JPS606069B2 - Electron gun insulation structure - Google Patents

Electron gun insulation structure

Info

Publication number
JPS606069B2
JPS606069B2 JP6194677A JP6194677A JPS606069B2 JP S606069 B2 JPS606069 B2 JP S606069B2 JP 6194677 A JP6194677 A JP 6194677A JP 6194677 A JP6194677 A JP 6194677A JP S606069 B2 JPS606069 B2 JP S606069B2
Authority
JP
Japan
Prior art keywords
electron gun
insulator
voltage
filament
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6194677A
Other languages
Japanese (ja)
Other versions
JPS53146566A (en
Inventor
清一 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6194677A priority Critical patent/JPS606069B2/en
Publication of JPS53146566A publication Critical patent/JPS53146566A/en
Publication of JPS606069B2 publication Critical patent/JPS606069B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 この発明は、電子ビーム発生装置の電子銃を支持する絶
縁体の改良に関するもので、特に絶縁体の側壁に印加さ
れる電位分布を均一にし、熱陰極から発生する熱を冷却
する手段を有する電子銃絶縁機体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in an insulator that supports an electron gun of an electron beam generator, and in particular, it makes uniform the potential distribution applied to the side wall of the insulator and reduces heat generated from a hot cathode. This invention relates to an insulated electron gun body having means for cooling the electron gun.

電子ビーム加工機や電子ビーム露光機などの電子ビーム
発生装置では、一般にその被照射物のハンドリングを安
全かつ容易にするため、被照射物および加速電極を接地
電位に置き、電子銃部のフィラメントとグリッドを負の
高電位に置くように構成するのが普通である。このため
に前記フィラメントとグリッドを機械的に支持する構造
物は、加速電圧に相当する負の高電圧に耐えられる絶縁
体である必要がある。その他、電子銃は10‐4Tor
r以上の高真空の雰囲気で動作させるため、気密性の良
いものでなくてはならない。
In electron beam generators such as electron beam processing machines and electron beam exposure machines, in order to make handling of the irradiated object safe and easy, the irradiated object and accelerating electrode are generally placed at ground potential, and the filament of the electron gun is It is common to configure the grid to be at a high negative potential. For this purpose, the structure that mechanically supports the filament and the grid needs to be an insulator that can withstand a high negative voltage corresponding to the accelerating voltage. In addition, the electron gun is 10-4 Tor.
Since it is operated in a high vacuum atmosphere of r or more, it must be airtight.

また、フィラメントは、2000〜3000qoに加熱
して使用するものであるため、このフィラメントから出
る熱を冷却する手段が必要とされる。これらの要求に答
えるべく、従来の電子銃絶縁の構造は第1図に示すよう
なものであった。
Further, since the filament is used after being heated to 2000 to 3000 qo, a means for cooling the heat emitted from the filament is required. In order to meet these demands, the conventional electron gun insulation structure was as shown in FIG.

すなわち、1はフィラメント(直熱型カソード)、2は
グリッド、3はアノードで、これらの要素を含む電子銃
により発生された電子ビーム12は、電磁レンズ13に
より集東されて溶接室6内の被照射物5に注入され、電
子ビーム室4の側壁を介して15で接地され、同じく接
地15′、ビーム電流計24を通って、加速電圧源23
に還流する。電子ビーム室4は、図示されない真空ポン
プにより、電子銃室引出口41aから「溶接室6は引出
口41bからそれぞれ所要の真空度に排気されているも
のとする。9はセラミックなどで作られる電子銃絶縁体
で、電子ビーム室4の天井に固定され、フィラメント1
、グリツド2を接地電位の電子ビーム室4の側壁から絶
縁支持する。
That is, 1 is a filament (directly heated cathode), 2 is a grid, and 3 is an anode. An electron beam 12 generated by an electron gun including these elements is focused by an electromagnetic lens 13 and sent into the welding chamber 6. It is injected into the object 5 to be irradiated, is grounded at 15 through the side wall of the electron beam chamber 4, is also connected to the ground 15', passes through the beam ammeter 24, and is connected to the accelerating voltage source 23.
Reflux to. The electron beam chamber 4 is evacuated from the electron gun chamber outlet 41a to the welding chamber 6 to the required degree of vacuum from the electron gun chamber outlet 41b by a vacuum pump (not shown). A gun insulator is fixed to the ceiling of the electron beam chamber 4, and the filament 1
, the grid 2 is insulated and supported from the side wall of the electron beam chamber 4 which is at ground potential.

電子銃絶縁体9はL その他、グリツド2およびフィラ
メント1にそれぞれバイアス電源21およびフィラメン
ト電源22、さらには加速電圧源23からの電源を給電
するための高圧ケーブル11を受入れる様な構造となっ
ている。電子銃絶縁体9の内側、すなわち、高圧ケーブ
ル11の挿入される部分は、高圧絶縁油10で満たされ
ている。この絶縁油1川ま、耐電圧の向上の目的の他に
、フィラメントーから発生する熱を、高圧ケーブル11
の給電線を介して受取り、この熱を接地電位にあるウオ
ータージャケット14まで運び「 この熱を冷却パイプ
8および、ポンプ付冷却器7により接地電位で冷却が行
なえるようにしている。ここで、グリッド2の形状につ
いて述べると、本来グリッドは、フィラメント亀および
加速電極3の対向面のみがビーム12の形成に寄与する
だけなので、図示の如く、絶縁体Sの方まで伸ばす必要
はない。
The electron gun insulator 9 is structured to receive a bias power source 21 and a filament power source 22, as well as a high voltage cable 11 for supplying power from an accelerating voltage source 23 to the grid 2 and filament 1, respectively. . The inside of the electron gun insulator 9, that is, the part into which the high voltage cable 11 is inserted, is filled with high voltage insulating oil 10. In addition to improving the withstand voltage, this insulating oil also removes heat generated from the filament from the high voltage cable 11.
This heat is received through the power supply line and carried to the water jacket 14 which is at ground potential. This heat can be cooled at ground potential by a cooling pipe 8 and a cooler 7 with a pump.Here, Regarding the shape of the grid 2, since only the opposing surfaces of the filament turtle and the accelerating electrode 3 contribute to the formation of the beam 12, it is not necessary to extend the grid to the insulator S as shown.

しかし、図示の様な形状にすると「いわゆるコロナリン
グとしての役目を持つ様になり、電子銃絶縁体の縁端部
に集中する電位分布の不均一さをなくすことができる。
この場合の電気力線と直角の等電位面を示すと点線31
の如くとなる。しかしながら、この様な電子銃絶縁機体
は、数KWから数十KWの出力電力の電子ビーム発生装
置では問題ないが、10皿W近くの出力を持つ電子ビー
ム発生装置では「次に示すような、3つの問題があり「
稼動率の向上を妨げる要因となっていた。第1は100
KW近くの出力を持つ電子ビーム発生装置では必然的に
フィラメントの形状も大きくなり、数KWから数十KW
の装置では「数十Wから数百Wで済んでいたフィラメン
ト加熱電力が、mKW〜数KW位も必要となり〜高電圧
ケーブル11の給電線を通じて、絶縁油亀Q‘こ熱を逃
がし、自然対流および、加速電圧印加による油の粒子の
静電気的な吸引、反発作用による対流でウオ−タージャ
ケット亀糾こ熱を運ばせるような方法では「熱の入出力
の平衡点が高くなり、電子銃絶縁体9、高圧ケーブル1
翼「絶縁油10を高温で動作することを強いる結果と
なっていた。絶縁物はその動作温度により、極端にその
寿命が変化し、数℃の温度上昇で寿命が半分になるとさ
え言われているのでし電子銃絶縁体9「特にフィラメン
トーに近い所は短期間で絶縁不良となり、その交換に要
する時間がロスタィムとなり、稼動率を下げていた。第
2は、被照射物6から発生し、電子銃室まで侵入した陽
イオン32が、等電位面3川こ垂直の方向に加速されな
がら吸引され、電子銃絶縁体9に高速で衝突する結果、
その表面の物質および吸着ガスをイオン化し、局部的な
表面短絡を引きおこす。この短絡は、コロナリングによ
り均一化されていた電位分布を乱し「連鎖的に残りの電
子銃絶縁体9の表面も短絡におとし入れる。出力の小さ
な電子ビーム発生装置では、高圧電源23のインピーダ
ンスが高い為、短絡により瞬時加速電圧が下がり〜連鎖
反応を断ち切るので問題がなかったが、10皿W近くに
なると、電源のインピーダンスが低く、加速電圧の瞬時
降下が得られない。したがって、電源の許容電流を超え
るまで連鎖反応は続き、超えた所で保護装置が動作し、
装置が停止する様になっていた。一度この連鎖反応が超
こると、電子銃の周囲にイオンが充満し、又電子銃絶縁
体9の表面も荒れてしまうので、数十秒から数分をかけ
てイオンを排気し、電子銃絶縁体9の表面をエージング
してやる必要があった。第3は、真空度劣化等により、
グリッド2と「アノード3又は電子銃室母の側壁との間
で真空放電が発生した場合〜高圧ケーブル竃亀のインピ
ーダンスと電子銃のインピーダンスのミスマツチングに
より高圧ケーブル富貴の中を「サージ電圧が電子銃と加
速電圧源23の間で往復し「その進行波と反射波の重な
り合った所に予期せぬ異常電圧が発生し、高圧ケーブル
畳竃や、加速電圧源23を破壊することである。出力の
小さな電子ビーム発生器では、ミスマッチングしている
電子銃側で反射したサージ波が「比較的マッチングの取
れた加速電圧源23の内部の損失抵抗に電力を放出し反
射をくりかえすうちに急速に減衰するため、問題となら
なかった。しかし「出力の大きな電子ビーム発生器では
内部の損失抵抗体が低いため、反射のくりかえいこよる
減衰が少なく、したがって反射の回数も増えつ異常電圧
発生の確率が高くなり、高圧ケーブル亀1や加速電圧源
23の破損の危険性は大きかった。この発明は、以上に
述べたような従来の電子銃絶縁機体の持っていた3つの
欠点を改良すべく構成したもので、熱陰極から発生した
熱を強制的な循還手段を有する冷却器で冷却できるよう
にし、絶縁体の電界方向と垂直にトその電圧分担を均一
にするための分圧器を設け、イオン衝撃により、絶縁体
の一部が短絡しても、連鎖反応に進展しないようにし、
さらには、電子銃と高圧ケーブル11とのミスマッチン
グを改善して「異常電圧の発生を抑えようとするもので
ある。
However, if it is shaped like the one shown in the figure, it will function as a so-called corona ring, and the non-uniformity of the potential distribution concentrated at the edge of the electron gun insulator can be eliminated.
Dotted line 31 shows the equipotential surface perpendicular to the lines of electric force in this case.
It will be as follows. However, such an electron gun insulated body has no problem in an electron beam generator with an output power of several kilowatts to several tens of kilowatts, but in an electron beam generator with an output power of nearly 10 dish watts, "the following There are three problems:
This was a factor that hindered the improvement of operating rates. The first is 100
In an electron beam generator with an output near KW, the shape of the filament is inevitably large, and the output range is from several KW to several tens of KW.
In this device, ``the filament heating power that used to be from several tens of W to several hundred W now requires mKW to several KW. In addition, in a method in which heat is transferred to the water jacket through electrostatic attraction and repulsion of oil particles by applying an accelerating voltage, ``the equilibrium point of heat input and output becomes high, and the electron gun insulation body 9, high voltage cable 1
The result was that the insulating oil 10 was forced to operate at high temperatures.The lifespan of insulators varies dramatically depending on the operating temperature, and it is even said that a rise in temperature of a few degrees can cut the lifespan in half. Therefore, the electron gun insulator 9 "Especially in the area near the filament, the insulation would become defective in a short period of time, and the time required to replace it would be wasted time, reducing the operating rate. The second problem is that The positive ions 32 that have entered the electron gun chamber are accelerated and attracted in a direction perpendicular to the equipotential surface 3, and collide with the electron gun insulator 9 at high speed.
It ionizes substances and adsorbed gases on its surface, causing local surface short circuits. This short circuit disturbs the potential distribution, which had been made uniform by the corona ring, and causes the remaining surface of the electron gun insulator 9 to become short-circuited. Since the short circuit causes the instantaneous accelerating voltage to drop and break the chain reaction, there was no problem because the short circuit caused the instantaneous acceleration voltage to drop. However, when the power source impedance is close to 10 W, the impedance of the power source is low and an instantaneous drop in the accelerating voltage cannot be obtained. The chain reaction continues until the allowable current is exceeded, at which point the protective device is activated.
The device seemed to stop. Once this chain reaction occurs, the area around the electron gun is filled with ions, and the surface of the electron gun insulator 9 becomes rough, so it takes several tens of seconds to several minutes to exhaust the ions and remove the electron gun insulator. It was necessary to age the surface of body 9. Third, due to deterioration of vacuum level, etc.
If a vacuum discharge occurs between the grid 2 and the anode 3 or the side wall of the electron gun chamber mother, a surge voltage will be generated inside the high voltage cable Fuki due to the mismatch between the impedance of the high voltage cable Katogame and the impedance of the electron gun. An unexpected abnormal voltage is generated where the traveling wave and the reflected wave overlap between the accelerating voltage source 23 and the accelerating voltage source 23, destroying the high voltage cable tatami and the accelerating voltage source 23. In a small electron beam generator, the surge wave reflected from the mismatched electron gun side releases power to the internal loss resistance of the accelerating voltage source 23, which is relatively well matched, and rapidly attenuates as it is repeatedly reflected. However, since high-output electron beam generators have low internal loss resistors, there is little attenuation due to repeated reflections, which increases the number of reflections and increases the probability of abnormal voltage generation. Therefore, there was a great risk of damage to the high voltage cable turtle 1 and the accelerating voltage source 23.This invention was designed to improve the three drawbacks of the conventional electron gun insulated body as described above. The heat generated from the hot cathode can be cooled by a cooler with forced circulation, and a voltage divider is installed perpendicular to the direction of the electric field of the insulator to equalize the voltage distribution. Even if a part of the insulator shorts due to impact, it prevents it from developing into a chain reaction.
Furthermore, it is intended to improve the mismatch between the electron gun and the high voltage cable 11 to suppress the occurrence of abnormal voltage.

第2図は本発明の一実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

電子銃絶縁体9の周囲以外は第1図のそれと同じである
ので説明を省略する。 7はポンプ付の冷却器で、冷却
媒体である所の高圧絶縁油10を、注入口52、油流通
路54、電子銃絶縁体底部55、高圧絶縁油排出口53
の経路で循還させる。この冷却システムにより、電子銃
絶縁体底部55にあるフィラメント1の支持体および、
後述する電圧分担均一用抵抗体59を積極的に冷却する
わけである。ここで電子銃絶縁体底部55の詳細図であ
る所の第3図を参照すると、58は絶縁油10の通油路
で、電子銃絶縁体9の通油路54と接続され、フィラメ
ント1の支持体57の内部を貫通する形となっている。
The parts other than the vicinity of the electron gun insulator 9 are the same as those shown in FIG. 1, so the explanation will be omitted. 7 is a cooler with a pump, which supplies high-pressure insulating oil 10 as a cooling medium to an inlet 52, an oil flow passage 54, an electron gun insulator bottom 55, and a high-pressure insulating oil outlet 53.
circulate through the route. This cooling system provides support for the filament 1 in the electron gun insulator bottom 55 and
This means that the voltage distribution uniformity resistor 59, which will be described later, is actively cooled. Referring to FIG. 3, which is a detailed view of the electron gun insulator bottom 55, 58 is an oil passage for the insulating oil 10, which is connected to the oil passage 54 of the electron gun insulator 9, and is connected to the oil passage 54 of the electron gun insulator 9. It has a shape that penetrates the inside of the support body 57.

この様な構成では、フィラメント1からの熱により温度
の上昇しているフィラメント支持体57と接触して熱交
換に寄与する油の量が「従来の自然対流式のものに比べ
て格段と増加し、従来100〜1500Cもあった支持
体57の温度を50〜7000まで下げることができた
。再び第2図を参照して、59は、フィラメントーの支
持体57の電位から、ビーム電流計24の正極端子のあ
る接地電位付近までを結ぶ線条抵抗体で、電子銃絶縁体
9の側壁に沿って、各々時計回りと反時計回りのらせん
状に2重に配置されている。
In such a configuration, the amount of oil that comes into contact with the filament support 57 whose temperature is rising due to the heat from the filament 1 and contributes to heat exchange is "significantly increased compared to the conventional natural convection type. , it was possible to lower the temperature of the support 57 from 100 to 1500 C in the past to 50 to 7000 C. Referring again to FIG. A wire resistor connects the positive terminal of the electron gun to the vicinity of the ground potential, and is arranged in double spirals in a clockwise direction and a counterclockwise direction along the side wall of the electron gun insulator 9.

抵抗体のらせん状配置の隣接線条間の隙間は、前述のと
おり、冷却用絶縁油10の通油路54として使用する。
フィラメント支持体57と抵抗体下端とはリード線61
で接続され、ビーム電流計24と抵抗体59の上端とは
リード線60で接続される。このリード線60は、ビー
ム電流計24の加速電圧源23側に接続されるため、抵
抗体59に流れる電流は、ビーム電流計24を通らない
。したがって、ビーム電流計24の誤差とならない。抵
抗体59は、そこに流れる電流による発熱がフィラメン
トーからの発熱に対して十分無視され得るような抵抗値
に選び、さらに冷却用絶縁油101こも接触するように
して、抵抗体59の発熱により電子銃絶縁体9の温度が
上昇して寿命に悪影響を与えないように配慮してある。
この抵抗体59の存在により静電分割の形となっていた
等電位面31(第1図)は〜抵抗分割の形となり、陽イ
オン32が電子銃絶縁体9に衝突して、その表面におい
て局部的に短絡がおきても、電位勾配が、抵抗分割によ
り定められる極めて安定なものであるため、短絡部分に
相当する抵抗体の分担電圧を、残りの抵抗体が均等に上
積み分として分担する。この結果従来の如く局部的な短
絡が連鎖反応を引起こして、完全な短絡へと発展するこ
とがなくなった。又、高圧ケーブル11の電子銃端を、
抵抗体59で終端させた形となり、高圧ケーブル11と
電子銃のミスマッチングを改善することができる。なお
、抵抗体59は、第4図に示すとおり、片側を時計方向
、一方を反時計方向のらせん状配置として、ィンダクタ
ンス分を相互に打消し合わせィンダクタンス分によるサ
ージインピーダンス増加を防止している。
As described above, the gaps between adjacent filaments of the resistor in the spiral arrangement are used as the oil passages 54 for the cooling insulating oil 10.
A lead wire 61 connects the filament support 57 and the lower end of the resistor.
The beam ammeter 24 and the upper end of the resistor 59 are connected by a lead wire 60. Since this lead wire 60 is connected to the acceleration voltage source 23 side of the beam ammeter 24, the current flowing through the resistor 59 does not pass through the beam ammeter 24. Therefore, there is no error in the beam current meter 24. The resistance value of the resistor 59 is selected so that the heat generated by the current flowing therein can be sufficiently ignored compared to the heat generated by the filament, and the cooling insulating oil 101 is also placed in contact with the resistor 59 so that the heat generated by the resistor 59 is suppressed. Care has been taken to prevent the temperature of the electron gun insulator 9 from rising and adversely affecting its life.
Due to the presence of this resistor 59, the equipotential surface 31 (Fig. 1), which had been in the form of electrostatic division, becomes - in the form of resistance division, and the positive ions 32 collide with the electron gun insulator 9, and the surface Even if a short circuit occurs locally, the potential gradient is determined by resistance division and is extremely stable, so the voltage shared by the resistor corresponding to the short circuit is equally shared by the remaining resistors as an additional voltage. . As a result, a local short circuit no longer causes a chain reaction that develops into a complete short circuit as in the past. Also, the electron gun end of the high voltage cable 11,
Since the cable is terminated with a resistor 59, mismatching between the high voltage cable 11 and the electron gun can be improved. As shown in FIG. 4, the resistor 59 is arranged in a spiral shape with one side clockwise and the other counterclockwise to cancel out the inductance and prevent an increase in surge impedance due to the inductance. There is.

この結果、グリツド2とアノード3又は、電子銃室4と
の間で真空放電が起こり、サージ電圧が発生しても、電
子銃と高圧ケーブル11のミスマツチングが改善されて
いるため、電子銃と加速電圧源23の間におけるサージ
波の反射が少なく、反射があっても反射をくりかえすた
びに抵抗体59に電力を放出して急速に減衰し、高圧ケ
ーブル11や加速電圧源23に異常電圧を発生させる確
率が低くなる。このため高圧ケーブル11や加速電圧源
23の事故が大幅に減少した。以上を要するに、この発
明を用いることにより「電子銃絶縁体9、高圧ケーブル
11、加速電圧源23の信頼性を向上し、電子銃絶縁体
9の表面で瀕発する短絡現象に起因する稼動率の低下を
改善することが出来た。
As a result, even if a vacuum discharge occurs between the grid 2 and the anode 3 or the electron gun chamber 4 and a surge voltage occurs, the mismatch between the electron gun and the high voltage cable 11 has been improved, so the electron gun and the acceleration There is little reflection of surge waves between the voltage sources 23, and even if there is reflection, each time the reflection is repeated, power is released to the resistor 59 and rapidly attenuates, generating abnormal voltage in the high voltage cable 11 and accelerating voltage source 23. The probability of doing so is lower. As a result, accidents involving the high voltage cable 11 and accelerating voltage source 23 have been significantly reduced. In summary, by using the present invention, the reliability of the electron gun insulator 9, the high voltage cable 11, and the accelerating voltage source 23 can be improved, and the operating rate can be reduced due to the short circuit phenomenon that occurs on the surface of the electron gun insulator 9. We were able to improve the decline.

なお、フィラメント1の交換その他で、電子銃絶縁体9
を大気にさらした場合は、その直後の再高圧エージング
の際に、循環手段付冷却器56の動作を停止させること
で、電子銃絶縁体9の温度を上昇させ、表面に吸着した
ガスの放出を容易に行うことも出来た。よって、この発
明は大電力電子ビーム発生装置の稼動率向上に大きく寄
与し、工業的価値の高いものである。
In addition, when replacing the filament 1, etc., the electron gun insulator 9
If the electron gun insulator 9 is exposed to the atmosphere, the temperature of the electron gun insulator 9 is increased by stopping the operation of the cooler 56 with circulation means during re-high-pressure aging immediately after that, and the gas adsorbed on the surface is released. could be done easily. Therefore, the present invention greatly contributes to improving the operating rate of high-power electron beam generators and is of high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電子銃絶縁礎体を示す断面図、第2図
は、この発明の電子銃絶縁機体の構成を示す断面図、第
3図は、電子銃絶縁体底部の斜視断面図、第4図は、抵
抗体の配置方法を説明する図である。 図において、1はフィラメント、2はグリツド、3はア
ノード、4は電子ビーム室、5は被照射物、6は溶接室
、7はポンプ付き冷却器、8は冷却パイプ、9は筒状絶
縁体、10は高圧絶縁油、11は高圧ケーブル、23は
高圧電源、31は等電位線、52は絶縁油注入口、53
は絶縁油排出口、54は絶縁油循環通路、55は筒状絶
縁体底部、56はグリッド支持体、57はフィラメント
支持体、58は底部油通路、59はらせん状配置の抵抗
体を示す。 努′図 第2図 繁3図 弟4図
FIG. 1 is a sectional view showing a conventional electron gun insulating foundation body, FIG. 2 is a sectional view showing the structure of an electron gun insulating body of the present invention, and FIG. 3 is a perspective sectional view of the bottom of the electron gun insulator. , FIG. 4 is a diagram illustrating a method of arranging resistors. In the figure, 1 is a filament, 2 is a grid, 3 is an anode, 4 is an electron beam chamber, 5 is an object to be irradiated, 6 is a welding chamber, 7 is a cooler with a pump, 8 is a cooling pipe, and 9 is a cylindrical insulator. , 10 is a high-voltage insulating oil, 11 is a high-voltage cable, 23 is a high-voltage power supply, 31 is an equipotential line, 52 is an insulating oil inlet, 53
54 is an insulating oil discharge port, 54 is an insulating oil circulation passage, 55 is a bottom of a cylindrical insulator, 56 is a grid support, 57 is a filament support, 58 is a bottom oil passage, and 59 is a resistor arranged in a spiral configuration. Tsutomu's figure 2, traditional figure 3, younger brother figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 有底筒状の絶縁体の底部に設けられたグリツドおよ
びフイラメント支持体を有し、この支持体に接続される
高圧ケーブルが筒状体内部に導入され、かつ該内部に高
圧絶縁油が満たされ、前記支持体を電子ビーム室側壁か
ら高圧絶縁する電子銃絶縁構体において、前記筒状側壁
内部には、この筒状体内壁をらせん状に互に反対方向に
とり囲む2つの抵抗体が設けられ、この抵抗体の上端部
は前記電子ビーム室側壁の接地電位に接続され、下端部
は前記フイラメント支持体に接続され、さらに該らせん
抵抗体の互いに隣接する間の空間によって形成された通
路に高圧絶縁油を循環させる手段を備えたことを特徴と
する電子銃絶縁構体。
1 A cylindrical insulator with a bottom has a grid and filament support provided at the bottom, a high-voltage cable connected to this support is introduced into the cylindrical body, and the inside is filled with high-voltage insulating oil. In the electron gun insulating structure which insulates the support body from the side wall of the electron beam chamber at a high voltage, two resistors are provided inside the cylindrical side wall to spirally surround the cylindrical internal wall in opposite directions. , the upper end of this resistor is connected to the ground potential of the side wall of the electron beam chamber, the lower end is connected to the filament support, and a high voltage is applied to the passage formed by the space between adjacent helical resistors. An electron gun insulating structure characterized by comprising means for circulating insulating oil.
JP6194677A 1977-05-26 1977-05-26 Electron gun insulation structure Expired JPS606069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194677A JPS606069B2 (en) 1977-05-26 1977-05-26 Electron gun insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194677A JPS606069B2 (en) 1977-05-26 1977-05-26 Electron gun insulation structure

Publications (2)

Publication Number Publication Date
JPS53146566A JPS53146566A (en) 1978-12-20
JPS606069B2 true JPS606069B2 (en) 1985-02-15

Family

ID=13185857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194677A Expired JPS606069B2 (en) 1977-05-26 1977-05-26 Electron gun insulation structure

Country Status (1)

Country Link
JP (1) JPS606069B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325833A (en) * 1989-06-22 1991-02-04 Hamamatsu Photonics Kk Heat cathode grid control electric discharge tube

Also Published As

Publication number Publication date
JPS53146566A (en) 1978-12-20

Similar Documents

Publication Publication Date Title
US4857809A (en) Microwave ion source
JPH07502862A (en) ion beam gun
US2951960A (en) Gaseous discharge device
JPS63175324A (en) Plasma electron gun assembly
US3664920A (en) Electrostatic containment in fusion reactors
CN111385956A (en) Radio frequency particle source
JPH10144499A (en) Particle accelerator
JP3550831B2 (en) Particle beam irradiation equipment
EP0386710B1 (en) Vacuum switch apparatus
JPS606069B2 (en) Electron gun insulation structure
US20210393986A1 (en) Ion source, circular accelerator using same, and particle beam therapy system
US5821677A (en) Ion source block filament with laybrinth conductive path
US3739225A (en) Microwave magnetron
US3700963A (en) Microwave tube assembly
US5206892A (en) Device for the shielding of a motor stator for the rotating anode of an x-ray tube
JPH08315758A (en) X-ray tube
JP7481786B1 (en) Active Gas Generator
Baartman et al. An intense ion source for H-cyclotrons
US2832007A (en) Radiant energy generation
TW202332158A (en) Power supply device
JP2526303B2 (en) Linear filament type electron gun
KR100518529B1 (en) Arc chamber of ion beam implanter
Menon The technology of neutral beam injection based on positive ion sources
JPS6089048A (en) Faraday cage for measuring beam current
US2860268A (en) Structures for grid control gas tubes