JPS6059277B2 - Underground gasification method for coal beds - Google Patents

Underground gasification method for coal beds

Info

Publication number
JPS6059277B2
JPS6059277B2 JP2621276A JP2621276A JPS6059277B2 JP S6059277 B2 JPS6059277 B2 JP S6059277B2 JP 2621276 A JP2621276 A JP 2621276A JP 2621276 A JP2621276 A JP 2621276A JP S6059277 B2 JPS6059277 B2 JP S6059277B2
Authority
JP
Japan
Prior art keywords
gasification
coal
coal bed
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2621276A
Other languages
Japanese (ja)
Other versions
JPS52109504A (en
Inventor
ロザ・イヴアノヴナ・アントノヴア
エフイム・ヴウルフオヴイチ・クレイニン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSESO NAUCHINO ISUSUREDO INST ISUHORUZOWANIA GAZA BEE NARODONOMU HOZUYAISUTOBE HODOZEMUNABO FURANENIA NEFUCHI NEFUCHEPURODOKUTOFU I SUJI
Original Assignee
FUSESO NAUCHINO ISUSUREDO INST ISUHORUZOWANIA GAZA BEE NARODONOMU HOZUYAISUTOBE HODOZEMUNABO FURANENIA NEFUCHI NEFUCHEPURODOKUTOFU I SUJI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUSESO NAUCHINO ISUSUREDO INST ISUHORUZOWANIA GAZA BEE NARODONOMU HOZUYAISUTOBE HODOZEMUNABO FURANENIA NEFUCHI NEFUCHEPURODOKUTOFU I SUJI filed Critical FUSESO NAUCHINO ISUSUREDO INST ISUHORUZOWANIA GAZA BEE NARODONOMU HOZUYAISUTOBE HODOZEMUNABO FURANENIA NEFUCHI NEFUCHEPURODOKUTOFU I SUJI
Priority to JP2621276A priority Critical patent/JPS6059277B2/en
Publication of JPS52109504A publication Critical patent/JPS52109504A/en
Publication of JPS6059277B2 publication Critical patent/JPS6059277B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は炭床の地下ガス化技術、特に坑道を使用しな
い炭床のガス化法に関する予じめ炭床から排水した後に
、吹込み坑井系を通して石炭の白熱表面に酸化剤を供給
してその場、所て炭床からガスを発生、すなわちガス化
させて、排出坑井系からガス化製品を引き出す方法が公
知であつて実施されている(たとえばPN.Skafa
著、石炭の地下ガス化P.2lO,l96O年発行)。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the underground gasification technology of coal beds, particularly to the coal bed gasification method that does not use a mine shaft. Methods are known and practiced to generate gas in situ, ie, gasify, from a coal bed by supplying an oxidizing agent to a coal bed and extracting gasified products from a discharge well system (e.g., PN. Skafa).
Author, Underground Gasification of Coal, P. 2lO, published in 1960).

1この公知のガ
ス化方法を実施するには、炭床に傾斜吹込み坑井をポー
リングし、かつ炭床に排出坑井をポーリングする。公知
の炭床のガス化法の欠点は、炭床の厚さ、石炭の品質お
よび地下ガス発生区域への流入水量,など天然の条件が
変化すると、効率因子すなわち(石炭単位重量から発生
するガスの発熱量)/(石炭単位重量の発熱量)の比を
適当なエネルギー水準、少なくとも0.6とすることが
できないことである。
1 To carry out this known gasification method, the coal bed is polled with an inclined injection well and the coal bed is polled with a discharge well. The disadvantage of known coal bed gasification methods is that when natural conditions change, such as the thickness of the coal bed, the quality of the coal and the amount of water flowing into the underground gas generating area, the efficiency factor, i.e. the amount of gas produced from a unit weight of coal The ratio of (calorific value of coal)/(calorific value of unit weight of coal) cannot be set to an appropriate energy level, at least 0.6.

吹込み剤の供給率を、地下ガス化区域への流入水量、炭
床の厚さおよび石炭の品質に関係づける様式が開発され
ない限りは、ガス化工程を実際に制御することができな
い。
Unless a method is developed to relate the blowing agent feed rate to the amount of water entering the underground gasification zone, the thickness of the coal bed, and the quality of the coal, no real control of the gasification process will be possible.

そこでクズネツキ炭田においては厚さ加の炭5;床をガ
ス化するが、ある場合にはガス化は安定して行なわれ、
効率因子は0.6−0.7と高いエネルギー水準であつ
て、これはガスの燃焼熱が1,000−1,100kc
a1/ボの範囲に相当することが特徴である。
Therefore, in the Kuznetski coalfield, the coal 5;
The efficiency factor is at a high energy level of 0.6-0.7, which means that the combustion heat of gas is 1,000-1,100kc.
It is characterized in that it corresponds to the range of a1/bo.

しかし他の場合には得られるガスの燃焼.熱は760k
ca1/dより少なくても450kca1/dのことも
あり、このときは効率因子は約0.5てあり、さらにガ
ス化がまつたく行なわれない場合さえもある(下表参照
)。ガス化実施の効率が十分でないおもな原因は、吹込
み剤、すなち酸化剤の吹込み量を、流入水量と炭床の厚
さとに応じて変化させないでガス化を行なうためである
But in other cases the combustion of the resulting gas. fever is 760k
Ca1/d may be less than 450 kca1/d, in which case the efficiency factor is about 0.5, and there are even cases where gasification is not performed satisfactorily (see table below). The main reason why the efficiency of gasification is not sufficient is that gasification is performed without changing the amount of blowing agent, that is, oxidizing agent, depending on the amount of inflow water and the thickness of the coal bed. .

ガス化区域への流入水量は、前記第1の場合には平均し
て2イ/hであり、また前記第2のの場合にはこれが4
d/hであるが、ガス化能力(すなわち、ガス化率)は
両方とも同一であつてほぼ2t/hに等しい。
The amount of water flowing into the gasification zone is 2 i/h on average in the first case, and 4 i/h in the second case.
d/h, but the gasification capacity (that is, gasification rate) is the same in both cases and is approximately equal to 2t/h.

従つて第2の場合のガス化効率因子が悪いおもな原因は
、流入水量と炭層の厚みとを考慮しないで、ガス化能力
を十分に高めないためである。下表から明かなように、
流入水量が4ぽ/hのときに、ガス化能力は4t/hに
上昇しており、得られるガスの燃焼熱は1,100kc
a1/dを高い。この発明の目的は、上記の欠点を解消
し、すなわちガスの燃焼熱をできるだけ高め、かつ制御
することのてきるガス化工程を提供することである。
Therefore, the main reason why the gasification efficiency factor is poor in the second case is that the gasification capacity is not sufficiently increased without considering the amount of inflow water and the thickness of the coal seam. As is clear from the table below,
When the amount of inflow water is 4 po/h, the gasification capacity increases to 4 t/h, and the combustion heat of the resulting gas is 1,100 kc.
High a1/d. The object of the invention is to eliminate the above-mentioned drawbacks, namely to provide a gasification process in which the heat of combustion of the gas can be increased as much as possible and controlled.

従つてこの発明の目的は、炭床の地下ガス化工程のおも
なパラメータの間の関係を明かにして、装置を配置変え
したりまたは置き換えたりすることなしに、ガス化によ
つて得られる燃料ガスの燃焼熱を高めることである。
It is therefore an object of the present invention to clarify the relationship between the main parameters of the underground gasification process of coal beds, which can be obtained by gasification without rearranging or replacing the equipment. The goal is to increase the combustion heat of fuel gas.

この目的は、予じめ炭床から排水した後に、吹込み坑井
系を通して石炭の白熱表面に吹込み剤を供給して炭床か
らガスを発生させ、ガス排出坑井系を通してガス化製品
を引き出すことを含む炭床の地下ガス化法において、炭
床の厚さ(m)、石炭の品質およびガス化区域への流入
水量(W)などの天然の条件に対応するように、次式〔
ただし上式において、Wが単位時間にガス化区域に流入
する水量、d/H.Iが単位時間にガス化される石炭の
量(ガス化能力)、t/h中がガスの燃焼熱、Kcal
/K,、VOが石炭1k9からのガスの収量、DlQ骨
が石炭の最低燃焼熱、Kcal/Dlmが炭床の厚さ、
mで表示〕 に従つて前記炭床のガス化能力を選択してガス化を実施
することを特徴とする炭床の地下ガス化法によつて達成
することができる。
The purpose is to supply blowing agent to the incandescent surface of the coal through an injection well system to generate gas from the coal bed, after previously draining the coal bed, and to release gasified products through a gas discharge well system. In the method of underground gasification of coal beds involving withdrawal, the following formula [
However, in the above equation, W is the amount of water flowing into the gasification zone per unit time, d/H. I is the amount of coal gasified per unit time (gasification capacity), t/h is the heat of combustion of gas, Kcal
/K,, VO is the yield of gas from 1k9 of coal, DlQ bone is the minimum heat of combustion of coal, Kcal/Dlm is the thickness of the coal bed,
This can be achieved by an underground coal bed gasification method characterized in that gasification is carried out by selecting the gasification capacity of the coal bed according to the following.

前記の特徴は、高価で新規な装置と新規な技術とのため
の付加的な投資を必要とせず、採炭および地質の種々な
条件においてガス化を実施する最良の操作を示唆する前
記の実験式に従つて、ガス化能力を最適に制御して炭床
を地下ガス化することによつて、得られる燃料ガスの燃
焼熱を顕著に上昇させることができる。
The above characteristics suggest the best operation for carrying out gasification in various conditions of coal mining and geology, without requiring additional investments in expensive new equipment and new technologies, and the above empirical formula Accordingly, by optimally controlling the gasification capacity and gasifying the coal bed underground, the combustion heat of the resulting fuel gas can be significantly increased.

この発明の実施態様に従つて、比流入水量を少なくとも
3.0イ/hに減少させ、その後で炭床からガスを発生
させる前記率を前記実験式に従つて設定しかつこれを維
持する。
In accordance with an embodiment of the invention, the specific inflow rate is reduced to at least 3.0 i/h, after which the rate of gas evolution from the coal bed is set and maintained in accordance with the empirical formula described above.

この発明のこの好ましい実施態様において、ガス化の前
に行なう排水操作の程度を特定し、これによつて実際的
かつ便利な前記実験式に従つて地下ガス化工程を制御す
る。
In this preferred embodiment of the invention, the extent of drainage operations prior to gasification is specified, thereby controlling the underground gasification process according to the above-described empirical formula, which is practical and convenient.

ここに開示した炭床のガス化法を、添付する図面を参照
しながら、実施態様について説明する。
Embodiments of the coal bed gasification method disclosed herein will be described with reference to the accompanying drawings.

第1および2図に示すように、炭床4の地下ガス化を実
施するために炭床4を通して垂直坑井1と傾斜坑井2と
をホーリンクし、またガス排出坑井3をポーリングする
。ガス化の開始前は坑井8によつて排水し、ガス化中は
ガス化区域6から坑井7によつて排水する。地下ガス化
工程を制御するために、所定の計算したガス化率を維持
するために、吹込み坑井のゲートバルブの位置を変化さ
せることができる。
As shown in Figures 1 and 2, the vertical well 1 and the inclined well 2 are hole-linked through the coal bed 4 to carry out underground gasification of the coal bed 4, and the gas discharge well 3 is polled. . Before the start of gasification, the well 8 drains water, and during gasification, the gasification zone 6 is drained via the well 7. To control the underground gasification process, the position of the injection well gate valve can be varied to maintain a predetermined calculated gasification rate.

このガス化率はこの発明によつて次式によつて規定され
る。〔ただし式において、Wが単位時間にガス化区域に
流入する水量、d/H,.Iが単位時間にガス化される
石炭の量(ガス化能力)、t/HQ謁くガスの燃焼熱、
Kcal/畝 VCが石炭1k9力)らのガスの収量、イ、Q骨が石炭
の最低燃焼熱、Kcal/K9、mが炭床の厚さ、mで
表示〕上式によつて、単位時間当りの流入水量またはこ
れら必要に応じて排出した単位時間当りの水量を差引い
た水量Wと、炭層の厚みmと、石炭の最低燃焼熱Q量と
を予め測定し、かつ、石炭1k9から得られるガスの収
量■0と、得られるガスの燃焼熱Q簀とを予め設定すれ
ば、単位時間にガス化される石炭の量(ガス化能力)の
最適値を求めることができる。
According to the present invention, this gasification rate is defined by the following equation. [In the formula, W is the amount of water flowing into the gasification zone per unit time, d/H, . I is the amount of coal gasified per unit time (gasification capacity), t/HQ is the combustion heat of gas,
Kcal/furrow VC is the gas yield of coal 1k9 force), A, Qbone is the minimum heat of combustion of coal, Kcal/K9, m is the thickness of the coal bed, expressed in m] According to the above formula, unit time The amount of water W that is obtained by subtracting the amount of inflow water per unit time or the amount of water discharged per unit time as necessary, the thickness of the coal seam m, and the minimum heat of combustion Q amount of coal are measured in advance, and the amount of water obtained from 1k9 of coal is measured in advance. By setting the gas yield ■0 and the combustion heat Q of the obtained gas in advance, the optimum value of the amount of coal gasified per unit time (gasification capacity) can be determined.

従つてこのガス化能力に対応する酸化剤の吹込量を決定
することができる。しかし、流入水量が許容値(3d/
t)を超える場合は、経験によれば、前記実験式よつて
石炭のガス化率を維持するように工程を制御することは
まつたく困難である。
Therefore, it is possible to determine the amount of oxidizing agent blown that corresponds to this gasification capacity. However, the amount of inflow water is the allowable value (3d/
t), according to experience, it is very difficult to control the process so as to maintain the gasification rate of coal according to the above-mentioned empirical formula.

ここに開示した関係式(第3図も参照)は採炭および地
質の種々な条件において、ガス化率を変化させた石炭の
地下ガス化を数年間実施した結果得られたものである。
The relational expressions disclosed herein (see also Figure 3) were obtained as a result of conducting underground gasification of coal for several years with varying gasification rates under various mining and geological conditions.

第3図において横軸は炭層の厚み(m)を示し、左縦軸
は単位時間当りの流入水量W(イ/h)/単位時間当り
のガス化される石炭の重量1(t/h)(すなわちガス
化能力)の比(d/t)を示し、右縦軸はガス化効率因
子を示す。開示した関係式に従つて、炭床の厚さ(m)
と石炭の質とを適合させて、地下ガス化工程を実施する
最適のガス化能力(1)をガス化区域への流入水量(W
)の値から、予じめ設定することができる。
In Figure 3, the horizontal axis shows the thickness of the coal seam (m), and the left vertical axis shows the amount of inflow water per unit time W (i/h)/weight of coal gasified per unit time 1 (t/h) (that is, gasification capacity) (d/t), and the right vertical axis shows the gasification efficiency factor. According to the disclosed relation, the thickness of the coal bed (m)
The optimal gasification capacity (1) for carrying out the underground gasification process is determined by matching the amount of water flowing into the gasification area (W) and the quality of the coal.
) can be set in advance.

地下ガス発生部への流入水量を、予じめ少くとも3d/
K9に排水して減少させることは、地下ガス発生部にお
いて、最初のガス化チャネルを作り、次に高いガス化能
力(率)でガス化を実施することができる大きさにまで
このチャネルを拡大するように、要求されるエネルギー
定格を有する高い品質のガスを製造する石炭の白熱化作
業を開始してかつ維持するために水の条件を作るために
必要である。
The amount of water flowing into the underground gas generating area should be reduced by at least 3 d/m in advance.
Draining and reducing K9 creates an initial gasification channel in the underground gas generation section and then expands this channel to a size that allows gasification to be carried out at a high gasification capacity (rate). It is necessary to create water conditions to initiate and maintain the coal incandescence operation to produce high quality gas with the required energy rating.

地下ガス発生部に大量の比流入水が存在するときは、最
初のチャネルを作つてこれを拡大することが妨げられ、
また白熱区域が浸水するためにまつたく不可能になつて
しまうことも多い。
When there is a large amount of specific inflow water in the underground gas generation area, the creation and expansion of the initial channel is prevented,
It is also often impossible to do so because the incandescent areas are flooded.

ここに開示した関係式の実施例として、ボゼムガスの操
業による地下ガ又化坑の一つにおいて地下ガス化工程を
実施した経験を記載する。
As an example of the relationships disclosed herein, the experience of carrying out an underground gasification process in one of the underground gasification mines operated by Bozem Gas will be described.

ここでは厚さ帥と加との炭床をガス化した。ガス発生部
の予備的排水の後で、最初のガス化チャネルへの地下水
の流入量は約5イ/hであつた。
Here, the coal beds of Heshuan and Kato were gasified. After preliminary drainage of the gas generating section, the initial groundwater inflow into the gasification channel was approximately 5 i/h.

前記関係式(1)を使用して、厚さ弾と加との炭床につ
いて最適のガス化能力、すなわちガス化区域への吹込み
剤の供給率の項から最適のガス化能力を計算した。厚さ
帥の炭床の場合には、ガス化の効率因子は0.6てあつ
てガス化能力は1.85t/hであり、他方厚さ加の炭
床の場合はガス化能力は3t/hに設定した。
Using the above relational expression (1), the optimum gasification capacity was calculated for the thick and thick coal beds, that is, the optimum gasification capacity was calculated from the term of the blowing agent supply rate to the gasification zone. . In case of thick coal bed, the gasification efficiency factor is 0.6 and gasification capacity is 1.85 t/h, while in case of thick coal bed, gasification capacity is 3 t/h. /h was set.

二つの場合ともガス発生部によつて製造されたガスの燃
焼熱は1,000kcaI/77t′であつた。燃焼面
積が順次拡大されてガス発生部が炭床にそつて100r
r1まて拡大すると、ガス発生部への流一人水量は約2
0ぱ/hに増大する。
In both cases, the heat of combustion of the gas produced by the gas generator was 1,000 kcal/77 t'. The combustion area was gradually expanded and the gas generation section was placed along the coal bed to a height of 100 r.
Expanding r1, the amount of water flowing into the gas generation part is approximately 2
Increases to 0 pa/h.

この場合ここに開示した関係式(1)に従つて、厚さ弾
の炭床についてはガス化能力は7.4t/hてあり、厚
さ加の炭床についてはこれが12.3t/hとなる。特
定のガス化率でガス化工程を行なうときは、工程が安定
しており、効率因子は0.62であつてガスの燃焼熱は
1,000kca1/イであり、エネルギー水準が高い
。それ故、ここに開示した石炭の地下ガス化法は、燃焼
熱がより高いガスを製造し、エネルギー水準が高いガス
化工程を実施し、これには特別の装置とか新規な技術に
かかる付加的投資の必要がない。
In this case, according to the relation (1) disclosed herein, the gasification capacity for the thick coal bed is 7.4 t/h, and for the thick coal bed it is 12.3 t/h. Become. When the gasification process is carried out at a specific gasification rate, the process is stable, the efficiency factor is 0.62, the heat of combustion of the gas is 1,000 kcal/i, and the energy level is high. Therefore, the underground coal gasification method disclosed herein produces gas with a higher heat of combustion and carries out a gasification process with a higher energy level, which requires additional equipment and new technology. No investment required.

ここに開示した炭床の地下ガス化法が実際に実施される
か否かを検討するため、すなわちガス化工程を特定した
能力で実施するためには次のパラメータを決定すれば十
分である。
In order to consider whether the method of underground gasification of coal beds disclosed here can be implemented in practice, i.e. to carry out the gasification process with a specified capacity, it is sufficient to determine the following parameters:

すなわちこれらは、石炭の品質(Q脅)、炭床の厚さ(
m)、ガス化区域への流入水量(W)、製造されたガス
の品質(Q帥およびこのガスの比収量である。次に、決
定された石炭のガス化能力(1)に対応してガス発生部
への吹込み率を決定する。最後に得られた値をここに開
示した関係式(1)に代人して、この発明によつて示唆
されたガス化能力を維持てきるか否かを決定することが
てきる。
In other words, these are the quality of the coal (Q), the thickness of the coal bed (
m), the amount of water flowing into the gasification zone (W), the quality of the gas produced (Q) and the specific yield of this gas. Then, corresponding to the determined coal gasification capacity (1) Determine the blowing rate to the gas generation section. Substitute the last obtained value into the relational expression (1) disclosed herein to determine whether the gasification ability suggested by this invention can be maintained. You can decide whether or not to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭床の地下ガス化の模型的説明図であり、第2
図は第1図の線■−■における断面図てあり、第3図は
炭層の厚さmと、流入水量W/ガス化能力1の比と、ガ
ス化効率因子との間の関係を示す線図である。 1・・・・・・垂直吹込み坑井(炭床の発火にも使用)
、2・・・・・・傾斜吹込み坑井、3・・・・・・ガス
排出坑井、4・・・・・・炭床、5・・・・・・周囲の
岩石、6・・・・・・ガス化区域、7・・・・・・ガス
化区域からの排坑井、8・・・・炭床からの予備的排坑
井。
Figure 1 is a schematic explanatory diagram of underground gasification of a coal bed.
The figure is a cross-sectional view taken along the line ■-■ in Figure 1, and Figure 3 shows the relationship between the thickness of the coal seam (m), the ratio of inflow water volume W/gasification capacity 1, and the gasification efficiency factor. It is a line diagram. 1... Vertical injection well (also used to ignite coal bed)
, 2... Inclined injection well, 3... Gas discharge well, 4... Coal bed, 5... Surrounding rocks, 6... ... gasification area, 7... drainage well from the gasification area, 8... preliminary drainage well from the coal bed.

Claims (1)

【特許請求の範囲】 1 予め炭床から排水した後に、吹込み坑井系を通して
石炭の白熱表面に吹込み剤を供給して炭床からガスを発
生させ、ガス排出坑井系を通してガス化製品を引き出す
ことを含む炭床の地下ガス化法において、炭床の厚さ(
m)、石炭の品質およびガス化区域への流入水量(W)
などの天然の条件に対応するように、次式I=W/〔0
.506({Q^G_HV^G}/{Q^C_H})・
m^−^1^.^9^(^0^.^7^0^2^−^0
^.^6^5^9^{^Q^^G^_^H^V^^G^
}^/^Q^^C^_^H^)〕区域に流入する水量m
^/h、Iが単位時間にガス化される石炭量(ガス化能
力)、t/hQ^G_Hがガスの燃焼熱、kcal/m
^2、V^Gが石炭1kgから得られるガスの収量、m
^3、Q^C_Hが石炭の最低燃焼熱、kcal/kg
mが炭床の厚さ、mで表示〕に従つて前記炭床のガス化
能力を選択してガス化を実施することを特徴とする炭床
の地下ガス化法。 2 比流入水量を少なくとも3.0m^3/tに減少さ
せるように、ガス化の前に前記排水を行ない、その後で
炭床の前記ガス化能力(ガス化率)を設定することを特
徴とする特許請求の範囲第1項記載の炭床の地下ガス化
法。
[Claims] 1. After the coal bed has been drained in advance, a blowing agent is supplied to the incandescent surface of the coal through an injection well system to generate gas from the coal bed, and the gasification product is produced through the gas discharge well system. In underground gasification of coal beds, which involves drawing out the thickness of the coal bed (
m), coal quality and amount of water flowing into the gasification area (W)
The following formula I=W/[0
.. 506({Q^G_HV^G}/{Q^C_H})・
m^-^1^. ^9^(^0^.^7^0^2^-^0
^. ^6^5^9^lo^Q^^G^_^H^V^^G^
^/^Q^^C^_^H^)〕Amount of water flowing into the area m
^/h, I is the amount of coal gasified per unit time (gasification capacity), t/hQ^G_H is the heat of combustion of gas, kcal/m
^2, V^G is the yield of gas obtained from 1 kg of coal, m
^3, Q^C_H is the minimum heat of combustion of coal, kcal/kg
A method for underground gasification of a coal bed, characterized in that gasification is carried out by selecting the gasification capacity of the coal bed according to the thickness of the coal bed, expressed in m. 2. The drainage is performed before gasification, and the gasification capacity (gasification rate) of the coal bed is then set so as to reduce the specific inflow water amount to at least 3.0 m^3/t. A method for underground gasification of a coal bed according to claim 1.
JP2621276A 1976-03-12 1976-03-12 Underground gasification method for coal beds Expired JPS6059277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2621276A JPS6059277B2 (en) 1976-03-12 1976-03-12 Underground gasification method for coal beds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2621276A JPS6059277B2 (en) 1976-03-12 1976-03-12 Underground gasification method for coal beds

Publications (2)

Publication Number Publication Date
JPS52109504A JPS52109504A (en) 1977-09-13
JPS6059277B2 true JPS6059277B2 (en) 1985-12-24

Family

ID=12187117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2621276A Expired JPS6059277B2 (en) 1976-03-12 1976-03-12 Underground gasification method for coal beds

Country Status (1)

Country Link
JP (1) JPS6059277B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192777A (en) * 1987-10-05 1989-04-12 Fujitsu Ltd Adjusting method for position of magnet roller
JPH02110483A (en) * 1988-10-19 1990-04-23 Fujitsu Ltd Method for adjusting developing magnetic pole and method for measuring magnetic field distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192777A (en) * 1987-10-05 1989-04-12 Fujitsu Ltd Adjusting method for position of magnet roller
JPH02110483A (en) * 1988-10-19 1990-04-23 Fujitsu Ltd Method for adjusting developing magnetic pole and method for measuring magnetic field distribution

Also Published As

Publication number Publication date
JPS52109504A (en) 1977-09-13

Similar Documents

Publication Publication Date Title
US4304308A (en) Burner apparatus for making holes in coal seams
US4083402A (en) Method of underground gasification of a coal bed
US4356866A (en) Process of underground coal gasification
US4452491A (en) Recovery of hydrocarbons from deep underground deposits of tar sands
RU2443857C1 (en) Method to produce hydrogen during underground coal gasification
US4036299A (en) Enriching off gas from oil shale retort
GB1454324A (en) Recovering combustible gases from underground deposits of coal or bituminous shale
US4010801A (en) Method of and apparatus for in situ gasification of coal and the capture of resultant generated heat
US4421163A (en) Downhole steam generator and turbopump
SU925094A1 (en) Method of underground gasification of coal
US3772881A (en) Apparatus for controllable in-situ combustion
JPS6059277B2 (en) Underground gasification method for coal beds
US3581822A (en) Method of preventing casing and/or tubing damage in steam injection well
ES484637A1 (en) Method for the gasification of coal
RU96109423A (en) METHOD FOR THERMAL PROCESSING OF SOLID FUEL AND ENERGY TECHNOLOGICAL INSTALLATION FOR ITS IMPLEMENTATION
US3987852A (en) Method of and apparatus for in situ gasification of coal and the capture of resultant generated heat
US4018481A (en) Gasification of coal in situ
US4122897A (en) In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen
RU2099517C1 (en) Method for underground gasification of coal seam
SU941587A1 (en) Method of underground gasification of coal
US1541731A (en) Treatment of ore in blast furnaces
US1966886A (en) Water gas process
SE8306673D0 (en) KIT AND INSTALLATION FOR REDUCING OXID-CONTAINING MATERIAL
SU48973A1 (en) Gas generator with Schwellschach for gasification of fine-grained fuel
US1913237A (en) Continuous water gas generation