JPS6060154A - Polypropylene resin composition - Google Patents

Polypropylene resin composition

Info

Publication number
JPS6060154A
JPS6060154A JP16747983A JP16747983A JPS6060154A JP S6060154 A JPS6060154 A JP S6060154A JP 16747983 A JP16747983 A JP 16747983A JP 16747983 A JP16747983 A JP 16747983A JP S6060154 A JPS6060154 A JP S6060154A
Authority
JP
Japan
Prior art keywords
weight
propylene
ethylene
polypropylene
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16747983A
Other languages
Japanese (ja)
Other versions
JPH0433814B2 (en
Inventor
Yoichi Kawai
洋一 河合
Masaru Abe
勝 阿部
Masami Maki
槙 正実
Akio Yoshihara
吉原 昭夫
Shigeru Hayashi
茂 林
Katsumi Sekiguchi
克巳 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16747983A priority Critical patent/JPS6060154A/en
Publication of JPS6060154A publication Critical patent/JPS6060154A/en
Publication of JPH0433814B2 publication Critical patent/JPH0433814B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled composition having excellent paintability and stiffness, consisting of a specified crystalline thylene-propylene block copolymer, an ethylene- propylene copolymer rubber, an ethylene-propylene-diene terpolymer rubber, and an inorganic filler. CONSTITUTION:90-60pts.wt. crystalline ethylene-propylene copolymer (A), containing 6-30wt% ethylene, and polypropylene which gives 75wt% or more insolubles in boiling n-heptane, an intrinsic viscosity of tetraline solution at 135 deg.C of 1.2-2.0, and an MFT of 8 or higher, 5-35pts.wt. ethylene-propylene copolymer rubber (B), having 20-70wt% propylene, and a Mooney viscosity at 100 deg.C of 15-100, 35pts.wt. or less entylene-propylene-diene terpolymer rubber (C), having 20-50wt% propylene, a Mooney viscosity at 100 deg.C of 20-110, and the diene being dicyclopentadiene, ethylidene-norbonene, or 1,4-hexadiene, and an inorganic filler (D) of a particle diameter of 6mu or less in an amount of 2-25pts. wt. per 100pts.wt. (A)+(B)+(C), are compounded.

Description

【発明の詳細な説明】 本発明は塗料性がすぐれ、高剛性、高耐衝撃性であり且
つ高成形流動性を有するポリプロピレン樹脂組成物に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polypropylene resin composition that has excellent coating properties, high rigidity, high impact resistance, and high molding fluidity.

現在ポリプロピレン樹脂は、軽比重、高剛性であり且つ
耐熱性、耐薬品性が優れているために汎く使用されてい
るが、当初は特に低温下の耐衝撃性が劣っており低温で
の使用には不適であった。
Currently, polypropylene resin is widely used because it has a low specific gravity, high rigidity, and excellent heat resistance and chemical resistance, but initially it had poor impact resistance, especially at low temperatures, so it was difficult to use at low temperatures. It was unsuitable for

このためエチレンとプロピレンとの共重合による耐衝撃
グレードが開発され上布されているが、最近では要求さ
れる性能が次第に高度になり、耐衝撃グレード並みの耐
衝撃性では満足できない場合が多く出てきた。例えば自
動車用バンパー、バンパースカート、トリム等の分野で
は、高剛性、高耐熱性、易塗装性と同時に高耐衝撃性と
いった相反する性能を有する樹脂が要求され、特にパン
パ−においては成形品の大型化に伴ない高成形流動性が
更に要求されている。
For this reason, impact-resistant grades made from copolymerization of ethylene and propylene have been developed and are now on the market, but recently the required performance has become increasingly sophisticated, and in many cases the impact resistance equivalent to that of impact-resistant grades is not sufficient. It's here. For example, in fields such as automobile bumpers, bumper skirts, and trims, resins with contradictory properties such as high rigidity, high heat resistance, easy painting, and high impact resistance are required. With the increasing demand for molding fluidity, even higher molding fluidity is required.

そこでポリプロピレン樹脂の耐衝撃性、塗装性を改良す
るために、ポリプロピレン樹脂にエチレン−プロピレン
共重合体ゴム等の耐衝撃性改質材を添加する手法が用い
られている。しかしながらこのような耐衝撃性改質材を
添加した樹脂組成物は、耐衝撃性および塗装性は向上す
るがその反面剛性、耐熱性および成形流動性が低下する
という欠点を有している。
Therefore, in order to improve the impact resistance and paintability of polypropylene resin, a method has been used in which an impact resistance modifier such as ethylene-propylene copolymer rubber is added to polypropylene resin. However, resin compositions to which such impact resistance modifiers are added have the disadvantage that although impact resistance and paintability are improved, rigidity, heat resistance, and molding fluidity are reduced.

またポリプロピレン樹脂の剛性向上を図るために無機光
てん材を添加する方法が汎く用いられている。この方法
では無機光てん材の添加割合が増すにしたがい剛性が向
上し且つ耐熱性も改良されるが、その反面耐衝撃性は著
しく低下することが知られている。例えば、工業材料V
o1.20.IG7.29頁(1972)には、ポリプ
ロピレンへのタルクの添加量が増すにしたがい剛性およ
び熱変形温度は向上するが、アイゾツト衝撃強さが低下
することが示されている。またプラスチックVo1.1
7、j612.27頁(1966)には、ポリプロピレ
ンにケインウ土、炭酸カルシウム、タルク、アスベスト
を添加した場合にも、同様にアイゾツト衝撃強さが低下
することが示されている。而してこれらの方法において
使用されている無機光てん材は極(一般的なもので粒径
などには全く注意が払われていない。
Furthermore, in order to improve the rigidity of polypropylene resin, a method of adding an inorganic optical fiber is widely used. In this method, as the proportion of the inorganic optical fiber added increases, the rigidity and heat resistance are improved, but on the other hand, it is known that the impact resistance is significantly reduced. For example, industrial material V
o1.20. IG 7.29 (1972) shows that as the amount of talc added to polypropylene increases, the stiffness and heat distortion temperature improve, but the Izod impact strength decreases. Also plastic Vo1.1
7, p. 612.27 (1966), it is shown that the Izod impact strength similarly decreases when quartzite, calcium carbonate, talc, and asbestos are added to polypropylene. However, the inorganic photoresist materials used in these methods are extremely small (general materials, and no attention is paid to particle size, etc.).

本発明者らはポリプロピレン樹脂の剛性を向上しかつ塗
装性および耐衝撃性を改良するために、無機光てん材と
エチレン−プロピレン共重合体ゴム(以下EPMと略記
する)またはエチレン−プロピレン−ジエン三元共重合
体ゴム(以下EPDMと略記する)のような耐衝撃性改
質材とを同時に用いる方法について種々試みたが、一般
に用いられている粒径7μm〜150μmの無機光てん
材では、先に示した例と同様に、無機光てん材の添加量
が増大するにしたがい耐衝撃性は低下し、剛性と耐衝撃
性とを同時に向上させることは出来なかった。
In order to improve the rigidity and paintability and impact resistance of polypropylene resin, the present inventors have developed an inorganic optical fiber material and an ethylene-propylene copolymer rubber (hereinafter abbreviated as EPM) or ethylene-propylene-diene rubber. Various attempts have been made to simultaneously use impact-resistant modifiers such as terpolymer rubber (hereinafter abbreviated as EPDM), but the generally used inorganic optical fibers with a particle size of 7 μm to 150 μm cannot be used. Similar to the example shown above, as the amount of inorganic optical fiber added increased, the impact resistance decreased, and it was not possible to improve both rigidity and impact resistance at the same time.

本発明者らが更に塗装性が優れ、高剛性、高耐衝撃性で
あり且つ高成形流動性をあわせもつポリプロピレン樹脂
組成物を得ることを目的として鋭意検討した結果、特定
の結晶性エチレン−プロピレンブロック共重合体、EP
M、 EPI)M、および特定された粒径を有する無機
光てん材を特定の割合で配合することにより、塗装性、
剛性および耐衝撃性が著しく向上し、かつ成形流動性も
良好となるという驚くべき事実を見出し本発明に到達し
た。
As a result of intensive studies aimed at obtaining a polypropylene resin composition that has even better paintability, high rigidity, high impact resistance, and high molding fluidity, the present inventors found that a specific crystalline ethylene-propylene resin composition block copolymer, EP
Paintability,
The present invention was achieved by discovering the surprising fact that rigidity and impact resistance are significantly improved, and molding fluidity is also improved.

重量%、ポリプロピレン成分の沸騰n−へブタン不溶分
75重量%以」二、テトラリンl 35 ”C溶液中の
固有粘度1.2〜2.0、メルトフローインデック含有
量が20〜50重量%で、100℃でのムーニー粘度が
20〜110でかつ第3成分であるジT−;/ 1−I
Z 、−t−チリデンノルボルネン、ジシクロペンタジ
ェン、1.4−へキサジエンのいずれかであるエチレン
−プロ剖 ピレン−ジエン三元共重合体ゴム35重量%以下、およ
び(d)粒径 6μm以下の無機光てん材を2〜25重
量部を添加して成る高剛性、高耐衝撃性および高成形流
動性を有しかつ塗装性(初期密着性、耐温水性、耐湿性
)の優れたポリプロピレン樹脂組成物≠陰す=右力であ
る。
% by weight, the boiling n-hebutane insoluble content of the polypropylene component is 75% by weight or more, the intrinsic viscosity in the tetralin l35"C solution is 1.2 to 2.0, and the melt flow index content is 20 to 50% by weight. , having a Mooney viscosity of 20 to 110 at 100°C and being the third component diT-;/1-I
Z, 35% by weight or less of ethylene-propyrene-diene terpolymer rubber which is any of -t-tylidene norbornene, dicyclopentadiene, or 1,4-hexadiene, and (d) particle size 6 μm Made by adding 2 to 25 parts by weight of the following inorganic optical fibers, it has high rigidity, high impact resistance, high molding fluidity, and has excellent paintability (initial adhesion, hot water resistance, moisture resistance). Polypropylene resin composition≠negative=right force.

本発明において用いられる結晶性エチレン−プロピレン
ブロック共重合体は、エチレン含有量6〜30重号%、
ポリプロピレン成分の沸騰n−へブタン不溶分75重量
%以上、テトラリン135°C溶液の固有粘度1.20
〜2.(’lのものでかつメルトフローインデックスが
8以上のものである。上記のエチレン含有量が6重量%
未満の場合には得られる成形品の塗装性、特に初期密着
性が低下し、30重量%を越える場合は成形品の曲げ弾
性率が小さくなり、上記のポリプロピレン成分の沸騰n
−へブタン不溶分が75重量%未満の場合には成形品の
曲げ弾性率が小さくなり、上記のテトラリン135°C
溶液の固有粘度が1.20未満の場合には成形品の一4
0’Cでのアイゾツト衝撃強度が小さくなり、2.0を
越える場合には得られるポリプロピレン組成物のメルト
フローインデックスが小さくなり、上記のメルトフロー
インデックスが8未場合にも得られるポリプロピレン組
成物の剛性、耐衝撃性、成形流動性は低く好ましくない
The crystalline ethylene-propylene block copolymer used in the present invention has an ethylene content of 6 to 30% by weight,
Polypropylene component boiling n-hebutane insoluble content of 75% by weight or more, Tetralin 135°C solution intrinsic viscosity 1.20
~2. ('1) and has a melt flow index of 8 or more.The above ethylene content is 6% by weight.
If it is less than 30% by weight, the paintability, especially the initial adhesion, of the resulting molded product will be reduced, and if it exceeds 30% by weight, the flexural modulus of the molded product will be small, and the boiling n of the polypropylene component mentioned above will decrease.
- If the hebutane insoluble content is less than 75% by weight, the flexural modulus of the molded product will be small, and the above tetralin 135°C
If the intrinsic viscosity of the solution is less than 1.20, the molded product
The Izot impact strength at 0'C becomes small, and when it exceeds 2.0, the melt flow index of the obtained polypropylene composition becomes small, and even when the above-mentioned melt flow index is less than 8, the obtained polypropylene composition Rigidity, impact resistance, and molding fluidity are low and undesirable.

本発明において用いられるEPMは、プロピレン含有量
が20〜70重量%で、100℃でのムーニー粘度が1
5〜100であるものに限定される。プロピレン含有量
が20重量%未満では成形品の低温耐衝撃性が低下し、
70重量%を超える場合には、得られる成形品の曲げ弾
性率および塗装性が低下し好ましくない。又、ムーニー
粘度が15未満あるいは100を超えるEPMを前記結
晶性エチレン−プロピレンブロック共重合体に添加した
場合、各々EPMの分散粒径が小さくあるいは太き(な
りすぎて得られる成形品の物性バランスが悪くなり好ま
しくない。
The EPM used in the present invention has a propylene content of 20 to 70% by weight and a Mooney viscosity of 1 at 100°C.
5 to 100. If the propylene content is less than 20% by weight, the low-temperature impact resistance of the molded product will decrease,
If it exceeds 70% by weight, the flexural modulus and paintability of the resulting molded product will decrease, which is undesirable. Furthermore, when an EPM with a Mooney viscosity of less than 15 or more than 100 is added to the crystalline ethylene-propylene block copolymer, the dispersed particle size of the EPM becomes too small or too large (too large, resulting in poor physical property balance of the resulting molded product). becomes worse, which is not desirable.

又、EPI)Mも、プロピレン含有量が20〜50重量
%で、100°0でのムーニー粘度が20〜110で、
かつ第3成分であるジエンが、エチリデンノルボルネン
、ジシクロペンタジェン、1.4−ヘキサジエンのいず
れかであるものに限定される。プロピレン含有量が20
重量%未満あるいは50重量%を超える場合には、得ら
れる成形品の物性バランスが低下し、また、ムーニー粘
度が20未満あるいは110を超える場合には、EPD
Mの分散粒径が小さく、あるいは大きくなりすぎ得られ
る成形品の物性バランスが低下し、いずれの場合にも好
ましくない。
In addition, EPI) M also has a propylene content of 20 to 50% by weight and a Mooney viscosity of 20 to 110 at 100°0,
Further, the diene as the third component is limited to one of ethylidene norbornene, dicyclopentadiene, and 1,4-hexadiene. Propylene content is 20
If it is less than 50% by weight or more than 50% by weight, the physical property balance of the obtained molded product will deteriorate, and if the Mooney viscosity is less than 20 or more than 110, EPD
If the dispersed particle size of M becomes too small or too large, the physical property balance of the resulting molded article will deteriorate, which is unfavorable in either case.

本発明においては、EI)MとEPDMとを併ぜて使者
を合わせた添加割合は通常10〜400〜40重量部効
果が小さく、成形品の低温アイゾツト強度群 が小さくなり好ましくない。また40重id:%を越え
ると得られるポリプロピレン組成物の成形流動≠力場合
には耐衝撃性改良効果が小さくなり、成形品の低温アイ
ゾツト衝撃強度も小さくなり好ましくな(・。
In the present invention, the combined addition ratio of EI)M and EPDM is usually 10 to 400 to 40 parts by weight, which is not preferred because the effect is small and the low temperature Izot strength group of the molded product is small. Moreover, if the molding flow of the resulting polypropylene composition is greater than 40 weight ID:%, the effect of improving impact resistance will be small, and the low-temperature Izot impact strength of the molded product will also be small, which is undesirable.

本発明において用いる無機光てん材とは粉末状の無機光
てん利であり、例えば酸化カルシウム、酸化マグネシウ
ム、水酸化カルシウム、水酸化マグネシウム、水酸化ア
ルミニウム、炭酸マグネシウム、ケイ酸カルシウム、ケ
イ酸マグネシウム、硫酸)jルシウム、炭酸カルシウム
、硫酸バリウム、1巨硫酸カルシウム、タルク、クレー
、ガラス、塩基性炭酸マグネシウム、ドロマイト、ピル
ツナイト等があげられるが、特に炭酸カルシウム、硫酸
バリウム、ケイ酸カルシウム、タルクの[重用カ好まし
い。
The inorganic photonic materials used in the present invention are powdered inorganic photonic materials, such as calcium oxide, magnesium oxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, magnesium carbonate, calcium silicate, magnesium silicate, sulfuric acid) j Lucium, calcium carbonate, barium sulfate, mono-monocalcium sulfate, talc, clay, glass, basic magnesium carbonate, dolomite, piltonite, etc., but especially calcium carbonate, barium sulfate, calcium silicate, talc [ Heavy duty power is preferable.

さらに本発明においては用いる無機光てん材の粒子径は
6μm以下であることが必須であり、特に5μm以下で
あることが好ましい。粒径が6μmを超える無機光てん
材を用いた場合は得られるポリプロピレン樹脂組成物の
耐衝撃性が低下する。
Further, in the present invention, it is essential that the particle size of the inorganic optical fiber used is 6 μm or less, and particularly preferably 5 μm or less. When an inorganic optical fiber having a particle size exceeding 6 μm is used, the impact resistance of the resulting polypropylene resin composition is reduced.

無機光てん4シ)の粒径については一般に慣用されてい
るものとして、定方向径、定方向面積等分径、等面積径
および5IJii径などの定義方法があり、化学工業便
覧などに見られるような各種の測定法により測定されて
いる。本発明における粒径は光透過法によりめられる等
面積径であり、測定は例えばセイシン企業社製の光透過
式粒度分布」1]定機、型式名SK(: 2000など
を使用し、粒度積算分布の50%時の粒径(一般にはD
50と称されている)としてめられた値を用いることが
出来る。
Regarding the particle size of inorganic optical fibers, there are commonly used definition methods such as directional diameter, directional area equal diameter, equal area diameter, and 5IJii diameter, which can be found in chemical industry handbooks. It is measured by various measurement methods such as The particle size in the present invention is an equal area diameter determined by a light transmission method, and measurement is performed using, for example, a light transmission particle size distribution machine manufactured by Seishin Enterprise Co., Ltd., model name SK (: 2000), and particle size integration. Particle size at 50% of distribution (generally D
50) can be used.

本発明における粒径6μW以下の無機光てん利の添加割
合は、結晶性エチレンープロピレンプロソク共重合体と
EI)MおよびEPDMより成る樹脂成分100重量部
に対し2〜25重量部の範囲である。
In the present invention, the addition ratio of inorganic photonic resin with a particle size of 6 μW or less is in the range of 2 to 25 parts by weight per 100 parts by weight of the resin component consisting of the crystalline ethylene-propylene prosodic copolymer, EI)M, and EPDM. be.

無機光てん栃の添加割合が2重量部未満のときは剛性向
上効果が小さく好ましくない。また無機光てん材が25
重量部を越えて添加した場合塗装性のうち初期密着性は
向上するが、樹脂中の無機光てん材が吸湿し樹脂層と塗
装膜との間にふくれを生じるため耐温水性、耐湿性は逆
に低下してしまい好ましくない。
When the proportion of the inorganic phosphorescent resin added is less than 2 parts by weight, the effect of improving rigidity is small, which is not preferable. In addition, inorganic photoresist material is 25
If more than 1 part by weight is added, the initial adhesion of paintability will improve, but the inorganic photoresist in the resin will absorb moisture and cause blistering between the resin layer and the paint film, resulting in poor hot water resistance and moisture resistance. On the contrary, it decreases, which is not desirable.

本発明のポリプロピレン組成物に使用される各成分の混
合は、当業界において一般に用いられる単軸押出機、I
”CM、CIM等の2輔押出磯を用いて実施される。こ
の組成物を製造する場合にポリプロピレン樹脂に一般に
用いられる酸化防II:、剤、紫外線吸収剤、金属劣化
防止剤、滑剤、帯電防止剤、発泡剤等を配合することも
できる。
The components used in the polypropylene composition of the present invention are mixed using a single screw extruder commonly used in the art.
It is carried out using two extrusion tools such as CM and CIM.When producing this composition, antioxidant II, which is commonly used for polypropylene resin, is used as an antioxidant, ultraviolet absorber, metal deterioration inhibitor, lubricant, and electrostatic charge. Inhibitors, foaming agents, etc. can also be blended.

このようにして得られた本発明のポリプロピレン樹脂組
成物は、剛性、耐衝撃性、成形流動tJgが優れている
ため自動車用バンパー、バンパースカート、トリム、二
輪車用フェンダ等への適用も可能となり、射出成形法、
押出成形法および圧縮成形法等の成形法により成形し得
る。
The polypropylene resin composition of the present invention thus obtained has excellent rigidity, impact resistance, and molding flow tJg, so it can be applied to automobile bumpers, bumper skirts, trims, motorcycle fenders, etc. injection molding method,
It can be molded by a molding method such as an extrusion molding method or a compression molding method.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

以下の記載においてメルトフローインデックスはAST
M D−12381tC1曲げ弾性率はASTM I)
−790に、アイゾツト衝撃強度はASTM D−25
6に従って測定した。
In the following description, the melt flow index is AST.
M D-12381tC1 flexural modulus is ASTM I)
-790, Izot impact strength is ASTM D-25
Measured according to 6.

実施例1 エチレン含有率23.2重量%、ポリプロピレン成分の
沸騰n−へブタン不溶分85.7重量%、テトラリン1
35℃溶液の固有粘度1.7、メルトフローインデック
ス18の結晶性エチレン−プロピレンブロック共重合体
(以下P P−Aと略記する)名p 65重量%、プロピレン含量26重量%、100℃での
ムーニー粘度が24であるEPへ・Iを(以下ED郭 M−Aと略記する)25重量%、プロピレン含量28重
量%、100℃でのムーニー粘度が85、第3成分がエ
チリデンノルボルネンであるE P D Mを(以1 下EPI)M−Aと略記する。)10重量%、無機光て
ん材として粒径執字間悶−おび1.8μmのタルクを表
−1に示した割合にて配合し、ヘンシェルミキサーで混
合後押出機にてペレット化した。得られたペレットを射
出成形機を用いて試験片を成形し曲げ弾性率、およびア
イゾツト衝撃強度を測定した。また塗装性については以
下の方法により評価した。射出成形機を用いて得られた
試験片に2液型のアクリル−塩素化ポリプロピレン系の
下塗り塗料を膜厚10μmとなるように塗装し、さらに
2液型のアクリル−ウレタン系の上塗り塗料を膜厚25
μmとなるように塗装し、90℃で30分間乾燥した後
、室温に24時間放置して塗装性試験片を得た。
Example 1 Ethylene content 23.2% by weight, polypropylene component insoluble in boiling n-hebutane 85.7% by weight, Tetralin 1
Crystalline ethylene-propylene block copolymer (hereinafter abbreviated as P-A) name p 65% by weight, propylene content 26% by weight, at 100°C To EP whose Mooney viscosity is 24, I (hereinafter abbreviated as ED Kuo M-A) is 25% by weight, propylene content is 28% by weight, Mooney viscosity at 100°C is 85, and E whose third component is ethylidene norbornene. PDM is abbreviated as M-A (hereinafter referred to as EPI). ) 10% by weight, talc having a particle diameter of 1.8 μm as an inorganic optical fiber was blended in the proportions shown in Table 1, mixed in a Henschel mixer, and then pelletized in an extruder. The obtained pellets were molded into test pieces using an injection molding machine, and the flexural modulus and Izod impact strength were measured. Moreover, the paintability was evaluated by the following method. A two-component acrylic-chlorinated polypropylene base coat was applied to the test piece obtained using an injection molding machine to a thickness of 10 μm, and a two-component acrylic-urethane topcoat was then applied. Thickness 25
It was coated to a thickness of μm, dried at 90° C. for 30 minutes, and then left at room temperature for 24 hours to obtain a paintability test piece.

この試験片の塗膜にカッターによりタテ1mm、ヨコ1
間の基盤目を100個刻み、七ロノ・ノテープを粘着さ
せた後急激にセロチー゛プを引きはがし残った塗膜の基
盤目の割合をパーセンテージでめ、これにより初期密着
性を評価した。さらに塗装性試験片を40℃の温水中に
240時間浸漬した後に塗膜面の状態観察および基盤目
剥離により耐温水性を評価した。
Cut the coating film of this test piece with a cutter to cut 1mm vertically and 1mm horizontally.
Initial adhesion was evaluated by carving out 100 base marks in between and adhering Sevenrono Note tape, then rapidly peeling off the cello tape, and determining the proportion of base marks in the remaining coating film as a percentage. Further, the paintability test piece was immersed in hot water at 40° C. for 240 hours, and then hot water resistance was evaluated by observing the state of the coating film surface and peeling off the substrate.

また上記で得られたペレットを温度30°C1湿度90
%の雰囲気中で1週間放置した後、射出成形機により1
60mmX 80mm×2mm厚の平板を成形し、成形
物の表面状態を観察した。得られた一すプロピレン樹脂
のメルトフローインデックス、試験片の曲げ弾性率およ
びアイゾツト衝撃強度測定値、塗装性の評価結果および
成形品の面状態を表−1に示した。
In addition, the pellets obtained above were heated at a temperature of 30°C and a humidity of 90°C.
After leaving it for one week in an atmosphere of 1%, it was molded using an injection molding machine.
A flat plate of 60 mm x 80 mm x 2 mm thick was molded, and the surface condition of the molded product was observed. Table 1 shows the melt flow index of the obtained monopropylene resin, the measured values of the flexural modulus and Izot impact strength of the test piece, the evaluation results of paintability, and the surface condition of the molded product.

実施例2 実施例1においてPP−Aにかえてエチレン含有量17
.2重量%、ポリプロピレン成分の沸騰n−へブタン不
溶分86.4重量%、テトラリン135°C溶液の固有
粘度164、メルトインデックスフロー47の結晶性エ
チレン−プロピレン共重合体(以下PP−Bと略記する
)を用いた他は実施例1と同様に試験し得られた結果を
表−1に示した。
Example 2 In Example 1, instead of PP-A, the ethylene content was 17
.. Crystalline ethylene-propylene copolymer (hereinafter abbreviated as PP-B) with a melt index flow of 47, an intrinsic viscosity of 164 as a solution of tetralin at 135°C, a boiling n-hebutane insoluble content of the polypropylene component of 86.4% by weight, and a melt index flow of 47. The test was carried out in the same manner as in Example 1, except that the test sample was used, and the results are shown in Table 1.

実施例−3 実施例−1にオdいてEPR−Aにかえてプロピレン含
量50重量% 100℃でのムーニー粘度が他は実施例
1と同様に試験し得られた結果を表−1に示した。
Example 3 In addition to Example 1, the propylene content was 50% by weight instead of EPR-A. The Mooney viscosity at 100°C was tested in the same manner as in Example 1, and the results are shown in Table 1. Ta.

比較例1〜2 実施例1においてPP−Aにかえてエチレン含有量5.
2重量%、ポリプロピレン成分の沸騰n−へブタン不溶
分93.8重量%、テトラリン135°C溶液の固有粘
度2.1、メルトフローインデックス4の結晶性エチレ
ン−プロピレンブロック共重合体(以下1)P−Cと略
記する)、またはエチレン含有量5.0重量%、ポリプ
ロピレン成分の沸騰1−ヘプタン不溶分94.0重量%
、テトラリン135℃溶液の固有粘度1.9、メルトフ
ローインデックス8ノ結晶性エチレン−プロピレンブロ
ック共重合体(以下1)P−Dと略記する)を用いた他
は実施例Iと同様に試験し得られた結果を表−1に示(
−た。
Comparative Examples 1-2 In Example 1, the ethylene content was 5.5% instead of PP-A.
Crystalline ethylene-propylene block copolymer (hereinafter referred to as 1) with a melt flow index of 2% by weight, a boiling n-hebutane insoluble content of the polypropylene component of 93.8% by weight, an intrinsic viscosity of a tetralin 135°C solution of 2.1, and a melt flow index of 4. (abbreviated as P-C), or ethylene content 5.0% by weight, boiling 1-heptane insoluble content of polypropylene component 94.0% by weight
The test was carried out in the same manner as in Example I, except that a crystalline ethylene-propylene block copolymer (hereinafter 1) abbreviated as PD) with a tetralin 135°C solution having an intrinsic viscosity of 1.9 and a melt flow index of 8 was used. The results obtained are shown in Table 1 (
-ta.

実施例4〜9 エチレン含有量11.2重量%、ポリプロピレン成分の
沸騰■〕−へブタン不溶分88.0重量%、テトラリン
135℃溶液の固有粘度1.5、メルトフローインデッ
クス22の結晶性エチレン−プロビレ無機光てん材とし
て粒径1.8/umのタルク、粒径1゜2μm の硫酸
バリウム、粒径1.9ttmの炭酸カルシウムおよびお
ン径1.0 μmのケイ酸カルシウムをそれぞれ表−2
に示した割合で配合し実施例1と同様に試験し得らAし
た結果を表−2に示した。
Examples 4 to 9 Crystalline ethylene with ethylene content of 11.2% by weight, boiling of polypropylene component - hebutane insoluble content of 88.0% by weight, intrinsic viscosity of tetralin 135°C solution of 1.5, melt flow index of 22 - Talc with a particle size of 1.8/um, barium sulfate with a particle size of 1.2 μm, calcium carbonate with a particle size of 1.9 ttm, and calcium silicate with a particle size of 1.0 μm are listed as inorganic photoresist materials. 2
Table 2 shows the results of the test in the same manner as in Example 1.

比較例3 無機光てん月を添加しなかった他は実施例4と同様に試
験し得られた結果を表−2VC示した。
Comparative Example 3 The test was carried out in the same manner as in Example 4 except that inorganic phosphorous was not added, and the results obtained are shown in Table 2VC.

比較例4〜5 粒径1.8 μmのタルクの添加量を1.30万重量部
とした他は実施例4と同様に試験し得られた、結果を表
−2に示した。
Comparative Examples 4-5 Tests were conducted in the same manner as in Example 4, except that the amount of talc with a particle size of 1.8 μm was changed to 13,000 parts by weight. The results are shown in Table 2.

比較例6 粒径1゜8μmのタルクにかえて粒径7.2μmのタル
クを表−2に示した割合で配合した他は実施例4と同様
に試験し得られた結果を表−2に示した。
Comparative Example 6 Tests were conducted in the same manner as in Example 4, except that talc with a particle size of 7.2 μm was blended in the ratio shown in Table 2 instead of talc with a particle size of 1°8 μm. The results are shown in Table 2. Indicated.

実施例10および比較例7〜11 結晶性エチレン−プロピレンブロック共重合体としてI
)r”lう、EPMとして前記のEPM−A、EPDM
として前記のEPI)M−A、粒径1゜9μmの炭酸カ
ルシウムをそれぞれ表−3に示した割合で配合した他は
実施例4と同様に試験し得られた結果を表−3に示した
Example 10 and Comparative Examples 7 to 11 I as a crystalline ethylene-propylene block copolymer
) r"l, the above-mentioned EPM-A, EPDM as EPM
The test was conducted in the same manner as in Example 4, except that the above EPI) M-A and calcium carbonate with a particle size of 1°9 μm were blended in the proportions shown in Table 3. The results are shown in Table 3. .

Claims (1)

【特許請求の範囲】 ■、下記(a)、(b)、および(C)の合泪 100
重量部に対し、 (,11)エチレン含有量 6〜30重量%、ポリプロ
ピレン成分の沸Jllin−ヘプタン不溶分75重量%
以上、テトラリン溶液(135°C)の固有粘度1.2
〜2.0、メルトフローインデックス8以上ノ結晶性エ
チレン−プロピレンブロック共重合体90〜60重量部
、 (b)プロピレン含有量が20〜70重量%で、100
℃でのムーニー粘度が15〜100であるエチレン−プ
ロピレン共重合体ゴム5〜35重量部、(C’)プロピ
レン含有量が20〜50重量%で、100°Cでのムー
ニー粘度が20〜110でかつ第3成分であるジエンが
エチリデンノルボルネン、ジシクロペンタンジエン、1
,4−へキサジエンのいずれかであるエチレン−プロピ
レン−ジエン三元共重合体ゴム35重量部以下、および
(d)粒径6μm以下の無機光てん材を2〜25重量部
を添加して成ることを特徴とするポリプロピレン樹脂組
成物。
[Claims] ■, The combination of the following (a), (b), and (C) 100
Based on the weight part, (,11) ethylene content 6 to 30% by weight, polypropylene component insoluble in heptane 75% by weight
Above, the intrinsic viscosity of the tetralin solution (135°C) is 1.2
~2.0, melt flow index of 8 or higher, 90 to 60 parts by weight of crystalline ethylene-propylene block copolymer, (b) propylene content of 20 to 70% by weight, 100
5 to 35 parts by weight of ethylene-propylene copolymer rubber having a Mooney viscosity of 15 to 100 at 100°C, (C') having a propylene content of 20 to 50% by weight and a Mooney viscosity of 20 to 110 at 100°C. And the diene which is the third component is ethylidene norbornene, dicyclopentanediene, 1
, 4-hexadiene, and (d) 2 to 25 parts by weight of an inorganic optical fiber having a particle size of 6 μm or less. A polypropylene resin composition characterized by:
JP16747983A 1983-09-13 1983-09-13 Polypropylene resin composition Granted JPS6060154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16747983A JPS6060154A (en) 1983-09-13 1983-09-13 Polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16747983A JPS6060154A (en) 1983-09-13 1983-09-13 Polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPS6060154A true JPS6060154A (en) 1985-04-06
JPH0433814B2 JPH0433814B2 (en) 1992-06-04

Family

ID=15850440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16747983A Granted JPS6060154A (en) 1983-09-13 1983-09-13 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPS6060154A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276840A (en) * 1985-06-01 1986-12-06 Mitsubishi Petrochem Co Ltd Propylene polymer resin composition
JPS62151446A (en) * 1985-12-26 1987-07-06 Toyoda Gosei Co Ltd Polypropylene resin composition
JPH03157168A (en) * 1989-11-14 1991-07-05 Mitsubishi Petrochem Co Ltd Method for coating resin molded body
US5412020A (en) * 1993-07-28 1995-05-02 Mitsui Petrochemical Industries, Ltd. Propylene polymer compositions
US5567759A (en) * 1992-08-05 1996-10-22 Mitsui Petrochemical Industries, Ltd. Propylene polymer composition
US5591795A (en) * 1993-06-30 1997-01-07 Mitsui Petrochemical Industries, Ltd. Polypropylene composition
US5856400A (en) * 1995-12-18 1999-01-05 Ube Industries, Ltd. Polypropylene resin composition
EP0986609A4 (en) * 1997-05-28 2000-07-12 D & S Plastics Int Painted polymeric articles having improved properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037700A (en) * 1989-06-06 1991-01-14 Mitsubishi Heavy Ind Ltd Multi-stage type rocket

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037700A (en) * 1989-06-06 1991-01-14 Mitsubishi Heavy Ind Ltd Multi-stage type rocket

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276840A (en) * 1985-06-01 1986-12-06 Mitsubishi Petrochem Co Ltd Propylene polymer resin composition
JPH0556377B2 (en) * 1985-06-01 1993-08-19 Mitsubishi Petrochemical Co
JPS62151446A (en) * 1985-12-26 1987-07-06 Toyoda Gosei Co Ltd Polypropylene resin composition
JPH03157168A (en) * 1989-11-14 1991-07-05 Mitsubishi Petrochem Co Ltd Method for coating resin molded body
JPH0579390B2 (en) * 1989-11-14 1993-11-02 Mitsubishi Petrochemical Co
US5567759A (en) * 1992-08-05 1996-10-22 Mitsui Petrochemical Industries, Ltd. Propylene polymer composition
US5591795A (en) * 1993-06-30 1997-01-07 Mitsui Petrochemical Industries, Ltd. Polypropylene composition
US5412020A (en) * 1993-07-28 1995-05-02 Mitsui Petrochemical Industries, Ltd. Propylene polymer compositions
US5856400A (en) * 1995-12-18 1999-01-05 Ube Industries, Ltd. Polypropylene resin composition
EP0986609A4 (en) * 1997-05-28 2000-07-12 D & S Plastics Int Painted polymeric articles having improved properties

Also Published As

Publication number Publication date
JPH0433814B2 (en) 1992-06-04

Similar Documents

Publication Publication Date Title
KR860000770B1 (en) Poly propylene resin composition
JPH042620B2 (en)
CA2002506A1 (en) Polypropylene composition
EP0153415B1 (en) Process for producing polypropylene resin composition
JPS6228174B2 (en)
JPS6060154A (en) Polypropylene resin composition
JP3547510B2 (en) Automotive bumper
JPH0618975B2 (en) Polypropylene resin composition
JPS58222133A (en) Propylene polymer composition having improved coatability
JPS5998157A (en) Resin composition for bumper
JPS6143650A (en) Polypropylene composition for automobile bumper
JPH062861B2 (en) Polypropylene resin composition
JPH03197542A (en) Resin composition for blow molding
JPS61272255A (en) Propylene polymer composition
JPH0618977B2 (en) Polypropylene resin composition
JPS61233048A (en) Polypropylene resin composition
JPS60212452A (en) Polypropylene resin composition
JPS6264848A (en) Propylene homopolymer composition
KR100439798B1 (en) Olefin-based resin composition
JP3092960B2 (en) Molding
JPS62119243A (en) Propylene polymer composition
KR880000268B1 (en) Process for polypropylene resin composition
JPS61254649A (en) Composite polypropylene composition for car bumper
JPS6090239A (en) Glass fiber-reinforced propylene based resin composition
JP3193430B2 (en) Method for coating molded propylene-based polymer composition