JPS6059508B2 - Structure of continuous furnace workpiece removal part - Google Patents

Structure of continuous furnace workpiece removal part

Info

Publication number
JPS6059508B2
JPS6059508B2 JP5452681A JP5452681A JPS6059508B2 JP S6059508 B2 JPS6059508 B2 JP S6059508B2 JP 5452681 A JP5452681 A JP 5452681A JP 5452681 A JP5452681 A JP 5452681A JP S6059508 B2 JPS6059508 B2 JP S6059508B2
Authority
JP
Japan
Prior art keywords
temperature
cooling pipe
frame curtain
conveyor
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5452681A
Other languages
Japanese (ja)
Other versions
JPS57169588A (en
Inventor
肇 武井
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP5452681A priority Critical patent/JPS6059508B2/en
Publication of JPS57169588A publication Critical patent/JPS57169588A/en
Publication of JPS6059508B2 publication Critical patent/JPS6059508B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は粉末冶金用焼結炉、金属部品のろう付炉など
、可燃性ガスのフレームカーテンを使用するトンネル炉
のワークの無酸化取出し部の構造に関するもので、冷却
管の長さを著しく短縮させることを可能としたものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a non-oxidizing take-out part of a workpiece in a tunnel furnace that uses a flame curtain of flammable gas, such as a sintering furnace for powder metallurgy and a brazing furnace for metal parts. This makes it possible to significantly shorten the length of the tube.

金属の粉末冶金用焼結炉を例として、この内容を説明
する。
This content will be explained using a sintering furnace for metal powder metallurgy as an example.

原料粉末一例えば鉄粉一を所定の形状に加圧成形された
成形品は、コンベアにより焼結炉内に送り込まれ、所定
の熱処理一例えば1100℃、3紛保持−を与えた後、
室温まで冷却されて焼結品となる。この熱結工程で重要
なことは、成形品中に酸化物が存在すれば焼結を阻害す
るために、前記の熱処理を無酸化状態で行なう必要があ
る。したがつて、炉内雰囲気は分解アンモニアなど環元
性ガスを使用して、処理中わすかに酸化した成形品の環
元と、焼結中の酸化防止を行なつている。環元性ガスは
可燃性であるために、通常炉芯管の出入口部で焼結させ
、フレームカーテンを形成させて、炉外空気の浸入に起
因する爆発を防いでいる。 炉芯管出口部の従来の構造
を第1図に示す。
A molded product obtained by pressure-molding raw material powder (e.g., iron powder) into a predetermined shape is sent into a sintering furnace by a conveyor, and after being subjected to a predetermined heat treatment (e.g., 1100°C, 3-powder holding),
It is cooled to room temperature and becomes a sintered product. What is important in this heat sintering process is that the heat treatment must be carried out in a non-oxidized state, since the presence of oxides in the molded product will inhibit sintering. Therefore, a cyclic gas such as decomposed ammonia is used in the furnace atmosphere to remove the cyclic elements of the molded product, which are slightly oxidized during processing, and to prevent oxidation during sintering. Since the cyclic gas is flammable, it is usually sintered at the entrance and exit of the furnace core tube to form a flame curtain to prevent explosions caused by infiltration of outside air. The conventional structure of the furnace core tube outlet section is shown in FIG.

耐熱鋼製メッシュベルトコンベア5上の焼結品1は、炉
芯管3から水冷した冷却管4を経て、落下開始位置8に
達する。焼結品はこの位置からコンベア上を滑り落ち、
シュート9により次工程に送られる。なお図中2は炉体
、6はコンベア駆動用ドラムを示す。この場合焼結品は
冷却管内で室温近くまで冷却された後、フレームカーテ
ン7によつて再び加熱される。この時焼結品の表面温度
が、この材料の酸化開始温度以上に昇温した場合には、
表面は酸化して暗灰色となり、製品の美観を著しく損す
る。 この酸化着色を防止するには、フレームカーテン
通過中の焼結品の温度を、酸化開始温度以下にすればよ
い。
The sintered product 1 on the heat-resistant steel mesh belt conveyor 5 passes from the furnace core tube 3 to the water-cooled cooling tube 4 and reaches a fall start position 8. From this position, the sintered product slides down on the conveyor,
The chute 9 sends it to the next process. In the figure, 2 indicates a furnace body, and 6 indicates a conveyor driving drum. In this case, the sintered product is cooled in the cooling tube to near room temperature and then heated again by the frame curtain 7. At this time, if the surface temperature of the sintered product rises above the oxidation start temperature of this material,
The surface becomes dark gray due to oxidation, which significantly impairs the beauty of the product. In order to prevent this oxidation coloring, the temperature of the sintered product passing through the frame curtain may be lowered to below the oxidation start temperature.

この温度は、フレームカーテン通過直前の温度と、通過
中の温度上昇の和となる。したがつて酸化防止法として
は、(1)フレームカーテン通過直前の焼結品の温度を
下げる、(2)フレームカーテン通過時の温度上昇を小
とする、の2つの方向に分けられる。従来の方法は(1
)に属しており、雰囲気ガスの供給量を増して、フレー
ムカーテンの位置を出口端に近すけ、冷却部の有効長を
増すか、または冷却管の長さを延長する方法が採られて
いた。本発明法は従来法とは異なり、前記(2)に対応
するものてある。
This temperature is the sum of the temperature immediately before passing through the frame curtain and the temperature rise during passing. Therefore, methods for preventing oxidation can be divided into two methods: (1) lowering the temperature of the sintered product just before it passes through the frame curtain, and (2) minimizing the temperature rise when it passes through the frame curtain. The conventional method is (1
), the method used was to increase the supply of atmospheric gas, move the frame curtain closer to the outlet end, increase the effective length of the cooling section, or extend the length of the cooling pipe. . The method of the present invention is different from the conventional method and corresponds to the above (2).

本発明法の冷却管出口部の構造を第2図に示した。本図
より判るように、従来法の冷却管の先端に、10で示し
たカバーを取付けたものである。このようにすることに
より、フレームカーテンの位置を、落下開始点よりも低
くすることができるために、焼結品はコンベアから滑り
落る間にフレームカーテンを通過することができる。し
たがつてこの部分での昇温は無視できる程度となり、従
来法によるこの昇温量を冷却するに相当した冷却管長さ
の短縮が可能となる。またこのほか雰囲気ガスの使用量
の節減も可能となる。本発明の内容を、予め行つた実験
の内容から説明する。実験 第1図に示した従来形状の出口部において、冷却管4の
内寸法は、巾250Tn1高さ10h1長さ30mとし
、コンベアの送り速度100m/分、雰囲気は分解アン
モニアガスとし、流量は21d/hとした。
The structure of the outlet of the cooling pipe according to the present invention is shown in FIG. As can be seen from this figure, a cover shown at 10 is attached to the tip of the cooling pipe in the conventional method. In this way, the position of the frame curtain can be lower than the starting point of the fall, so that the sintered product can pass through the frame curtain while sliding down from the conveyor. Therefore, the temperature increase in this portion becomes negligible, and it becomes possible to shorten the length of the cooling pipe by an amount corresponding to the amount of temperature increase in the conventional method. In addition, it is also possible to reduce the amount of atmospheric gas used. The content of the present invention will be explained from the content of experiments conducted in advance. Experiment In the exit section of the conventional shape shown in Fig. 1, the internal dimensions of the cooling pipe 4 are width 250Tn1 height 10h1 length 30m, conveyor feed speed 100m/min, atmosphere is decomposed ammonia gas, and flow rate is 21d. /h.

ワークとして直径5『、厚さ約1−の鉄製焼結品を使用
して、冷却管内の焼結品の冷却曲線を求めた。その結果
を第3図に示した。冷却管入口部て約600℃であつた
焼結品は次第に降温して、入口より約1.7rrI.の
位置22で、酸化開始温度21(185℃)に達した。
その後フレームカーテンによる加熱により、110℃を
最低点とし再び昇温し、23に示した極大点を生じた。
フレームカーテンによる加熱時間は約2分、昇温量は1
00℃であり、極大値の温度は210℃であつた。取出
され.た品物は全数に表面酸化による変色が認められた
。従来法にて無酸化状態で焼結品を取出すには、焼結品
の酸化雰囲気中ての最高温度、即ちフレームカーテン中
の最高温度23を、酸化開始温度以.下にする必要があ
る。
A sintered iron product with a diameter of 5" and a thickness of about 1" was used as a workpiece, and a cooling curve of the sintered product in the cooling tube was determined. The results are shown in Figure 3. The temperature of the sintered product, which was about 600°C at the cooling pipe entrance, gradually decreased to about 1.7rrI. At position 22, the oxidation start temperature 21 (185°C) was reached.
Thereafter, by heating with a frame curtain, the temperature was raised again from the lowest point to 110° C., and the maximum point shown in 23 was produced.
The heating time using the frame curtain is approximately 2 minutes, and the amount of temperature increase is 1
00°C, and the maximum temperature was 210°C. It was taken out. Discoloration due to surface oxidation was observed in all items. In order to take out the sintered product in a non-oxidized state using the conventional method, the maximum temperature of the sintered product in the oxidizing atmosphere, that is, the maximum temperature 23 in the frame curtain, must be lower than the oxidation start temperature. need to be lowered.

したがつて酸化開始温度一185℃−から昇温量−10
0℃−を差引いた温度−85℃一以下にまで、予め冷却
しておく必要がある。この限界は図中24で示した位置
となり、必要な冷却管の長さ一正確には、冷却管入口か
らフレー・ムカーテンまでの距離−は3.5m以上とな
る。これに冷却管出口からドラム端部まての距離−0.
3m−を加えると、両者の和は3.8m以上を必要とす
ることが判明した。本発明の形状とすることにより、焼
結品がフレームカーテンを通過する時間は、1秒以下と
なるので、前記実験の加熱時間と昇温量から、本方式に
おける昇温量は1℃以下と推定され、充分無視できる量
となる。
Therefore, the temperature increase from the oxidation start temperature -185°C -10
It is necessary to cool it in advance to a temperature below -85°C minus 0°C. This limit is at the position indicated by 24 in the figure, and the required length of the cooling pipe, to be more precise, the distance from the cooling pipe entrance to the frame curtain, is 3.5 m or more. Add to this the distance from the cooling pipe outlet to the end of the drum -0.
It was found that by adding 3m-, the sum of both requires 3.8m or more. By adopting the shape of the present invention, the time for the sintered product to pass through the frame curtain is less than 1 second, so from the heating time and amount of temperature increase in the above experiment, the amount of temperature increase in this method is 1°C or less. It is estimated that the amount is sufficiently negligible.

したがつて無酸化状態で焼結品を取出す最小限の長さ、
即ち冷却管入口から落下開始点までの距離の限界値は、
第3図の22で示した点−1.7jL−となる。これに
カバー部の寸法を加えて、20TrL程度となる。この
ことは前記の従ノ来形状の3.8wLに対し、大巾な長
さの短縮が可能となり、設備費用および床面積を節約で
きる。また本発明により、雰囲気ガス使用量の節約も可
能となる。第4図に従来形状の冷却管出口附近のガスの
流れを模型的に示した。炉芯管から流出・した比較的高
温の雰囲気ガス11は、冷却管中を端部に向つて流れる
。これに対し外気12は、雰囲気ガスよりも低温である
ために、冷却管の底面に沿つて管の奥部に向つて流入す
る。即ち管内は、上部に雰囲気ガス、底部に外気が互に
反対方”向に流れ、両者が混在して可燃組成となつた区
域14で燃焼してフレームカーテンを形成する。燃焼し
たガス15は出口部上端より管外に放散する。この2重
層の発生は主として両ガスの温度差に起因しており、外
気の流入は避けられない。燃焼面と水平面との間の角1
3は、雰囲気ガスの流量により変化し、流量が小な場合
にはこの角も小となり、焼結品がフレームカーテンに接
する位置が、管の奥部に移動して、冷却管の有効長を減
少させる。したがつて雰囲気ガスの必要量は、フレーム
カーテンによる燃焼量と、前記のフレームカーテンに焼
結品が接する位置を、端部に近ずけるための必要量の和
となる。これに対して本発明法では、第5図に示したよ
うに、冷却管から流出した雰囲気ガスは、ケース内に上
部から溜り、ケースの下端部て低温の外気と接して、フ
レームカーテンを形成する。このように冷却管から流出
した雰囲気ガスは、ケース内で内部を密封する役を果し
、冷却管内への外気の流入は本質的に発生しない。した
がつて雰囲気ガスの必要量は、原理的には燃焼量を補充
するのみて足り、使用量の節減が可能となる。これらの
内容を実施例により具体的に説明する。実施例 第2図に示したように、前記実験使用したものと同一の
断面形状を有する冷却管の先端に、カバーを取付け、そ
の下端部を水平面とし、ドラム(直径300mn)の軸
心61よりも100?低位置とした。
Therefore, the minimum length to extract the sintered product in a non-oxidized state,
In other words, the limit value of the distance from the cooling pipe entrance to the starting point of the fall is:
This becomes the point -1.7jL- indicated by 22 in FIG. Adding the dimensions of the cover portion to this, the total amount becomes approximately 20TrL. This makes it possible to significantly shorten the length compared to the conventional shape of 3.8wL, thereby saving equipment costs and floor space. Furthermore, the present invention also makes it possible to save on the amount of atmospheric gas used. FIG. 4 schematically shows the flow of gas near the outlet of a conventionally shaped cooling pipe. The relatively high temperature atmospheric gas 11 flowing out of the furnace core tube flows in the cooling tube toward the end. On the other hand, since the outside air 12 has a lower temperature than the atmospheric gas, it flows along the bottom surface of the cooling pipe toward the inner part of the pipe. That is, inside the pipe, atmospheric gas flows at the top and outside air flows at the bottom in opposite directions, and both are mixed and burn in the zone 14, which has a flammable composition, forming a flame curtain.The burned gas 15 flows through the outlet. The double layer is mainly caused by the temperature difference between the two gases, and the inflow of outside air is unavoidable.The corner 1 between the combustion surface and the horizontal surface
3 changes depending on the flow rate of the atmospheric gas, and when the flow rate is small, this angle also becomes small, and the position where the sintered product contacts the frame curtain moves to the inner part of the pipe, reducing the effective length of the cooling pipe. reduce Therefore, the required amount of atmospheric gas is the sum of the amount of combustion by the flame curtain and the amount required to bring the position where the sintered product comes into contact with the frame curtain closer to the end. On the other hand, in the method of the present invention, as shown in Fig. 5, the atmospheric gas flowing out from the cooling pipe accumulates in the case from the upper part and comes into contact with the low-temperature outside air at the lower end of the case, forming a frame curtain. do. In this way, the atmospheric gas flowing out from the cooling pipe serves to seal the inside of the case, and essentially no outside air flows into the cooling pipe. Therefore, in principle, the required amount of atmospheric gas only needs to be supplemented with the combustion amount, and the amount used can be reduced. These contents will be specifically explained using examples. Example As shown in FIG. 2, a cover was attached to the tip of the cooling pipe having the same cross-sectional shape as that used in the experiment, and the lower end was set as a horizontal surface, and the cover was placed from the axis 61 of the drum (diameter 300 mm). Also 100? It was placed in a low position.

また炉芯管の成形品入口側を傾斜させ低くし、入口部上
面をカバー下端面と同一水準とした。このようにして製
作した本発明形状と、前記実験にて述べた従来形状に、
実験値から推定した無酸化取出が可能な主要部分の限界
寸法、および実験より求めた雰囲気ガスの必要流量、焼
結品の酸化着色の有無を、第1表に示した。本表が示す
ように、装置の小形化が可能となり、かつ雰囲気ガスの
使用量も減少できた。
In addition, the molded product inlet side of the furnace core tube was sloped and lowered, so that the upper surface of the inlet was on the same level as the lower end surface of the cover. The shape of the present invention manufactured in this way and the conventional shape described in the above experiment,
Table 1 shows the critical dimensions of the main parts that can be removed without oxidation estimated from experimental values, the required flow rate of atmospheric gas determined from experiments, and the presence or absence of oxidation coloring of the sintered product. As shown in this table, it was possible to downsize the device and reduce the amount of atmospheric gas used.

このように本発明は、炉からワークを無酸化状態て取出
す場合に、取出し部を著しく短縮すること、および雰囲
気ガス量の節約を可能としたものであり、前記の焼結品
の製造に限らず、金属製部品のろう付けや熱処理などに
使用する炉に対しも、本法の適用は可能である。なお本
発明を実施するに当り、第2図に示したように、冷却管
の先端に設けるカバーの形状は、駆動用ドラムの一部を
覆い、かつ開放されている下端部が、ワークの落下開始
点よりも下の位置にあればよい。
In this way, the present invention makes it possible to significantly shorten the take-out section and save the amount of atmospheric gas when taking out the workpiece in a non-oxidized state from the furnace, and is applicable only to the production of the above-mentioned sintered products. First, this method can also be applied to furnaces used for brazing and heat treating metal parts. In carrying out the present invention, as shown in Fig. 2, the shape of the cover provided at the tip of the cooling pipe is such that it covers a part of the drive drum and the open lower end prevents the workpiece from falling. It suffices if it is located below the starting point.

下端部の好ましい位置は、落下開始・点から100〜2
00w1m下である。また落下開始点は、これとドラム
の中心を結ぶ線と鉛直面の間の角81は約300である
The preferred position of the lower end is 100 to 2 from the starting point of the fall.
00w1m below. Further, the angle 81 between the fall starting point and a line connecting this point to the center of the drum and the vertical plane is approximately 300 degrees.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフレームカーテンを有するトンネル炉の出口部
の従来形状の構造、第2図は本発明の構造を示したもの
で、第3図は第1図に示した冷却管内のワークの冷却曲
線、第4および5図は、それぞれ従来形状および本発明
形状の構造における内部のガスの流れを示した図である
Figure 1 shows the conventional structure of the outlet of a tunnel furnace having a frame curtain, Figure 2 shows the structure of the present invention, and Figure 3 shows the cooling curve of the workpiece in the cooling pipe shown in Figure 1. , 4 and 5 are diagrams showing the internal gas flow in the structures of the conventional shape and the shape of the present invention, respectively.

Claims (1)

【特許請求の範囲】 1 フレームカーテンを有する連続炉から、コンベア上
のワークを取出す装置において、ワークがコンベアから
滑り落ち始める位置よりも下に、フレームカーテンを設
けることを特徴とした、ワークの無酸化取出し装置。 2 出口部冷却管の先端にカバーを設け、その形状がコ
ンベア駆動用ドラムの一部を覆い、かつ開放されている
下端部が、ドラムの軸心を通る鉛直面と30°をなす直
線とドラム周面との交点よりも下となる、前記特許請求
の範囲第1項の、ワークの無酸化取出し装置。
[Claims] 1. A device for taking out workpieces on a conveyor from a continuous furnace having a frame curtain, characterized in that the frame curtain is provided below the position where the workpieces start to slide off the conveyor. Oxidation extraction device. 2 A cover is provided at the tip of the outlet cooling pipe, and the shape of the cover covers a part of the conveyor drive drum, and the open lower end is connected to a straight line that makes 30 degrees with the vertical plane passing through the axis of the drum. The non-oxidation take-out device for a workpiece according to claim 1, which is located below the point of intersection with the circumferential surface.
JP5452681A 1981-04-10 1981-04-10 Structure of continuous furnace workpiece removal part Expired JPS6059508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5452681A JPS6059508B2 (en) 1981-04-10 1981-04-10 Structure of continuous furnace workpiece removal part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5452681A JPS6059508B2 (en) 1981-04-10 1981-04-10 Structure of continuous furnace workpiece removal part

Publications (2)

Publication Number Publication Date
JPS57169588A JPS57169588A (en) 1982-10-19
JPS6059508B2 true JPS6059508B2 (en) 1985-12-25

Family

ID=12973096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5452681A Expired JPS6059508B2 (en) 1981-04-10 1981-04-10 Structure of continuous furnace workpiece removal part

Country Status (1)

Country Link
JP (1) JPS6059508B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380680A (en) * 2011-09-23 2012-03-21 皇甫国庆 Various on-line circuit board brazing furnaces with energy-saving and nitrogen-saving device

Also Published As

Publication number Publication date
JPS57169588A (en) 1982-10-19

Similar Documents

Publication Publication Date Title
US2446637A (en) Method for melting brass chips
CA1222636A (en) Method and apparatus for the manufacture of non- allergy creating metal objects
US3770414A (en) Recovery of rhenium and molybdenum values from molybdenite concentrates
EP1634968A4 (en) Method and apparatus for producing reduced metal
JP4576331B2 (en) Continuous sintering furnace
US2203895A (en) Method of sintering porous metal objects
GB1519904A (en) Processes and installations for the production of billets
US2431690A (en) Consolidation of metal powder
JPS6059508B2 (en) Structure of continuous furnace workpiece removal part
US2793852A (en) Metal chip melting apparatus
US2181093A (en) Heat treatment of metals
US2252714A (en) Process and apparatus for making metal powder
JPS5810963B2 (en) Continuous sintering furnace for powder metallurgy
US20180017328A1 (en) Rotating furnace inerting
US5630864A (en) Method of processing ore on a traveling grate
US1917642A (en) Process of controlling the temperature gradient up the shaft of a furnace
JPS58110601A (en) Belt type reducing furnace for metallic powder and operating method thereof
JP6730684B2 (en) Sintered ore manufacturing method
US2307522A (en) Bright-finish metal-treating furnace
JPS61231117A (en) Re-heating furnace
US4012226A (en) Process for steel production
JPS61190004A (en) Reduction annealing furnace of metallic powder
JP7384268B2 (en) Method for producing sintered ore
JPS5852402A (en) Operating method for belt type reducing furnace for metallic powder
RU2282589C1 (en) Method of producing sesquialteral antimony oxide