C2, which targets the electrode layer J for removal, can be performed continuously by simply controlling the energy density of the laser beam. This laser processing (width (Wl) of the optical semiconductor layer (12b) to be removed from the second
, that is, the width (W) of the exposed portion of the first electrode layer (111)...
l) is set to approximately 150 μm (;

第6図の工程では、第2電極層04が、光半導体層(1
2a) (12b)−及び第1電極層(11a) (1
2b)・・・の露出部を含んで絶縁基板(10)上全面
C二連続的に被着せしめられる。斯る第2電極5cLS
は、第1電極層(11a)(11b)、、、のNa:Y
AGレーザビームC二対する加工しきい値工ネルギ密度
より小さい2X107.W/−の厚み約数1001のア
ルミニクムと厚み5ooo;のチタン銀合金との積層体
から構成されている。
In the process shown in FIG. 6, the second electrode layer 04 is
2a) (12b)- and the first electrode layer (11a) (1
2b) The entire surface C of the insulating substrate (10), including the exposed portions, is coated two times in succession. Such second electrode 5cLS
are Na:Y of the first electrode layer (11a) (11b), .
2X107. which is smaller than the processing threshold energy density for AG laser beam C2. It is composed of a laminate of aluminum with a thickness of about several thousand W/- and a titanium-silver alloy with a thickness of 500 mm.

第7図の工程では、隣接間隔部a3の第2電極層■がレ
ーザビームの照射によシ除去されて、個別の各第2電極
層(14a)(14b)・・・が形成される。即ち、第
1電極層(11’b)・・・の露出部上を覆うと共に連
続的C迷った第2電極層α4の一部が除去される結果、
互いに隣接する充電変換領域(15a)(151))の
第2電極層(14a)と第1電極層(1rb)とが電気
的C二接続される。
In the process shown in FIG. 7, the second electrode layer (1) in the adjacent space a3 is removed by laser beam irradiation to form individual second electrode layers (14a), (14b), and so on. That is, as a result of removing a portion of the second electrode layer α4 that covers the exposed portion of the first electrode layer (11′b) and also strays continuously,
The second electrode layer (14a) and the first electrode layer (1rb) of the charge conversion regions (15a) (151)) which are adjacent to each other are electrically connected.

使用されるレーザは、Na二YAGレーザであシ、その
エネルギ密度は2’X107w/d以上7×1Q 7W
 / d未満であって、除去される第2電極層OJの幅
(W5)は約20μm(二設定される。
The laser used is Na2YAG laser, and its energy density is 2'X107w/d or more 7x1Q 7W
/d, and the width (W5) of the second electrode layer OJ to be removed is set to about 20 μm (2).

尚、上記第2電極層(141を形成する(二際し、元竿
導体層(12!’) (121)) −・・上(:レー
ザ加工(:よる残留物の付着或いは飛散が認められる時
は該第2電極層(+41の両膜な厚くすること(二より
対処可能である。
In addition, forming the second electrode layer (141) (for the second time, the original rod conductor layer (12!') (121)) -...Top (: Laser processing (: Adhesion or scattering of residue due to laser processing) is observed. In this case, it is possible to increase the thickness of the second electrode layer (+41).

(へ)発明の効果 本発明はり、上の説明から明らかな如く、第1電mKの
各光電変換領域毎の個別の分割を元半導体層積層後ニオ
・ルギビームの照射によシ施したので、第1電極層のエ
ネルギビームの照射(:よる残留物が付着或いは飛散し
たとしても、元竿導体層は既(二形成済みであり、従っ
て上記残留物を原因とする元竿導体層のピンホールの形
成を防止すること、〃できると共に、従来方法に比して
もレーザ加工数を減少せしめることができ作業性の向上
が図れる。
(F) Effects of the Invention As is clear from the above description, the first electric current mK is individually divided for each photoelectric conversion region by irradiation with a Ni-Lugi beam after laminating the original semiconductor layer. Even if the residue from the energy beam irradiation of the first electrode layer adheres or scatters, the original rod conductor layer has already been formed, and therefore pinholes in the original rod conductor layer caused by the above residues will occur. It is possible to prevent the formation of , and also to reduce the number of laser processes compared to conventional methods, thereby improving workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的な光起電力装置の要部斜視図、第2図乃
至第7図は本発明製造方法を工程順J=示す要部拡大断
面図、を夫々示している。 凹・・・絶縁基板、(1,1) (11番)(11’b
)・・・第1電極層、任3 (12a) (12b) 
・le半導体1?1、(141(14a) (141)
) −・・第2電極層。 手 続 補 正 書(自発) 1.事件の表示 昭和58年特許願第169791号 2、発明の名称 光起電力装置の製造方法 6、補正をする者 事件との関係 特許出願人 名体 (188)三洋電機株式会社 4、代 理 人 住所 守口型京阪本通2了目18番地 連絡先:電話(東京) 835−1111特許センター
駐在中川5、補正の対象 、J!4ニニ、。 6、補正の内容 明細書第11頁15行及び第16行の間に下記の文章全
挿入します。 記 「上記第7図の図面上に於いては、同じ光電変換領域(
15a)(15b)−の第1電極層(Ila)(111
))=−の側面露出部と第2電極層(14a )(14
b)・・の延長部とが結合しているが、上述した如く第
1電極層(11a)(11b)・・・のレーザビーム照
射時、上記側面露出部〔界面)には僅かながらも絶縁膜
が形成されているので、上記両者の電気的接触は防止さ
れている。」
FIG. 1 is a perspective view of the main part of a typical photovoltaic device, and FIGS. 2 to 7 are enlarged sectional views of the main part showing the process order J= of the manufacturing method of the present invention. Concave...Insulating board, (1,1) (No. 11) (11'b
)...First electrode layer, layer 3 (12a) (12b)
・le semiconductor 1?1, (141 (14a) (141)
) - Second electrode layer. Procedural amendment (voluntary) 1. Display of case 1982 Patent Application No. 169791 2 Name of invention Method for manufacturing a photovoltaic device 6 Name of person making the amendment Relationship to the case Name of patent applicant (188) Sanyo Electric Co., Ltd. 4 Address of agent Moriguchi-type Keihan Hondori 2nd Ryome 18 Contact information: Telephone (Tokyo) 835-1111 Patent Center resident Nakagawa 5, subject of amendment, J! 4 ninini. 6. Insert the entire text below between lines 15 and 16 of page 11 of the detailed statement of amendment. ``On the drawing in Figure 7 above, the same photoelectric conversion area (
15a) (15b) - first electrode layer (Ila) (111
))=− side exposed portion and second electrode layer (14a) (14
b)..., but as mentioned above, when the first electrode layer (11a) (11b)... is irradiated with a laser beam, there is a slight amount of insulation on the exposed side surface (interface). Since the film is formed, electrical contact between the two is prevented. ”

Claims (1)

【特許請求の範囲】[Claims] (1)複数の膜状光電変換領域が基板の絶縁表面(1於
いて電気的C二直列接続された光起電力装置の製造方法
であって、上記基板の絶縁表面に第1電極層及び光半導
体層を重畳被着した後、上記第1電極層及び光半導体層
を両者の加工しきい値エネルギ密度以上のエネルギのエ
ネルギビームを照射して複数の光電変換領域@(二分離
すると共に、次いで光半導体層の加工しきい値エネルギ
密度以上であって第1電楊層のそれ未満のエネルギビー
ムを光半導体at二照射して被覆状態にあった第1電極
層の一部を選択的に露出せしめ、然る後複数の元電変換
領@(:跨って連続的に被着せしめられた第2電極層を
、隣接せる光半導体層から露出した第1電極層と電気的
C二直列接続するべく、当該第1電極論の露出部上を覆
っていた連続的(:連った第2電極層の一部をエネルギ
ビームの照射によシ除去することを特徴とした光起電力
装置の製造方法。
(1) A method for manufacturing a photovoltaic device in which a plurality of film-like photoelectric conversion regions are electrically connected in series on an insulating surface of a substrate (1) a first electrode layer and a photovoltaic device on the insulating surface of the substrate; After superimposing the semiconductor layers, the first electrode layer and the photo-semiconductor layer are irradiated with an energy beam having an energy higher than the processing threshold energy density of both to separate the first electrode layer and the photo-semiconductor layer into a plurality of photoelectric conversion regions (separated into two, and then selectively exposing a portion of the covered first electrode layer by irradiating the photosemiconductor with an energy beam having an energy density equal to or higher than the processing threshold energy density of the optical semiconductor layer and lower than that of the first electrode layer; After that, the second electrode layer that is continuously deposited across the plurality of electrical conversion regions is electrically connected in series with the first electrode layer exposed from the adjacent optical semiconductor layer. manufacturing a photovoltaic device characterized in that a part of the continuous second electrode layer covering the exposed portion of the first electrode layer is removed by irradiation with an energy beam. Method.
JP58169791A 1983-09-14 1983-09-14 Manufacture of photovoltaic device Pending JPS6060776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169791A JPS6060776A (en) 1983-09-14 1983-09-14 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169791A JPS6060776A (en) 1983-09-14 1983-09-14 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6060776A true JPS6060776A (en) 1985-04-08

Family

ID=15892945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169791A Pending JPS6060776A (en) 1983-09-14 1983-09-14 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6060776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219725A (en) * 1985-03-27 1986-09-30 Kogyo Kaihatsu Kenkyusho Production of molded article of modified silica glass
JP2015029159A (en) * 2010-06-18 2015-02-12 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion device and photoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219725A (en) * 1985-03-27 1986-09-30 Kogyo Kaihatsu Kenkyusho Production of molded article of modified silica glass
JP2015029159A (en) * 2010-06-18 2015-02-12 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion device and photoelectric conversion device

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
US5332680A (en) Method of making photoelectric conversion device
JPS59103383A (en) Manufacture for photovoltaic force generating device
JPH053151B2 (en)
JPS5935489A (en) Manufacture of photo semiconductor device
JPS6060776A (en) Manufacture of photovoltaic device
JPS62242371A (en) Manufacture of photovoltaic device
JPS6213829B2 (en)
JPS59220978A (en) Manufacture of photovoltaic device
JP3155459B2 (en) Manufacturing method of integrated amorphous semiconductor solar cell and integrated amorphous semiconductor solar cell
JPS63261883A (en) Manufacture of photovoltaic device
JPS60262471A (en) Manufacture of photovoltaic device
JPS6130082A (en) Photovoltaic device
JPS61164274A (en) Manufacture of photovoltaic device
JP2771653B2 (en) Method for manufacturing photovoltaic device
JPS61210681A (en) Manufacture of photovoltaic device
JPS6031258A (en) Manufacture of photovoltaic device
JPS633470A (en) Formation of photoelectric conversion device
JPS61210683A (en) Photovoltaic device
JPS63194370A (en) Manufacture of photovoltaic device
JP4248351B2 (en) Photovoltaic device and manufacturing method thereof
JPS5994470A (en) Manufacture of photosemiconductor device
JPH02100375A (en) Manufacture of photoelectric converting device
JPH01184960A (en) Manufacture of photovoltaic device
JPS6150381A (en) Solar cell