US2951960A - Gaseous discharge device - Google Patents

Gaseous discharge device Download PDF

Info

Publication number
US2951960A
US2951960A US801556A US80155659A US2951960A US 2951960 A US2951960 A US 2951960A US 801556 A US801556 A US 801556A US 80155659 A US80155659 A US 80155659A US 2951960 A US2951960 A US 2951960A
Authority
US
United States
Prior art keywords
anode
grid
envelope
discharge device
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US801556A
Inventor
Jr Ward W Watrous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tung Sol Electric Inc
Original Assignee
Tung Sol Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tung Sol Electric Inc filed Critical Tung Sol Electric Inc
Priority to US801556A priority Critical patent/US2951960A/en
Application granted granted Critical
Publication of US2951960A publication Critical patent/US2951960A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/50Thermionic-cathode tubes
    • H01J17/52Thermionic-cathode tubes with one cathode and one anode
    • H01J17/54Thermionic-cathode tubes with one cathode and one anode having one or more control electrodes
    • H01J17/56Thermionic-cathode tubes with one cathode and one anode having one or more control electrodes for preventing and then permitting ignition, but thereafter having no control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/903Convection

Definitions

  • This invention relates to a gaseous discharge device having means for cooling two of its electrodes. It has particular reference to a supporting structure for the anode and the control grid which eliminates sputtering on the envelope and thereby prevents inter-electrode leakage and field distortion.
  • the discharge device hereinafter described operates on voltages up to 50,000 volts and passes current pulses of the order of 5000 amperes.
  • the structure involved in such a device must be carefully positioned to withstand the applied voltages and must also be arranged for heat dissipation so that the electrodes which carry the heavy currents will not be subjected to excessive temperatures.
  • the present invention is an improvement over the discharge devices described in Patent 2,797,348, issued to W. W. Watrous, In, June 25, 1957, and US. Patent 2,739,262, issued to the same inventor on March 20, 1956.
  • One of the objects of this invention is to provide an improved gaseous discharge device which avoids one or more of the disadvantages and limitations of prior art arrangements.
  • Another object of the invention is to cool both the anode and the control grid by a single air stream drawn by a single exhaust blower.
  • Another object of the invention is to prevent metallic films from depositing on the inside surface of the envelope by the sputtering action of the discharge. Such deposits cause inter-electrode leakage and voltage breakdown due to the distortion of the electric field.
  • Another object of the invention is to prevent buckling of the anode when heated.
  • Another object of the invention is to provide a structure which to a large extent is self-jigging and capable of assembly by furnace brazing techniques.
  • Another object of the invention is to provide a supporting structure for both the anode and the grid which permits a flange seal through the envelope thereby increasing heat radiation and providing for more current flow to the electrodes.
  • the invention includes a gaseous discharge device within a gas tight envelope containing an anode, a cathode, and a control grid.
  • the anode is secured to a metal support which terminates in a flange sealed to a cylindrical insulator which forms a portion of the envelope.
  • the control grid is mounted on another supporting structure in parallel relationship to the anode and is connected to another flange which is sealed between cylindrical insulators which form another portion of the envelope.
  • One of the features of the invention includes supporting means for the anode and grid which define an annular space presenting a bent passageway between the portion of the insulator envelope and the space betweenthe anode disc and the grid, thereby preventing the sputtering of solid material onto the inside surface of the envelope.
  • the ratio of the axial to radial spacing can be such as to prevent arcing occurrences near the envelope wall.
  • Another feature of the invention includes an insulating to the anode.
  • cap secured to a tubular anode terminal which is joined
  • the cap extends substantially parallel to a portion of the envelope and defines an annular space for the passage of cooling air which first passes over a series of fins fastened to the grid flange, then flows along a series of radial fins connected between the anode terminal and the inner surface of the anode, and then is drawn out through a tubular anode terminal into an exhaust blower.
  • Fig. 1 is a side view of the discharge device, with some parts in section, showing the internal details of the grid anode, and cathode structures and showing means for cooling the anode by connection air currents.
  • Fig. 2 is a cross sectional View of the upper part of the discharge device showing the insulating cap and the grid and anode fins which permits forced air cooling.
  • Fig. 3 is an enlarged cross sectional view of the grid assembly, showing how the components may be simultaneously assembled by brazing in an oven without the use of locating jigs.
  • Fig. 4 is a plan view of the control grid showing the radial openings.
  • the discharge device includes an envelope 10 which may be made of suitable material such as ceramic or glass.
  • the envelope is constructed in'two parts and is joined by a flange 11 which is part of the supporting structure of the grid.
  • a base 12 is secured, having the usual conductive pins (not shown) for connection to an external circuit.
  • the lower portion of the discharge device is occupied by a cylindrical cathode 13 of a type described in U.S. Patent 2,650,997, issued to W. W. Watrous, Jr. on September l, 1953.
  • This cathode is heated by helical resistance units (not shown) and the emissive material is deposited on the inside surface of a cylindrical support.
  • the top portion 14 of the cathode is open for the escape of electrons and above this opening are two cathode baflles 15 and 16.
  • Bafl'le 15 is secured to a cylindrical support 17 which is attached to cathode 13 by an annular flange 18.
  • Baffle 16 is arranged in a series of three discs which are concentrically aligned with the opening in baffle 15 and prevent emissive material from moving in a straight line from any portion of the emitting surface to a grid electrode 20.
  • the cathode baffles also reduce the amount of cathode heating energy transferred to the grid structure.
  • the control grid is composed of several components, one being the grid electrode 20 and another being a'grid baffle 21 having an axial hole 22. Baffle 21 and the control grid 20 are generally brazed together and to the supporting cup 23 with which flange 11 is integral. Flange 11 is sealed between two portions of the envelope.
  • the grid structure also includes a vertical cylinder portion 24 and a separate larger cylinder 25 which just fits inside the envelope. Cylinders 24 and 25 may have a plurality of holes in corresponding relationship so that the discharge adjoining the anode structure 27 may be viewed exterior of the device.
  • the anode supporting structure includes a reentrant cylinder 28 and a flange 30, the lower portion of cylinder 28 being formed to parallel the grid structure and present a bent annular space between the discharge space below anode 27 and the inner surface of the envelope the anode and control grid and causes arcing between these electrodes.
  • the inner surface of the reentrant portion of the anode structure 3t 28 is actually part of the outer surface of the envelope and for this reason the reentrant portion is made from a single piece of some material, such as Kovar, which can be sealed easily to the glass cylinder 10.
  • the single piece of Kovar insures that there will be no gas leakage past any welded joints but the Kovar material is not well suited for an anode electrode, and for this reason a disc of molybdenum 31 is bonded to the inside of the Kovar at the surface where the discharge occurs.
  • the molybdenum has a high melting point and is well adapted to sustain a gaseous discharge with a minimum of sputtering.
  • a tubular anode terminal 33 serving also as a heat conveyor is joined to the top surface of the anode assembly 27.
  • the anode terminal is tubular inform and includes a plurality of vertical slots 34 or other apertures adjacent to the top surface of the anode.
  • a convection type radiator is provided consisting of a plurality of cooling fins 35 mounted beyond the upper surface of flange 30.
  • a blower or exhaust fan (not shown) is con: nected to the exhaust pipe 46 and, during the operation of the device a stream of air is drawn up past the grid fins 38, downwardly past the anode cooling fins 29, and up through the anode terminal pipe 33. This flow of air cools both the grid structure and the anode structure and permits operation at increased power output levels.
  • the sectional drawing shown in Fig. 3 illustrates the method of assembling the various parts that go to make up the grid structure.
  • the main supporting structure 23 is formed with a central hole which receives a depressed portion of the grid baffle 21.
  • a thin washer of copper 40 is placed between support 23 and the baflie 21.
  • the grid partition 20 fits within the cylindrical walls of the baflle 24 and, when assembled, is positioned on another washer 41 which may be of copper or other suitable alloy for brazing the components.
  • Band 25' is also secured to cup 24 with sliding engagement to member 23.
  • the assembly as shown is heated in a furnace to a brazing temperature so that all four parts are permanently joined. It should be noted that no additional jig is required to maintain the parts in their I correct relationship.
  • the alternate arrangement shown in Fig. 2 includes all of the internal structures shown in Fig. 1 but omits the heat radiator 35 and substitutes an insulating cup 36 which contains an axial hole 37 and is bolted to the anode terminal tube 33.
  • Cup 36 extends downwardly insubstantial parallel relationship to the exterior surface of envelope 10 and terminates at a position adjacent to flange 11 of the control electrode.
  • the cup is secured to the anode terminal 33 by a flange 33a and a series of bolts. Connection to the anode source of potential is made by a conducting lug 45.
  • An insulator tube or pipe 46 leads to an exhaust blower which pulls the air through the cooling system.
  • a series of radial fins 29 may be brazed or otherwise joined to the top surface of the anode disc and the anode conductor 33.
  • These cooling fins are not always necessary but they increase the cooling effect and raise the allowable current carrying capacity of the anode.
  • the control grid does not get as hot as the anode but, to prevent grid emission, it should also be cooled.
  • a plurality of heat conductive fins 38 are brazed or otherwise secured to flange 11, these fins extending from the flange to the inside surfaceof the insulating cup 36.
  • a circular band 39 is joined to all the fins 38 and maintains them in their correct position.
  • the plan view of the grid 20 (Fig. 4) shows how the radial slots 42 are arranged in the grid to permit the passage of electrons when the device is first fired. It is obv-ious that other sizes and types of openings can be used.
  • a gaseous discharge device comprising an envelope containing an anode, a cathode, and a control grid, said anode secured to a metal support terminating in a first flange sealed to a cylindrical insulator forming a portion of the envelope, said anode connected to a hollow cylindrical anode terminal having a plurality of openings adjacent to the anode surface for the passage of cooling fluid, said control grid mounted in parallel relationship with theanode and connected to a second flange which is sealed between cylindrical insulators forming a portion of the envelope, and a shield secured to the hollow cylindrical anode terminal and extending substantially parallel to a portion of the envelope to said second flange, said shield and said portion of the envelope defining an annular space for the passage of cooling fluid.
  • a control grid for a gaseous discharge device comprising a first disc having a central hole for the passage of an electrical discharge, a second disc having a plurality of radial slots also for the passage of an electrical discharge, said first disc formed with an annular ridge for receiving a supporting ring and also formed with a tubular wall for positioning said second disc.

Description

p 1960 w. w. WATROUS, JR 2,951,960
GASEIOUS DISCHARGE DEVICE 2 Sheets-Sheet l Filed March 24, 1959 INVENTOR M120 W- h/nrfious d2.
QMJha-M #054040 Tuzrl.
ATTO R N EYS Sept. 6, 1960 w. w. WATROUS, JR 2,951,960
I GASEOUS DISCHARGE DEVICE Filed March 24, 1959 v 2 Sheets-Sheet 2 INVENTOR MED M Mreousde ATTORNEYS United States Patent GASEOUS DISCHARGE DEVICE Ward w. Watrous, Jr., Chatham, NJ, assignor to Tung- Sol Electric Inc., a corporation of Delaware Filed Mar. 24, 1959, Ser. No. 801,556
5 Claims. (Cl. 31'3-36) This invention relates to a gaseous discharge device having means for cooling two of its electrodes. It has particular reference to a supporting structure for the anode and the control grid which eliminates sputtering on the envelope and thereby prevents inter-electrode leakage and field distortion.
The discharge device hereinafter described operates on voltages up to 50,000 volts and passes current pulses of the order of 5000 amperes. The structure involved in such a device must be carefully positioned to withstand the applied voltages and must also be arranged for heat dissipation so that the electrodes which carry the heavy currents will not be subjected to excessive temperatures.
The present invention is an improvement over the discharge devices described in Patent 2,797,348, issued to W. W. Watrous, In, June 25, 1957, and US. Patent 2,739,262, issued to the same inventor on March 20, 1956.
One of the objects of this invention is to provide an improved gaseous discharge device which avoids one or more of the disadvantages and limitations of prior art arrangements.
Another object of the invention is to cool both the anode and the control grid by a single air stream drawn by a single exhaust blower.
Another object of the invention is to prevent metallic films from depositing on the inside surface of the envelope by the sputtering action of the discharge. Such deposits cause inter-electrode leakage and voltage breakdown due to the distortion of the electric field.
Another object of the invention is to prevent buckling of the anode when heated.
Another object of the invention is to provide a structure which to a large extent is self-jigging and capable of assembly by furnace brazing techniques.
Another object of the invention is to provide a supporting structure for both the anode and the grid which permits a flange seal through the envelope thereby increasing heat radiation and providing for more current flow to the electrodes.
The invention includes a gaseous discharge device within a gas tight envelope containing an anode, a cathode, and a control grid. The anode is secured to a metal support which terminates in a flange sealed to a cylindrical insulator which forms a portion of the envelope. The control grid is mounted on another supporting structure in parallel relationship to the anode and is connected to another flange which is sealed between cylindrical insulators which form another portion of the envelope.
One of the features of the invention includes supporting means for the anode and grid which define an annular space presenting a bent passageway between the portion of the insulator envelope and the space betweenthe anode disc and the grid, thereby preventing the sputtering of solid material onto the inside surface of the envelope. The ratio of the axial to radial spacing can be such as to prevent arcing occurrences near the envelope wall.
Another feature of the invention includes an insulating to the anode.
cap secured to a tubular anode terminal which is joined The cap extends substantially parallel to a portion of the envelope and defines an annular space for the passage of cooling air which first passes over a series of fins fastened to the grid flange, then flows along a series of radial fins connected between the anode terminal and the inner surface of the anode, and then is drawn out through a tubular anode terminal into an exhaust blower.
For a better understanding of the present invention, I
together with other and further objects thereof, reference is made to the following description taken in connection with the accompanying drawings.
Fig. 1 is a side view of the discharge device, with some parts in section, showing the internal details of the grid anode, and cathode structures and showing means for cooling the anode by connection air currents.
Fig. 2 is a cross sectional View of the upper part of the discharge device showing the insulating cap and the grid and anode fins which permits forced air cooling.
Fig. 3 is an enlarged cross sectional view of the grid assembly, showing how the components may be simultaneously assembled by brazing in an oven without the use of locating jigs.
Fig. 4 is a plan view of the control grid showing the radial openings.
Referring now to the figures, the discharge device includes an envelope 10 which may be made of suitable material such as ceramic or glass. The envelope is constructed in'two parts and is joined by a flange 11 which is part of the supporting structure of the grid. At the lower end of the envelope a base 12 is secured, having the usual conductive pins (not shown) for connection to an external circuit.
The lower portion of the discharge device is occupied by a cylindrical cathode 13 of a type described in U.S. Patent 2,650,997, issued to W. W. Watrous, Jr. on September l, 1953. This cathode is heated by helical resistance units (not shown) and the emissive material is deposited on the inside surface of a cylindrical support. The top portion 14 of the cathode is open for the escape of electrons and above this opening are two cathode baflles 15 and 16. Bafl'le 15 is secured to a cylindrical support 17 which is attached to cathode 13 by an annular flange 18. Baffle 16 is arranged in a series of three discs which are concentrically aligned with the opening in baffle 15 and prevent emissive material from moving in a straight line from any portion of the emitting surface to a grid electrode 20. The cathode baffles also reduce the amount of cathode heating energy transferred to the grid structure.
The control grid is composed of several components, one being the grid electrode 20 and another being a'grid baffle 21 having an axial hole 22. Baffle 21 and the control grid 20 are generally brazed together and to the supporting cup 23 with which flange 11 is integral. Flange 11 is sealed between two portions of the envelope. The grid structure also includes a vertical cylinder portion 24 and a separate larger cylinder 25 which just fits inside the envelope. Cylinders 24 and 25 may have a plurality of holes in corresponding relationship so that the discharge adjoining the anode structure 27 may be viewed exterior of the device.
The anode supporting structure includes a reentrant cylinder 28 and a flange 30, the lower portion of cylinder 28 being formed to parallel the grid structure and present a bent annular space between the discharge space below anode 27 and the inner surface of the envelope the anode and control grid and causes arcing between these electrodes.
It should be noted that the inner surface of the reentrant portion of the anode structure 3t 28 is actually part of the outer surface of the envelope and for this reason the reentrant portion is made from a single piece of some material, such as Kovar, which can be sealed easily to the glass cylinder 10. The single piece of Kovar insures that there will be no gas leakage past any welded joints but the Kovar material is not well suited for an anode electrode, and for this reason a disc of molybdenum 31 is bonded to the inside of the Kovar at the surface where the discharge occurs. The molybdenum has a high melting point and is well adapted to sustain a gaseous discharge with a minimum of sputtering. However, the temperature coefficient of thermal expansion of molybdenum is not the same as that of Kovar, therefore when this combination is subjected to a heating-cooling cycle, it is liable to buckle or bend and perhaps short circuit to the grid. In order to maintain the anode in its desired shape, a second disc of molybdenum 32 is bonded to the upper side of the anode and thereby presents a threeply anode structure which does not buckle or bend when heated and cooled.
In order to cool the anode and to increase its current carrying capacity, a tubular anode terminal 33 serving also as a heat conveyor is joined to the top surface of the anode assembly 27. The anode terminal is tubular inform and includes a plurality of vertical slots 34 or other apertures adjacent to the top surface of the anode. In one form of the discharge device a convection type radiator is provided consisting of a plurality of cooling fins 35 mounted beyond the upper surface of flange 30.
minal 33, a blower or exhaust fan (not shown) is con: nected to the exhaust pipe 46 and, during the operation of the device a stream of air is drawn up past the grid fins 38, downwardly past the anode cooling fins 29, and up through the anode terminal pipe 33. This flow of air cools both the grid structure and the anode structure and permits operation at increased power output levels.
The sectional drawing shown in Fig. 3 illustrates the method of assembling the various parts that go to make up the grid structure. The main supporting structure 23 is formed with a central hole which receives a depressed portion of the grid baffle 21. During assembly a thin washer of copper 40 is placed between support 23 and the baflie 21. The grid partition 20 fits within the cylindrical walls of the baflle 24 and, when assembled, is positioned on another washer 41 which may be of copper or other suitable alloy for brazing the components. Band 25' is also secured to cup 24 with sliding engagement to member 23. The assembly as shown is heated in a furnace to a brazing temperature so that all four parts are permanently joined. It should be noted that no additional jig is required to maintain the parts in their I correct relationship.
Since the anode assembly 27 is heated to a temperature which is, considerably higher than room temperature, most of the heat energy developed at the anode is conducted by the anode terminal 33 to the radiator fins 35 and dissipated to the atmosphere. Additional cooling ac-v tion is realized by the chimney action since the conveyor vent rises, drawing cool air from the outside into the space adjacent to cylinder 28 and circulating this air througl slots 34.
The alternate arrangement shown in Fig. 2 includes all of the internal structures shown in Fig. 1 but omits the heat radiator 35 and substitutes an insulating cup 36 which contains an axial hole 37 and is bolted to the anode terminal tube 33. Cup 36 extends downwardly insubstantial parallel relationship to the exterior surface of envelope 10 and terminates at a position adjacent to flange 11 of the control electrode. The cup is secured to the anode terminal 33 by a flange 33a and a series of bolts. Connection to the anode source of potential is made by a conducting lug 45. An insulator tube or pipe 46 leads to an exhaust blower which pulls the air through the cooling system.
In order to increase the heat dissipation from the anode 31 and its supporting structure, a series of radial fins 29 may be brazed or otherwise joined to the top surface of the anode disc and the anode conductor 33. These cooling fins are not always necessary but they increase the cooling effect and raise the allowable current carrying capacity of the anode. The control grid does not get as hot as the anode but, to prevent grid emission, it should also be cooled. To this end, a plurality of heat conductive fins 38 are brazed or otherwise secured to flange 11, these fins extending from the flange to the inside surfaceof the insulating cup 36. For ease in assembly, a circular band 39 is joined to all the fins 38 and maintains them in their correct position. v
In order to maintain a flow of air past the grid and anode cooling fins and through the tubular anode.ter-
The plan view of the grid 20 (Fig. 4) shows how the radial slots 42 are arranged in the grid to permit the passage of electrons when the device is first fired. It is obv-ious that other sizes and types of openings can be used.
The foregoing disclosure and drawings are merely illustrative of the principles of this invention and are not to be interpreted in a limiting sense. The only limitations are to be determined from the scope of the appended claims.
I claim:
1. A gaseous discharge device comprising an envelope containing an anode, a cathode, and a control grid, said anode secured to a metal support terminating in a first flange sealed to a cylindrical insulator forming a portion of the envelope, said anode connected to a hollow cylindrical anode terminal having a plurality of openings adjacent to the anode surface for the passage of cooling fluid, said control grid mounted in parallel relationship with theanode and connected to a second flange which is sealed between cylindrical insulators forming a portion of the envelope, and a shield secured to the hollow cylindrical anode terminal and extending substantially parallel to a portion of the envelope to said second flange, said shield and said portion of the envelope defining an annular space for the passage of cooling fluid.
2. A gaseous discharge device as set forth in claim 1 wherein said second flange is secured to a plurality of heat conducting fins, said fins mounted adjacent to said annular space.
3. A gaseous discharge device as set forth in claim 1 wherein said control grid, an associated baflle plate, and the support means therefor fit within each other and thereby permit joining in a furnace without the use of auxiliary positioning jigs.
4. A control grid for a gaseous discharge device comprising a first disc having a central hole for the passage of an electrical discharge, a second disc having a plurality of radial slots also for the passage of an electrical discharge, said first disc formed with an annular ridge for receiving a supporting ring and also formed with a tubular wall for positioning said second disc.
5. A control grid as set forth in claim 4 wherein said components are joined together by brazing material.
References Cited in the file of this patent UNITED STATES PATENTS 2,157,913 Nehls May 9, 1939 2,797,348 Watrous June 25, 1957 2,840,746 Price June 24, 1958
US801556A 1959-03-24 1959-03-24 Gaseous discharge device Expired - Lifetime US2951960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US801556A US2951960A (en) 1959-03-24 1959-03-24 Gaseous discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US801556A US2951960A (en) 1959-03-24 1959-03-24 Gaseous discharge device

Publications (1)

Publication Number Publication Date
US2951960A true US2951960A (en) 1960-09-06

Family

ID=25181432

Family Applications (1)

Application Number Title Priority Date Filing Date
US801556A Expired - Lifetime US2951960A (en) 1959-03-24 1959-03-24 Gaseous discharge device

Country Status (1)

Country Link
US (1) US2951960A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229140A (en) * 1961-12-26 1966-01-11 Gen Signal Corp Anode heat dissipating assembly for electron discharge tubes
US3440467A (en) * 1965-09-14 1969-04-22 English Electric Valve Co Ltd Gas filled thyratrons having improved electrode cooling provisions
US3519882A (en) * 1967-11-03 1970-07-07 M O Valve Co Ltd Gas discharge tube with magnetic means for extinguishing the discharge
US4888518A (en) * 1987-11-16 1989-12-19 Itt Corporation Gas circulation apparatus for ceramic electron tubes
US6586886B1 (en) 2001-12-19 2003-07-01 Applied Materials, Inc. Gas distribution plate electrode for a plasma reactor
US20040149699A1 (en) * 2000-03-17 2004-08-05 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination
US20040159287A1 (en) * 2000-03-17 2004-08-19 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode having a resonance that is virtually pressure independent
US20050001556A1 (en) * 2002-07-09 2005-01-06 Applied Materials, Inc. Capacitively coupled plasma reactor with magnetic plasma control
US20050236377A1 (en) * 2000-03-17 2005-10-27 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US20060278608A1 (en) * 2003-05-16 2006-12-14 Hoffman Daniel J Method of determining plasma ion density, wafer voltage, etch rate and wafer current from applied bias voltage and current
US7196283B2 (en) 2000-03-17 2007-03-27 Applied Materials, Inc. Plasma reactor overhead source power electrode with low arcing tendency, cylindrical gas outlets and shaped surface
US20070080140A1 (en) * 2003-05-16 2007-04-12 Hoffman Daniel J Plasma reactor control by translating desired values of m plasma parameters to values of n chamber parameters
US20070080138A1 (en) * 2003-05-16 2007-04-12 Hoffman Daniel J Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of plural chamber parameters
US20070080137A1 (en) * 2003-05-16 2007-04-12 Hoffman Daniel J Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US20070095788A1 (en) * 2003-05-16 2007-05-03 Hoffman Daniel J Method of controlling a chamber based upon predetermined concurrent behavoir of selected plasma parameters as a function of selected chamber paramenters
US20070127188A1 (en) * 2005-05-10 2007-06-07 Yang Jang G Method of feedback control of esc voltage using wafer voltage measurement at the bias supply output
US7910013B2 (en) 2003-05-16 2011-03-22 Applied Materials, Inc. Method of controlling a chamber based upon predetermined concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US8048806B2 (en) 2000-03-17 2011-11-01 Applied Materials, Inc. Methods to avoid unstable plasma states during a process transition
US8617351B2 (en) 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157913A (en) * 1937-01-22 1939-05-09 Siemens Ag Metallic vapor discharge device
US2797348A (en) * 1956-05-17 1957-06-25 Chatham Electronics Grid system for gaseous discharge device
US2840746A (en) * 1956-10-22 1958-06-24 Gen Electric Electric discharge device including improved anode structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157913A (en) * 1937-01-22 1939-05-09 Siemens Ag Metallic vapor discharge device
US2797348A (en) * 1956-05-17 1957-06-25 Chatham Electronics Grid system for gaseous discharge device
US2840746A (en) * 1956-10-22 1958-06-24 Gen Electric Electric discharge device including improved anode structure

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229140A (en) * 1961-12-26 1966-01-11 Gen Signal Corp Anode heat dissipating assembly for electron discharge tubes
US3440467A (en) * 1965-09-14 1969-04-22 English Electric Valve Co Ltd Gas filled thyratrons having improved electrode cooling provisions
US3519882A (en) * 1967-11-03 1970-07-07 M O Valve Co Ltd Gas discharge tube with magnetic means for extinguishing the discharge
US4888518A (en) * 1987-11-16 1989-12-19 Itt Corporation Gas circulation apparatus for ceramic electron tubes
US7220937B2 (en) 2000-03-17 2007-05-22 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination
US7196283B2 (en) 2000-03-17 2007-03-27 Applied Materials, Inc. Plasma reactor overhead source power electrode with low arcing tendency, cylindrical gas outlets and shaped surface
US20040149699A1 (en) * 2000-03-17 2004-08-05 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination
US20040159287A1 (en) * 2000-03-17 2004-08-19 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode having a resonance that is virtually pressure independent
US7186943B2 (en) 2000-03-17 2007-03-06 Applied Materials, Inc. MERIE plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US20050236377A1 (en) * 2000-03-17 2005-10-27 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US7141757B2 (en) 2000-03-17 2006-11-28 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode having a resonance that is virtually pressure independent
US8048806B2 (en) 2000-03-17 2011-11-01 Applied Materials, Inc. Methods to avoid unstable plasma states during a process transition
US6586886B1 (en) 2001-12-19 2003-07-01 Applied Materials, Inc. Gas distribution plate electrode for a plasma reactor
US7955986B2 (en) 2002-05-22 2011-06-07 Applied Materials, Inc. Capacitively coupled plasma reactor with magnetic plasma control
US8617351B2 (en) 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction
US20050001556A1 (en) * 2002-07-09 2005-01-06 Applied Materials, Inc. Capacitively coupled plasma reactor with magnetic plasma control
US20070080138A1 (en) * 2003-05-16 2007-04-12 Hoffman Daniel J Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of plural chamber parameters
US7901952B2 (en) 2003-05-16 2011-03-08 Applied Materials, Inc. Plasma reactor control by translating desired values of M plasma parameters to values of N chamber parameters
US20070029282A1 (en) * 2003-05-16 2007-02-08 Applied Materials, Inc. Method of processing a workpiece by controlling a set of plasma parameters through a set of chamber parameters using surfaces of constant value
US20070080137A1 (en) * 2003-05-16 2007-04-12 Hoffman Daniel J Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US20070095788A1 (en) * 2003-05-16 2007-05-03 Hoffman Daniel J Method of controlling a chamber based upon predetermined concurrent behavoir of selected plasma parameters as a function of selected chamber paramenters
US20060283835A1 (en) * 2003-05-16 2006-12-21 Applied Materials, Inc. Method of operating a plasma reactor chamber with respect to two plasma parameters selected from a group comprising ion density, wafer voltage, etch rate and wafer current, by controlling chamber parameters of source power and bias power
US20060278608A1 (en) * 2003-05-16 2006-12-14 Hoffman Daniel J Method of determining plasma ion density, wafer voltage, etch rate and wafer current from applied bias voltage and current
US7247218B2 (en) 2003-05-16 2007-07-24 Applied Materials, Inc. Plasma density, energy and etch rate measurements at bias power input and real time feedback control of plasma source and bias power
US20060278610A1 (en) * 2003-05-16 2006-12-14 Applied Materials, Inc. Method of controlling chamber parameters of a plasma reactor in accordance with desired values of plural plasma parameters, by translating desired values for the plural plasma parameters to control values for each of the chamber parameters
US20060278609A1 (en) * 2003-05-16 2006-12-14 Applied Materials, Inc. Method of determining wafer voltage in a plasma reactor from applied bias voltage and current and a pair of constants
US7452824B2 (en) 2003-05-16 2008-11-18 Applied Materials, Inc. Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of plural chamber parameters
US7470626B2 (en) 2003-05-16 2008-12-30 Applied Materials, Inc. Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US7521370B2 (en) 2003-05-16 2009-04-21 Applied Materials, Inc. Method of operating a plasma reactor chamber with respect to two plasma parameters selected from a group comprising ion density, wafer voltage, etch rate and wafer current, by controlling chamber parameters of source power and bias power
US7553679B2 (en) 2003-05-16 2009-06-30 Applied Materials, Inc. Method of determining plasma ion density, wafer voltage, etch rate and wafer current from applied bias voltage and current
US7585685B2 (en) 2003-05-16 2009-09-08 Applied Materials, Inc. Method of determining wafer voltage in a plasma reactor from applied bias voltage and current and a pair of constants
US7795153B2 (en) 2003-05-16 2010-09-14 Applied Materials, Inc. Method of controlling a chamber based upon predetermined concurrent behavior of selected plasma parameters as a function of selected chamber parameters
US20070080140A1 (en) * 2003-05-16 2007-04-12 Hoffman Daniel J Plasma reactor control by translating desired values of m plasma parameters to values of n chamber parameters
US7910013B2 (en) 2003-05-16 2011-03-22 Applied Materials, Inc. Method of controlling a chamber based upon predetermined concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US7375947B2 (en) 2005-05-10 2008-05-20 Applied Materials, Inc. Method of feedback control of ESC voltage using wafer voltage measurement at the bias supply output
US7359177B2 (en) 2005-05-10 2008-04-15 Applied Materials, Inc. Dual bias frequency plasma reactor with feedback control of E.S.C. voltage using wafer voltage measurement at the bias supply output
US20070127188A1 (en) * 2005-05-10 2007-06-07 Yang Jang G Method of feedback control of esc voltage using wafer voltage measurement at the bias supply output

Similar Documents

Publication Publication Date Title
US2951960A (en) Gaseous discharge device
US4888518A (en) Gas circulation apparatus for ceramic electron tubes
US2489891A (en) Cesium electric discharge device
US2045659A (en) Electron tube cooling system
US1353976A (en) Vacuum-tube device
US2546976A (en) Electron discharge device and method of assembly
US3227905A (en) Electron tube comprising beryllium oxide ceramic
US2288380A (en) High frequency radio tube
US2421767A (en) Electrode structure
US3662212A (en) Depressed electron beam collector
US3824425A (en) Suppressor electrode for depressed electron beam collector
US2650997A (en) Heat shielded cathode
US2380502A (en) Electronic discharge device
US5177394A (en) Conduction cooling type multistage collector
US4644217A (en) Electron tube with a device for cooling the grid base
US1886705A (en) Indirect electron excitation for thermionic vacuum tubes
US2317442A (en) Electron discharge tube
US2770745A (en) Fluid cooling arrangement for electric discharge devices
US2454031A (en) Electric discharge device of the magnetron type
US2407607A (en) Electron discharge device employing hollow resonator
US2381632A (en) Electron discharge device
US4639633A (en) Electron tube with cathode cooling device
US2739262A (en) Grid structure
US1953906A (en) Rectifier tube
US5025193A (en) Beam collector with low electrical leakage