JPS6059660A - Manufacture of porous electrode plate for fuel cell - Google Patents

Manufacture of porous electrode plate for fuel cell

Info

Publication number
JPS6059660A
JPS6059660A JP58166684A JP16668483A JPS6059660A JP S6059660 A JPS6059660 A JP S6059660A JP 58166684 A JP58166684 A JP 58166684A JP 16668483 A JP16668483 A JP 16668483A JP S6059660 A JPS6059660 A JP S6059660A
Authority
JP
Japan
Prior art keywords
electrode plate
porous electrode
carbon fibers
fuel cell
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58166684A
Other languages
Japanese (ja)
Other versions
JPH0414464B2 (en
Inventor
Kenji Enomoto
榎本 賢司
Toshiaki Takemoto
嶽本 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58166684A priority Critical patent/JPS6059660A/en
Publication of JPS6059660A publication Critical patent/JPS6059660A/en
Publication of JPH0414464B2 publication Critical patent/JPH0414464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide by easy operation a porous electrode plate having good gas diffusion capability and mechanical strength by filtering the mixture of carbon fibers and binder and applying carbonization treatment. CONSTITUTION:Carbon fibers are mixed in carboxymethylcellulose solution and stirred to make slurry. Flake-shaped phenol resin powder is mixed in the slurry and stirred. The lurry is filtered through a metal mesh of 100-200 mesh to form a mixed mat of carbon fiber and phenol resin on the metal mesh. The mat is dried by heating to obtain a dried mat. Phenol resin in the mat is cured in a heat press process to obtain a carbon plate having a specified thickness and good mechanical strength. Then cured phenol resin is carbonized by heating in an atmosphere of nitrogen at 500 deg.C or more.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池用多孔質電極板の製造方法に係シ、特
に炭素繊維を主材料とし、平板部とその片■にガス3i
u * k ’Ia成する複数の突条部を一体成形して
なる燃料電池用多孔質電極板の製造方法に関すめ。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for manufacturing a porous electrode plate for a fuel cell, and in particular to a method for manufacturing a porous electrode plate for a fuel cell, in particular a porous electrode plate made of carbon fiber as a main material, and a flat plate portion and a piece thereof containing gas 3i.
This invention relates to a method for manufacturing a porous electrode plate for a fuel cell, which is formed by integrally molding a plurality of protrusions forming u*k'Ia.

〔発明の背景〕[Background of the invention]

従来、燃料電池用多孔質電極板は第1図に示すように炭
素繊維、炭素粉、炭素粒などの炭素材料を主材料1とし
、これにフェノール樹脂などのバインダー2會混入し、
ヒートプレスなどによシバインダー2を硬化結着させて
、平板部3と、その片面にガス流路4を形成する複数の
突条部5を一体成形した後、これを高温で炭化焼成して
製造されている。この場合、前記主材料1に炭素粉、炭
素粒などを使用すると、主材料自身の強度が低いため、
多孔質電極板の全体の強度が低くなシ脆くなるため破損
など使用上問題が多い。そこで、強反ヲ向上させるため
、主材料として炭素繊維材料を使用することが多い。
Conventionally, as shown in Fig. 1, porous electrode plates for fuel cells have a carbon material such as carbon fiber, carbon powder, or carbon particles as the main material 1, and a binder such as phenol resin 2 mixed therein.
The binder 2 is hardened and bonded using a heat press or the like, and a flat plate part 3 and a plurality of protrusions 5 forming gas passages 4 on one side thereof are integrally molded, and then this is carbonized and fired at a high temperature. Manufactured. In this case, if carbon powder, carbon grains, etc. are used as the main material 1, the strength of the main material itself is low;
Since the overall strength of the porous electrode plate is low and it becomes brittle, there are many problems in use such as breakage. Therefore, carbon fiber material is often used as the main material in order to improve the strength and rebound.

炭素繊維を用いる従来の電極板の製造法?第2図および
第3図によって説明する。第2図において、炭素繊維を
適当に分散させた分散水浴液6をフィルター7を介して
濾過し、フィルター上7に炭素繊維のマット8(+−形
成する。
How to manufacture conventional electrode plates using carbon fiber? This will be explained with reference to FIGS. 2 and 3. In FIG. 2, a dispersion bath liquid 6 in which carbon fibers are appropriately dispersed is filtered through a filter 7, and a mat 8 (+-) of carbon fibers is formed on the filter 7.

次にフィルター7上に形成したマット8を加熱し、水分
?蒸発させて乾燥マットができる。この乾燥マットしバ
インダーとして、例えばフェノール樹脂を溶剤に溶かし
た溶液を均一に浸漬させた後、ヒートプレスにより加圧
、加熱して/<インダーを硬化させ、ガス流路を構成さ
せるkめの切削作業上行い、さらに不活性気体中あるい
は真空中において高温で加熱して充分に炭化踵多孔質電
極板とする。これらの工程は第3図に示す通シでおる。
Next, the mat 8 formed on the filter 7 is heated to remove moisture. Evaporate to form a dry mat. After this dry matting is uniformly immersed in a solution of phenol resin dissolved in a solvent as a binder, the inder is hardened by applying pressure and heating with a heat press, and the k-th cutting is performed to form the gas flow path. This is done during the work, and then heated at a high temperature in an inert gas or vacuum to form a sufficiently carbonized heel porous electrode plate. These steps are carried out as shown in FIG.

しかし、このような従来の製造法では、ツクインダー?
溶解するための有機溶剤を用いるために有機溶剤の揮発
等による作業環境の問題の他に第40 図に示すように炭素繊維■の隙間9にバインダー3の溶
液が毛管現板によシ埋められるため電極板としてのガス
拡散性が低下する。一方ガス拡散性の低下?防止するf
cめにバインダー浴ri、ヲ少なくすると電極板として
の必要な強度が得られない。
However, with this conventional manufacturing method, is it possible to make a tsubinder?
Since an organic solvent is used for dissolution, in addition to problems in the working environment due to the volatilization of the organic solvent, the binder 3 solution is filled in the gap 9 between the carbon fibers with a capillary plate as shown in Figure 40. Therefore, gas diffusivity as an electrode plate is reduced. On the other hand, decrease in gas diffusivity? prevent f
If the binder bath ri and wo are reduced in c, the strength necessary for the electrode plate cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、製作が簡単で、しかもガス拡散性及び
機械的強度に侵れた燃料電池用多孔質電極板の製造方法
を提供することにある。
An object of the present invention is to provide a method for manufacturing a porous electrode plate for a fuel cell that is easy to manufacture and has good gas diffusivity and mechanical strength.

〔発明の概要〕[Summary of the invention]

この目的?達成するため、本発明は、粉粒状のバインダ
ーを主材料である炭素繊維とあらかじめ混線処理し、少
なくともバインダーと主材料を含む混合物を濾過成形し
、バインダー勿粉粒状に均等分布させて、電極板のガス
拡散性及び強械的強度葡良好にしたことを特徴とする。
This purpose? In order to achieve this, the present invention pre-intermixes a powdery binder with carbon fiber, which is the main material, filters and molds the mixture containing at least the binder and the main material, and evenly distributes the binder in the form of powdery particles to form an electrode plate. It is characterized by good gas diffusivity and mechanical strength.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の製造法の一例を示す工程図でおって、
濾過工程の前に材料分散工程會有する。
FIG. 5 is a process diagram showing an example of the manufacturing method of the present invention,
Before the filtration process, there is a material dispersion process.

この材料分散工程において、例えば長さ0.5〜10■
、太さlO〜30μの炭素繊維?zCMC(カルボキシ
メチルセルロース)分散剤0.1〜5チの水溶液中に1
〜3%混合、攪拌し、スラリー\ とする、′このスラリーに常温の7レーク状のフェノー
ル樹脂の粉末全5〜50チの範囲で混合、更に攪拌する
。次に濾過工程において、スジリー全100〜200メ
ツシュの金網を介して濾過し、金網上に炭素繊維とフェ
ノール樹脂の混合マットを形成させる。このマツ)(1
1−乾燥工程において、100C〜130Cで加熱し、
残っている水分を蒸発して乾燥したマツトゲ得る。
In this material dispersion step, for example, the length is 0.5 to 10 cm.
, carbon fiber with thickness lO~30μ? zCMC (carboxymethyl cellulose) dispersant 1 in an aqueous solution of 0.1 to 5
~3% is mixed and stirred to form a slurry. 'To this slurry, a total of 5 to 50 pieces of phenol resin powder in the form of 7 lakes at room temperature is mixed and further stirred. Next, in the filtration step, the mixture is filtered through a wire mesh having 100 to 200 meshes to form a mixed mat of carbon fiber and phenolic resin on the wire mesh. This pine) (1
1- In the drying step, heat at 100C to 130C,
Evaporate the remaining water and obtain dry pine thorns.

ヒートプレス工程において、150〜200Cの温度で
5〜20Kf/ctAの圧力を加えて1〜3hr放置し
、マット中のフェノール樹脂を熱硬化させて強度を向上
させて所定厚の炭素板?得る。
In the heat press process, a pressure of 5 to 20 Kf/ctA is applied at a temperature of 150 to 200 C and left for 1 to 3 hours to heat cure the phenolic resin in the mat, improve its strength, and form a carbon plate of a predetermined thickness. obtain.

この後、電極板のガス流路を構成するように前記炭素板
に機械による切削加工を行い、続いてN2ガス中で50
0C以上の温度で加熱して硬化したフェノール樹脂を炭
化する。
After that, the carbon plate was machined to form a gas flow path of the electrode plate, and then the carbon plate was cut for 50 minutes in N2 gas.
The hardened phenol resin is carbonized by heating at a temperature of 0C or higher.

第5図に示すような製造方法では濾過すべきスラリー中
のフェノール樹脂粉末の混合害U合カニ5重it%以下
では得られる電極板の強度が低くすき゛、また、50重
量多以上では電極板が緻密になシすぎてガス拡散が悪く
なる。
In the manufacturing method shown in Figure 5, if the mixing damage of the phenolic resin powder in the slurry to be filtered is less than 5% by weight, the strength of the electrode plate obtained will be low, and if the weight is more than 50% by weight, the electrode plate will be weak. If they are too dense, gas diffusion will be poor.

ま飢前記フィルター用の金網が100メツシユ以下にな
ると粉末状フェノール樹脂が網目を通して流出し、20
0メツシュ以上にすると0鼠過抵抗が高すぎてマット形
成に置時間ケ要する。
When the wire mesh for the filter becomes less than 100 meshes, powdered phenol resin flows out through the mesh, and
If the mesh is 0 or more, the mesh resistance will be too high and it will take a long time to form a mat.

本拠施例において、材料分散工程において粒状のバイン
ダーがスラリー中に均等に分散され、その状態でマット
が形成される。したがって第6図に示すように主として
炭素繊維1の又叉点付近にバインダー2が結着されてい
るので強度?維持しつつ炭素繊維を間に充分な間隙9が
形成され、カス拡散上阻害することがない、また本美施
fllに丸・いて、濾過後に行う)くインダー処理工程
全省略でき工程数が減少する。
In the main embodiment, the particulate binder is uniformly dispersed in the slurry in the material dispersion step, and a mat is formed in this state. Therefore, as shown in FIG. 6, since the binder 2 is mainly bound to the vicinity of the fork points of the carbon fibers 1, the strength is high. Sufficient gaps 9 are formed between the carbon fibers while maintaining the carbon fibers, so there is no obstruction to scum diffusion.In addition, the inder treatment process (which is carried out after filtration) can be completely omitted, reducing the number of processes. do.

第7図は本発明の製造方法の他の実施f!l’に示し、
バインメー処理工程において炭素繊維にノボラツり型フ
ェノール樹脂’e混合結着させる。次いで樹脂が結着さ
れた状態の炭素繊維ケ水溶液中に分散させる。次いで濾
過工程、乾燥工程、ヒートプレス工程および炭化処理1
8ケ経て所定の前極板が形成される。
FIG. 7 shows another implementation f of the manufacturing method of the present invention! As shown in l',
In the banime treatment process, a novolatile phenolic resin is mixed and bonded to carbon fibers. Next, the carbon fibers bound with resin are dispersed in an aqueous solution. Next, a filtration process, a drying process, a heat press process and a carbonization process 1
After eight steps, a predetermined front electrode plate is formed.

本実施例では濾過工程において炭素繊維分散用水溶液の
みケ通過させ、炭素繊維の通過を阻止するだけでよい。
In this embodiment, in the filtration step, it is sufficient to allow only the aqueous solution for dispersing carbon fibers to pass through and to prevent the carbon fibers from passing through.

したがってフィルターの目荀粗くすることができ、濾過
速度を速くできるので電極板の製造時間を短かくするこ
とができる。また樹脂等のバインダーは炭素繊維に結着
され、水溶液中には溶解ないし分散しない状態で使用で
きるので炭素繊維に必要なバインダー量のみを効率的に
用いることができる。
Therefore, the mesh of the filter can be made coarser, and the filtration speed can be increased, so that the manufacturing time of the electrode plate can be shortened. Further, since the binder such as a resin is bound to the carbon fibers and can be used without being dissolved or dispersed in the aqueous solution, only the amount of binder required for the carbon fibers can be used efficiently.

実施例1 繊維長2m、太さ11μの炭素繊維を使用し、CMCの
工ヴ分散溶液に混合し、炭素繊維分が2重量%のスラリ
ーとし1ヒ。次にスラリー罠ノボラックフェノール樹脂
臀末4o重量%を加え200メツシユの金網を使い濾過
成形し、20(1゜10 K−q / cMの条件でヒ
ートプレスした後、800Cで炭化した。得られた電極
板のガス拡散のバラツキは5%以下であった。
Example 1 Carbon fibers with a fiber length of 2 m and a thickness of 11 μm were used and mixed with a CMC technology dispersion solution to form a slurry with a carbon fiber content of 2% by weight. Next, 40% by weight of slurry trap novolac phenolic resin butt was added, filtered and molded using a 200 mesh wire mesh, heat pressed under the conditions of 20 (1°10 K-q/cM), and then carbonized at 800C. The variation in gas diffusion of the electrode plate was 5% or less.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、バインダーの分布が均等になるので強
度が向上し、ガス拡散の良好な電極板勿簡単な方法で得
ることができる。
According to the present invention, since the binder is evenly distributed, the strength is improved and an electrode plate with good gas diffusion can be obtained by a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多孔質電極板の断面図、第2図は濾過成形法の
原理を示す説明図、第3図は従来の多孔′X電極基板製
造工程を示す工程図、第4図は従来の電極基板の内部構
造の一部ケ示す拡大図、第5図は本発明による電極基板
製造工程の一例?示す工程図、第6図は本発明による方
法で製造した電極基板の内部構造の一部金示す拡大図、
第7図は本発明による電極板製造工程の他の例葡示す工
程図である。 O 1・・・炭素繊維、2・・・バインダー、3・・・平板
部、4・・・ガス流路、5・・・突条部、6・・・分散
水浴液、7・・・フィルター、8・・・マット、9・・
・繊維間の隙間。 躬4層 活劇 高 7 図
Figure 1 is a cross-sectional view of a porous electrode plate, Figure 2 is an explanatory diagram showing the principle of the filtration molding method, Figure 3 is a process diagram showing the conventional porous X electrode substrate manufacturing process, and Figure 4 is a diagram of the conventional porous electrode plate. FIG. 5, an enlarged view showing a part of the internal structure of the electrode substrate, is an example of the electrode substrate manufacturing process according to the present invention. 6 is an enlarged view showing a part of the internal structure of the electrode substrate manufactured by the method according to the present invention,
FIG. 7 is a process diagram showing another example of the electrode plate manufacturing process according to the present invention. O 1... Carbon fiber, 2... Binder, 3... Flat plate part, 4... Gas flow path, 5... Projection part, 6... Dispersion water bath liquid, 7... Filter , 8...Matt, 9...
・Gap between fibers. Tsumugi 4 Tier Katsugeki High School 7 Figure

Claims (1)

【特許請求の範囲】 工、炭素繊維とバインダとを炭化処理して平板部とその
片面にガス流路を構成するための複数の突条部を形成す
る燃料電池用多孔質電極板の製造方法において、少なく
とも炭素繊維とバインダとを含む混合物を濾過成形後に
炭化処理することを特徴とする燃料電池用多孔質電極板
の製造方法。 2、特許請求の範囲第1項において、前記混合物が、炭
素繊維と分散剤と樹脂粉末とを混合したスラリーである
ことを特徴とする燃料電池用多孔質電極板の製造方法。 3、特許請求の範囲第1項において、前記混合物が炭素
繊維に樹脂全混合結着させ、これ?水中に分散させたも
のであることt特徴とする燃料電池用多孔質電極板の製
造方法。 4、特許請求の範囲第1項乃至第3項のいずれかにおい
て、前記樹脂がノボラック屋フェノール樹脂であること
を特徴とする燃料電池用多孔質電極板の製造方法。
[Claims] A method for producing a porous electrode plate for a fuel cell, which comprises carbonizing carbon fibers and a binder to form a flat plate portion and a plurality of protrusions on one side of the flat plate portion for forming gas flow paths. A method for producing a porous electrode plate for a fuel cell, which comprises carbonizing a mixture containing at least carbon fibers and a binder after filtration and molding. 2. The method of manufacturing a porous electrode plate for a fuel cell according to claim 1, wherein the mixture is a slurry of carbon fibers, a dispersant, and resin powder. 3. In claim 1, the mixture binds the entire resin mixture to the carbon fibers, and this? A method for producing a porous electrode plate for a fuel cell, characterized in that the porous electrode plate is dispersed in water. 4. A method for producing a porous electrode plate for a fuel cell according to any one of claims 1 to 3, wherein the resin is a novolak phenolic resin.
JP58166684A 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell Granted JPS6059660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166684A JPS6059660A (en) 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166684A JPS6059660A (en) 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell

Publications (2)

Publication Number Publication Date
JPS6059660A true JPS6059660A (en) 1985-04-06
JPH0414464B2 JPH0414464B2 (en) 1992-03-12

Family

ID=15835814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166684A Granted JPS6059660A (en) 1983-09-12 1983-09-12 Manufacture of porous electrode plate for fuel cell

Country Status (1)

Country Link
JP (1) JPS6059660A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129068A (en) * 1988-11-10 1990-05-17 Nippon Steel Chem Co Ltd Production of carbon-fiber reinforced carbon material
US7271974B2 (en) 2004-07-28 2007-09-18 Hitachi Global Storage Technologies Netherlands B.V. Method of self servo write with low density gas
JP2011192653A (en) * 2006-03-17 2011-09-29 Gm Global Technology Operations Inc Gas diffusion media, and fuel cell
WO2012102195A1 (en) * 2011-01-27 2012-08-02 三菱レイヨン株式会社 Porous electrode substrate, method for producing same, precursor sheet, membrane electrode assembly, and solid polymer fuel cell
CN115162053A (en) * 2022-07-26 2022-10-11 陕西煤业化工技术研究院有限责任公司 High-conductivity carbon fiber paper and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441295A (en) * 1977-08-15 1979-04-02 United Technologies Corp Method of fabricating porous carbon sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441295A (en) * 1977-08-15 1979-04-02 United Technologies Corp Method of fabricating porous carbon sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129068A (en) * 1988-11-10 1990-05-17 Nippon Steel Chem Co Ltd Production of carbon-fiber reinforced carbon material
JPH0521863B2 (en) * 1988-11-10 1993-03-25 Shinnitsutetsu Kagaku Kk
US7271974B2 (en) 2004-07-28 2007-09-18 Hitachi Global Storage Technologies Netherlands B.V. Method of self servo write with low density gas
JP2011192653A (en) * 2006-03-17 2011-09-29 Gm Global Technology Operations Inc Gas diffusion media, and fuel cell
WO2012102195A1 (en) * 2011-01-27 2012-08-02 三菱レイヨン株式会社 Porous electrode substrate, method for producing same, precursor sheet, membrane electrode assembly, and solid polymer fuel cell
JP5458168B2 (en) * 2011-01-27 2014-04-02 三菱レイヨン株式会社 Method for producing porous electrode substrate
US9825304B2 (en) 2011-01-27 2017-11-21 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
CN115162053A (en) * 2022-07-26 2022-10-11 陕西煤业化工技术研究院有限责任公司 High-conductivity carbon fiber paper and preparation method thereof
CN115162053B (en) * 2022-07-26 2023-08-29 陕西煤业化工技术研究院有限责任公司 High-conductivity carbon fiber paper and preparation method thereof

Also Published As

Publication number Publication date
JPH0414464B2 (en) 1992-03-12

Similar Documents

Publication Publication Date Title
DE60318937T3 (en) USE OF A WAVE FILTER FOR EMISSION CONTROL
US4434206A (en) Shaped articles of porous carbon fibers
CN107200599B (en) Porous alumina ceramic and preparation method and application thereof
DE10104882B4 (en) Activated carbon moldings, process for its preparation, its use and process for the regeneration thereof
CN101611509B (en) Electrode substrate for electrochemical cell from carbon and cross-linkable resin fibers
EP0796830A1 (en) Porous permeable body and method for its preparation
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
DE3037199A1 (en) METHOD FOR PRODUCING MOLDED BODIES FROM SILICON CARBIDE OR MOLDED BODIES FROM GRAPHITE OR GRAPHITE-LIKE MATERIAL WITH A SURFACE CONSISTING OF SILICON CARBIDE
DE2305105B2 (en) Porous heating element
DE102019002154A1 (en) Coating material; Outer periphery coated silicon carbide based honeycomb structure and method for coating the outer periphery of a silicon carbide based honeycomb structure
JPS6059660A (en) Manufacture of porous electrode plate for fuel cell
JPS6121973A (en) Manufacture of carbon fiber reinforced carbon material
DE2348282A1 (en) PROCESS FOR THE PRODUCTION OF GRAPHITE PRESS POWDER AND GRAPHITE COMPOUND FOR THE PRODUCTION OF GRAPHITE SHAPED BODIES
DE3623881A1 (en) METHOD FOR PRODUCING A CARBON GRAPHITE COMPONENT FOR AN ELECTROCHEMICAL CELL, AND CARBON GRAPHITE STORAGE LAYER PRODUCED BY THIS METHOD
JPH01160867A (en) Production of electrically conductive material
DE102014003835B4 (en) Honeycomb structure
JPS63222080A (en) Manufacture of carbon fiber porous body
DE10343438B4 (en) Process for the production of ceramic particle filters and ceramic particle filters
JPH0258369B2 (en)
GB2069988A (en) Method of producing filter pads
JPH05325984A (en) Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell
JP3023748B2 (en) Carbon-glass composite carbonized sheet member and method of manufacturing the same
JPH01253164A (en) Fuel cell board resistant against corrosion and its manufacture
JPS59141170A (en) Electrode substrate for fuel cell and manufacturing method thereof
JPH0129891B2 (en)