JPS6060095A - Method of minimizing resistance of propeller of inboard engine under sail of yacht - Google Patents

Method of minimizing resistance of propeller of inboard engine under sail of yacht

Info

Publication number
JPS6060095A
JPS6060095A JP17036783A JP17036783A JPS6060095A JP S6060095 A JPS6060095 A JP S6060095A JP 17036783 A JP17036783 A JP 17036783A JP 17036783 A JP17036783 A JP 17036783A JP S6060095 A JPS6060095 A JP S6060095A
Authority
JP
Japan
Prior art keywords
propeller
yacht
angle
blade
propulsion shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17036783A
Other languages
Japanese (ja)
Inventor
Hiroaki Komiyama
小見山 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17036783A priority Critical patent/JPS6060095A/en
Publication of JPS6060095A publication Critical patent/JPS6060095A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the unnecessary resistance of water against the propeller of an inboard engine and attain smooth either forward or reverse run under sail of yacht by providing a passive metal fitting so as to generate two-staged outputs and transmitting them to the propeller. CONSTITUTION:When a propeller shaft 1 is activated in the direction X, a counterclockwise-driving actuator 6 pushes a passive metal fitting 5 to give a blade 3 an angular motion at the first step. In the second step, the passive metal fitting 5 comes against a stopper 8 having an angle of elevation so that the angle is changed to a normal angle of elevation with respect to the blade 3. A propeller is then turned to drive a yacht forward. On the other hand, when the propeller shaft 1 is activated in the direction Y, a reversing actuator 7 presses the passive metal fitting 5 in the first step. The fitting 5 collides against the stopper 8 having the set angle of elevation so as to set the angle of the blade to a specified value. In the second step, the propeller shaft 1 drives the propeller reversely to drive the yacht in the reverse direction. Regardless of the forward and reverse drive of the yacht, it can be steered at will.

Description

【発明の詳細な説明】 この発明はヨツト帆走中には船内機プロペラに掛る無用
の水抵抗を最少にすると共に、機走中は前進は勿論後退
の場合も同様に推進軸の回転速度如何に拘らずグレード
迎角を常に規定通シに保ち前後進共同様に円滑な走航を
保持する方法に関するものである0 従来大形中形ヨツトは船内機を有するものが多くとのヨ
ツトが帆走中は船内機のプロペラがそのままでは走航に
無用の抵抗となるので、この場合抵抗を少くするためブ
レードを折シたたむ方式のものが一般的に考えられてお
るO然し従来のこの方式のものでは推進軸の回転は直に
プロペラに直結してお9折シたたんだブレードを規定の
迎角に復元する場合には推進軸の回転による遠心力を以
てブレードを開く方式のものが一般的である0 従来のこの方式の場合前進方向に推進軸を廻転した場合
は水圧はブレードの後面に81ジグレードを開く方向に
働くのでこの場合都合はよく操船上支障はない。然しな
から推進軸を後退方向に廻転した場合には遠心力でブレ
ードが開きかけると同時に水圧はグレードの前面に掛シ
フ゛レードを元に折りたたむ方向に働き非常に都合が悪
く、是に討ち勝つために推進軸の廻転を更に上げればブ
レードの前面の圧力も更に上列して折りたたむ力も増大
するものでなか々か操船者の%lJかのう円滑な後退操
船が出来かねる欠点がある。特に後退運航は多くは港内
の狭い場所或は池のヨツトが近接しておるような場合が
多く思うように操船が出来ないことは絢に困った問題で
ある。
[Detailed Description of the Invention] This invention minimizes unnecessary water resistance on the inboard propeller while sailing, and also controls the rotational speed of the propulsion shaft not only when sailing forward but also when reversing. This relates to a method for maintaining smooth sailing in both forward and backward motion by keeping the angle of attack at the specified level regardless of the grade. Conventionally, many large and medium-sized yachts have inboard engines; In this case, the propeller of the inboard engine as it is will create unnecessary resistance to sailing, so in this case, it is generally considered that the blades can be folded to reduce the resistance. The rotation of the propulsion shaft is generally connected directly to the propeller, and when the blades are folded into nine folds to restore them to the specified angle of attack, the centrifugal force generated by the rotation of the propulsion shaft is used to open the blades. 0 In this conventional method, when the propulsion shaft is rotated in the forward direction, the water pressure acts in the direction of opening the 81 grade on the rear surface of the blade, so this is convenient and does not cause any trouble in ship maneuvering. However, when the propulsion shaft is rotated in the backward direction, the blades begin to open due to centrifugal force, and at the same time, water pressure acts on the front of the grade and works in the direction of folding the blade, which is very inconvenient. If the rotation of the propulsion shaft is further increased, the pressure on the front surface of the blades and the force for folding the blades further increase, which has the drawback that the operator cannot maneuver the vessel smoothly backwards. In particular, when sailing backward, there are many cases where the ship is in a narrow space in a harbor or close to a yacht on a pond, so it is a serious problem that the ship cannot maneuver as desired.

この本発明は上述の欠点を補い前進の場合は勿論後退の
場合でも同様に船内機の回転を加減することによシ慈の
ままの操船が出来るもので而も帆走中はグレードに掛る
無用の水抵抗を最少に保ち得る方式を与えるものである
The present invention compensates for the above-mentioned drawbacks and allows the boat to be maneuvered exactly as desired by adjusting the rotation of the inboard engine not only when moving forward but also when moving backward. This provides a method that can keep water resistance to a minimum.

是を図によって説明すれば第1図は本発明の一実施例の
プロペラ部の縦断面図で一般に2枚以上あるブレードの
内説明のため唯1枚のみをに於て(1)は推進軸で船内
機により通常クラッチを介して駆動される。(2)はプ
ロペラハブで図の形状をなしブレード(3)を保持する
。推進軸(1)とプロペラハブ(2)とは一般的には強
固に固定され推進軸の回転と同時に直にプロペラハブも
廻転するものである。然るに本発明では推進軸(1)は
プロペラハブ(2)に転勤自在に嵌入されておるのが特
長である。更にグレード(3)の根木部は図の如く転動
軸(4)を同一部月で形成し、該転動#IIはプロペラ
ハブ(2)を貫通し且つその先端は図の如く同一部月で
受動金物(5)を形成する。又推進軸(1)には同一部
利で正転アクチェーター(6)と逆転アクチェーター(
7)とが図の如く突出して設置されておる。両アクチェ
ーターは受動金物(5)の両側を或間隔を保って是をた
きかかえるように設置されておる。又プロペラハブから
図の如く内方に向って突出する同一部材の突起があシ迎
角設定ストッパー(8)を形成する。
To explain this with the help of diagrams, Figure 1 is a vertical sectional view of the propeller section of one embodiment of the present invention.In order to explain the blades, which generally have two or more blades, only one (1) is shown on the propulsion shaft. is driven by the inboard motor, usually via a clutch. (2) is a propeller hub that has the shape shown in the figure and holds the blade (3). The propulsion shaft (1) and propeller hub (2) are generally firmly fixed, and the propeller hub rotates simultaneously with the rotation of the propulsion shaft. However, the present invention is characterized in that the propulsion shaft (1) is removably fitted into the propeller hub (2). Furthermore, the root tree of grade (3) forms a rolling shaft (4) with the same month as shown in the figure, and the rolling shaft #II passes through the propeller hub (2) and its tip has the same month as shown in the figure. to form passive hardware (5). In addition, the propulsion shaft (1) has a forward rotation actuator (6) and a reverse rotation actuator (6) with the same interest.
7) is installed protrudingly as shown in the figure. Both actuators are installed so as to press against both sides of the passive metal fitting (5) with a certain distance between them. Further, a projection of the same member that projects inward from the propeller hub as shown in the figure forms an angle of attack setting stopper (8).

この発明の第1図第2図の実施例は上記の構造を有する
ものである。その作動状況を説明すれば推進軸(1)を
前進即ち矢印(3)の方向に起動すれば正転アクチェー
ター(6)が受動金物(5)を圧し推進軸出力の発生モ
ーメントによシ先ず第1段階としてブレード(3)に角
運動を与える。この間プロペラハブ(2)には侮辱動力
を伝達しない。然し次の段階として受動金物(5)が迎
角設定ヌトノパ−(8)に突き当シ正規のグレード迎角
になってはじめて出力全部がプロペラの廻転に消費され
正規の前進走航が出来るものである。又逆に推進軸(1
)が逆転即ち矢印(1)方向に起動した時は逆転アクチ
ェーター(7)が受動金物(5)を先ず第18階として
圧し前進の場合と同様に迎角設定ストッパー(8)に突
き当ってグレードの迎角を規定通りに設定し、爾後に第
2段階として推進軸(1)はプロペラを逆方向に駆動し
ヨツトは後退する。
The embodiments of this invention shown in FIGS. 1 and 2 have the above structure. To explain the operating situation, when the propulsion shaft (1) is started forward, that is, in the direction of the arrow (3), the forward rotation actuator (6) presses the passive metal fitting (5), and the generated moment of the propulsion shaft output causes the forward rotation actuator (6) to first move forward. As a first step, an angular motion is given to the blade (3). During this time, no power is transmitted to the propeller hub (2). However, in the next step, the passive hardware (5) hits the angle-of-attack setting nut par (8), and only when the angle of attack reaches the normal grade angle is the entire output being consumed by the rotation of the propeller, and normal forward running is possible. be. On the other hand, the propulsion shaft (1
) starts in reverse, that is, in the direction of arrow (1), the reversing actuator (7) first presses the passive metal fitting (5) as the 18th floor, hits the angle of attack setting stopper (8) as in the case of forward movement, and sets the grade. Then, in the second step, the propulsion shaft (1) drives the propeller in the opposite direction and the yacht moves backward.

この1時推進軸の廻転速度は直接的にヨツトの後退に関
与するので操船者の操縦は庵めて安易に行われるもので
このことが本発明の特長である。更に第1図に示す如く
グレード表面積の中心点(0)は転動軸(4)の中心線
を2)だけはずれて後方に位置するよう設計されている
。即ち((イ)は適当な値の偏位量で従って船内機を止
めてクラッチをVJd帆走に移った時はその水力により
ブレードは水流に対し平行になるように自動的に作動し
即ち仁の際迎角は零の状態になシ水抵抗は最少になシ円
滑な帆走が出来るものである。
Since the rotational speed of the 1 o'clock propulsion shaft is directly related to the retreat of the yacht, the boat operator can easily maneuver the boat, which is a feature of the present invention. Furthermore, as shown in FIG. 1, the center point (0) of the grade surface area is designed to be located behind the center line of the rolling shaft (4) by 2). In other words, ((a) is an appropriate amount of deviation. Therefore, when the inboard engine is stopped and the clutch is shifted to VJd sailing, the hydraulic force automatically moves the blades so that they are parallel to the water flow. The angle of attack is zero, water resistance is minimal, and smooth sailing is possible.

更に第3図は本発明の他の実力眞例を示すもので船内機
を前進中の状態のプロペラ部のfjc断面図である。又
第4図は第3図の実施のもので船内機を止め帆走中のプ
ロペラの状態を示す縦断面図である。両図面((於て(
1)は推進軸で(2)はプロペラハブであるが両者は従
来の如く固定されるのではなく自由に転動し得るよう1
65人されているのか本発明の特長の−っである。推進
軸(1)の部材上の表面には図示する如く或深さの溝が
ゆるやかなリード角を以て削成されているもので図中(
9)は1)II進溝、又■)は後進洋yで両溝はその頂
点α1)で合流しておる。即ち是等の溝は頂点Ql)を
分水嶺にして左右にそれぞれ分れて軸上に削成されてい
るものである。又推進軸−にには前後に自由に摺動し得
るスリーブ(12)が液入されてお9、更にこのスリー
ブには内方に向って図の如く作動小突起(13)が同一
部材で突出形成され、この作動小突起(13)は前記(
9)又は(II)の溝内にはめ込まれた状態で設置され
この小突起により推進軸の出力はスリーブ(12)に伝
えられるものである。
Furthermore, FIG. 3 shows another practical example of the present invention, and is a sectional view along fjc of the propeller section when the inboard motor is moving forward. FIG. 4 is a longitudinal cross-sectional view of the embodiment of FIG. 3, showing the state of the propeller when the inboard motor is stopped and sailing. Both drawings ((at(
1) is the propulsion shaft and (2) is the propeller hub, but both are not fixed as in the past, but are designed so that they can roll freely.
This is one of the features of the present invention, which has 65 people. On the surface of the member of the propulsion shaft (1), a groove of a certain depth is cut with a gentle lead angle as shown in the figure.
9) is the 1) II advancing groove, and ■) is the backward advancing groove y, and both grooves meet at their apex α1). In other words, these grooves are carved on the axis with the apex Ql) serving as a watershed and dividing into left and right sides. In addition, a sleeve (12) that can freely slide back and forth is filled with liquid in the propulsion shaft 9, and furthermore, this sleeve has an operating small protrusion (13) made of the same member facing inward as shown in the figure. The actuating small projection (13) is formed in a protruding manner.
9) or (II), and the output of the propulsion shaft is transmitted to the sleeve (12) by this small protrusion.

スリーブα2)の表面(Cは図示の如くラック(14)
が削成される0ラツクα4)はブレード(3)が2枚の
時は) スリーブ’(12)の表面に対応して2個所に、又ブレ
ードが3枚の時は3個所に対応して削成される。プレー
ト頁3)の内先端は図示の如く同一部材で平歯車α5)
を形成し是と前記スリーブのラックα4)とを噛み合せ
ている。α6)はブレード支持軸でプロペラハブ(2)
に懸架保持されグレードばこの輔を中心にして転動し得
るようになされておυブレードは立位および眼位の状態
になシ得るものである0又プロペラハブ(2)にはプv
−1−が眼位状態になった時是を収納し得るように眼位
収納切欠ぎα7)が形成されている。この実施例はこの
ような1,1.7造になってい乙。
The surface of the sleeve α2) (C is the rack (14) as shown)
When there are two blades (3), there are two places corresponding to the surface of the sleeve' (12), and when there are three blades, there are three places corresponding to the surface of the sleeve' (12). Will be deleted. The inner tip of the plate (page 3) is made of the same material as shown in the diagram, and is a spur gear α5).
, and is engaged with the rack α4) of the sleeve. α6) is the blade support shaft and propeller hub (2)
The propeller hub (2) is suspended from the propeller hub (2) so that it can roll around the blade.
An eye position storage notch α7) is formed to store the eye position when -1- is in the eye position state. This example has a 1.1.7 building like this.

この第3図、第4図の実施例の作動状況を説明すれば船
内(幾を止めてクラッチを切り帆走中はその水力によっ
てブレードに圧力が掛シ第4図の状態になり水の抵抗は
最少に々る。この時スリーブα2)は図の如く最右端に
押しやられ作動小突起α3)は溝頂点の分水嶺(n)の
位置にある。次に船内機により前進方向即ち矢印(3)
方向に推進軸を起動すれば先ずスリーブ■)の作動小突
起Q3)は前進II¥(9)に誘導されて図中左方に移
動し推進軸の回転モーメントは第1段階としてブレード
(3)を立て起すことのみに働きブレードはハブの切欠
き部に形成されたストッパー(8)に突き当る所まで起
される○即ち(8)の部分は迎角設定ストッパーとなり
この時ブレードは所定の迎角を得た状態になる。爾後は
第2段階として推進]1lllIの出力はプロペラの廻
転!駆動に全力消費される。
To explain the operating conditions of the embodiment shown in Figs. 3 and 4, when the boat is stopped, the clutch is turned off, and the boat is sailing, pressure is applied to the blades by the hydraulic force, and the state shown in Fig. 4 occurs, and the water resistance is reduced. At this time, the sleeve α2) is pushed to the rightmost end as shown in the figure, and the operating small protrusion α3) is located at the watershed (n) at the apex of the groove. Next, the inboard motor moves forward in the forward direction, i.e. arrow (3)
When the propulsion shaft is started in the direction, the operating small protrusion Q3) of the sleeve (■) is guided by the forward movement II (9) and moves to the left in the figure, and the rotational moment of the propulsion shaft is transferred to the blade (3) in the first stage. The blade is raised up until it hits the stopper (8) formed in the notch of the hub. In other words, the part (8) becomes the angle of attack setting stop, and at this time the blade is raised to the specified angle of attack. It becomes a cornered state. After that, it will be propelled as the second stage] The output of 1llllI is the rotation of the propeller! All power is consumed in driving.

次に第4図の帆jt中の状態から後退即ち推進軸(1)
を矢印(1)方向に起動すればスリーブの作動小突起α
3)は後退溝(10)に誘導されるので推進軸出力の発
生モーメントにより先ず第1段階としてブレードの立て
起しを行い、然る後に第2段階として推進軸の出力全部
がプロペラの逆回転駆動に消費されるもので後退の場合
も前記前進と全く同様に作動し円滑な後退操船が出来る
ものである。
Next, move backward from the sail jt state in Figure 4, that is, the propulsion shaft (1)
When activated in the direction of arrow (1), the small operating protrusion α on the sleeve
3) is guided to the retreat groove (10), so the moment generated by the propulsion shaft output causes the blade to rise in the first step, and then in the second step, the entire propulsion shaft output rotates the propeller in the opposite direction. It is consumed for driving, and operates in exactly the same way as the forward motion when reversing, allowing smooth reverse maneuvering.

以上詳述した如く本発明は帆走中にプロペラの水抵抗が
最少になった状態から規定のブレード迎角になシ推進軸
によシ全力駆動される状態に達する迄の過程に於て、先
ず推進軸出力の発生モーメントは第1段階としてブレー
ドの状態を規定の迎角になすととのみに働き、規定の仰
角になってはじめて第2段階として推進軸出力全部がフ
“ロベラの回転駆動に消費されるものである。このこと
は前述の如く前進の場合も後退の場合も全く同様で操船
者は前進後退を問わず常に意に沿う操船が可能に々るこ
とが本発明の持長である。
As described in detail above, the present invention first provides the following steps during the process from when the water resistance of the propeller is at its minimum during sailing to when the blade reaches a specified angle of attack and is fully driven by the propulsion shaft. In the first stage, the moment of generation of the propulsion shaft output acts only when the blade is brought to the specified angle of attack, and only when the angle of elevation is reached is the second stage, in which the entire propulsion shaft output is used to drive the rotation of the flaper. As mentioned above, this is exactly the same whether the vessel is moving forward or backward, and the advantage of the present invention is that the operator can always operate the vessel according to his/her wishes regardless of whether the vessel is moving forward or backward. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のプロペラ部の縦1所而図で
一般に2枚以上あるブレードの内説明のため唯1枚のみ
を図示した。 第2図は第1図の要部を判シ易くするため斜視的に表現
したものである。 第3図は本発明の他の実施例のプロペラ部の縦断面図で
船内機で前進中の状態のもの。 第4図は第3図の実施例のもので船内機を止め帆走中の
プロペラの状態を示す縦断面図。 1 推進軸 2、プロペラハブ 3 ブレード 48 プレート転動軸 5、受動金物 6 正転アクチェーター 7 逆転アクチェーター 8 迎角設定ストッパー 9、1)ii推進 溝0 後進溝 11 溝頂点 12 スリーブ 13、 作動小突起 14 ランク 158 平歯車 16 ブレード支持軸 17、 眼位収納切欠ぎ X 推進軸止廻転方向 Y 推進軸通廻転方向 2 ブレード中心点偏位量 0 ブレード表面積中心点 手続補正書(自発) 1.事件の表示 昭和58年!侍許願第170367号 2 発明の名称 ヨツト帆走中に於ける船内機プロペラの抵抗を最少にす
る方法 3、補正をする者 事件との関係 特許出願人 (2)9頁14行と15行との間に別行を設は下記を加
入する。 「尚本発明は所謂ヨツトと称するものばかシでなく帆と
船内渫の両者を有する中型、大型の機帆船にも通用出来
ることは勿論である。」
FIG. 1 is a vertical view of a propeller section according to an embodiment of the present invention, and only one of the blades, which generally have two or more blades, is shown for explanation. FIG. 2 shows the main parts of FIG. 1 in a perspective view to make it easier to read. FIG. 3 is a longitudinal cross-sectional view of the propeller section of another embodiment of the present invention, which is in a state where the inboard engine is moving forward. FIG. 4 is a longitudinal sectional view showing the state of the propeller of the embodiment shown in FIG. 3 when the inboard engine is stopped and the propeller is sailing. 1 Propulsion shaft 2, propeller hub 3 Blade 48 Plate rolling shaft 5, passive hardware 6 Forward rotation actuator 7 Reverse actuator 8 Angle of attack setting stopper 9, 1) ii Propulsion groove 0 Reverse groove 11 Groove apex 12 Sleeve 13, Small operating projection 14 Rank 158 Spur gear 16 Blade support shaft 17, Eye position storage notch Incident display 1982! Samurai Application No. 170367 2 Name of the invention Method for minimizing the resistance of the inboard propeller during sailing 3. Relationship with the amended case Patent applicant (2) Page 9, lines 14 and 15 If you create a separate line in between, add the following. ``It goes without saying that the present invention is applicable not only to so-called yachts, but also to medium-sized and large-sized sailboats that have both sails and an inboard boat.''

Claims (1)

【特許請求の範囲】[Claims] ヨツト帆走中にプロペラのグレード迎角を変更して水の
抵抗を最少になし得る如くなした船内機プロペラに於て
、機走中は前進および後退前れの場合も同様に推進軸始
動の初期に於てその出力の回転モーメントによシ第1段
階で先ずグレード迎角を規定通DK修正保持し、然る後
第2段階として推進軸出力が全カプロペラに伝達し得る
よう2段階的に出力伝達をなし得る如くしたことを特長
としたヨツト帆走中に於ける船内機プロペラの抵抗を最
少にする方法
For inboard propellers, which are designed to minimize water resistance by changing the angle of attack of the propeller while the yacht is sailing, the initial stage of the propulsion shaft start is also In the first stage, the grade angle of attack is first corrected and maintained as specified by the rotational moment of the output, and then in the second stage, the output is output in two stages so that the propulsion shaft output can be transmitted to all coupler propellers. A method for minimizing the resistance of an inboard propeller during sailing on a yacht, which is characterized by making transmission possible.
JP17036783A 1983-09-13 1983-09-13 Method of minimizing resistance of propeller of inboard engine under sail of yacht Pending JPS6060095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17036783A JPS6060095A (en) 1983-09-13 1983-09-13 Method of minimizing resistance of propeller of inboard engine under sail of yacht

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17036783A JPS6060095A (en) 1983-09-13 1983-09-13 Method of minimizing resistance of propeller of inboard engine under sail of yacht

Publications (1)

Publication Number Publication Date
JPS6060095A true JPS6060095A (en) 1985-04-06

Family

ID=15903617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17036783A Pending JPS6060095A (en) 1983-09-13 1983-09-13 Method of minimizing resistance of propeller of inboard engine under sail of yacht

Country Status (1)

Country Link
JP (1) JPS6060095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018086663A1 (en) * 2016-11-14 2018-05-17 Bsi A/S A folding propeller with a defined rake

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018086663A1 (en) * 2016-11-14 2018-05-17 Bsi A/S A folding propeller with a defined rake

Similar Documents

Publication Publication Date Title
JP4299968B2 (en) Propulsion system
JPH0255275B2 (en)
JPS6315200B2 (en)
US4698036A (en) Propeller drive for boats
US20040163579A1 (en) Twin-rudder system for large ship
JPS6060095A (en) Method of minimizing resistance of propeller of inboard engine under sail of yacht
US5389016A (en) Steering system for planing watercrafts
KR20000048261A (en) Azimuth propeller apparatus and ship equipped with the apparatus
JP2515864Y2 (en) Boat pod-type counter-rotating propeller
JPS6036998B2 (en) braking rudder device
JPH11505485A (en) A water jet propulsion device for a watercraft equipped with a control member for changing the forward / reverse direction of the water jet
US3954084A (en) Counter-rotating marine propulsion system
US3412703A (en) Steering of vessels fitted with propulsive nozzles
JP2766707B2 (en) Marine propeller device with idle propeller
JPH0230920B2 (en) HAKUYOPUROPERASOCHI
JP2004042688A (en) Rudder angle control system of ship having two rudders
JPH0840369A (en) Propeller for ship
SU1729906A1 (en) Steering arrangement
US3693575A (en) Ship{3 s drive and method of operating the same
JPH0214238B2 (en)
JP2904789B2 (en) Ship propulsion
WO2012007709A1 (en) Integrated lateral thrust for marine craft
JP7127798B2 (en) Ship maneuvering method for shortening stopping distance and ship maneuvering device for shortening stopping distance
JPS58211994A (en) Double inverted propeller ship
RU10675U1 (en) SHIP MOTOR-STEERING DEVICE