JPS6059175B2 - Arsenous acid manufacturing method - Google Patents

Arsenous acid manufacturing method

Info

Publication number
JPS6059175B2
JPS6059175B2 JP19408082A JP19408082A JPS6059175B2 JP S6059175 B2 JPS6059175 B2 JP S6059175B2 JP 19408082 A JP19408082 A JP 19408082A JP 19408082 A JP19408082 A JP 19408082A JP S6059175 B2 JPS6059175 B2 JP S6059175B2
Authority
JP
Japan
Prior art keywords
arsenic
copper
solution
sulfide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19408082A
Other languages
Japanese (ja)
Other versions
JPS5983936A (en
Inventor
辰一郎 阿部
正登 麻生
龍男 今村
洋一 高沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP19408082A priority Critical patent/JPS6059175B2/en
Publication of JPS5983936A publication Critical patent/JPS5983936A/en
Publication of JPS6059175B2 publication Critical patent/JPS6059175B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、含砒素銅精鉱の製錬に際し生成する電解沈殿
銅から亜砒酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing arsenous acid from electrolytically precipitated copper produced during smelting of arsenic-containing copper concentrate.

亜砒酸の製造については古くにはMellorが示した
下記反応式に基づく方法がみられる〔ACompreh
ensiveTreatiseonInorganic
andTlleoreticalChemistryV
ol、99p、319(1933)〕。
For the production of arsenous acid, there is an old method based on the reaction formula shown by Mellor [A Compreh
intensiveTreatiseonInorganic
andTlleoretical Chemistry V
ol, 99p, 319 (1933)].

3CUS04+AS2S3+4H20 →3CuS+紐AsO2+311250、又近年、砒素
酸化物の湿式精製法として砒素の硫化物(As。
3CUS04+AS2S3+4H20 →3CuS+string AsO2+311250, and in recent years, arsenic sulfide (As) has been used as a wet purification method for arsenic oxide.

s。とAS2S5)のスラリーに硫酸銅を添加して置換
反応による脱銅を行い、得られる液に溶存する砒素酸化
物を502で還元した後亜砒酸(As。O0)として晶
出させる方法(特開昭52一5469時)が提案されて
いる。因みに、硫酸銅を用いる亜砒酸の製造についての
報告は上記以外には殆んどみられない。而して、上記提
案の方法ては砒素硫化物としてAS2S5をも用いるの
で高純度のAs。
s. A method in which copper sulfate is added to a slurry of A and AS2S5) to remove copper by a substitution reaction, and arsenic oxide dissolved in the resulting solution is reduced with 502 and then crystallized as arsenous acid (As.O0) 52-5469 hours) is proposed. Incidentally, there are almost no reports other than those mentioned above regarding the production of arsenous acid using copper sulfate. The method proposed above also uses AS2S5 as the arsenic sulfide, resulting in highly pure As.

03を得ることは困難てあり、しかも脱銅反応の過程で
As。
It is difficult to obtain 03, and moreover, As is produced in the process of copper removal reaction.

O。の早期晶出による損失が起るためAS2O3を高収
率で得ることも不可能である等の欠点がみられる。本発
明は、高純度(99.4%以上)の亜砒酸を高収率で且
つ経済的に有利に製造し得る方法を提供することを目的
とする。本発明者は、含砒素銅精鉱の製錬に際し生成す
る電解沈殿銅を出発原料として用い基本的に前記Mel
lorの反応式を適用することにより上記目的を達成す
ることに成功し、本発明をなすに至つた。
O. There are drawbacks such as the fact that it is impossible to obtain AS2O3 in high yield due to loss due to early crystallization of AS2O3. An object of the present invention is to provide a method for producing highly pure (99.4% or more) arsenous acid in high yield and economically. The present inventor basically used the electrolytically precipitated copper produced during the smelting of arsenic copper concentrate as a starting material to produce the Mel
By applying lor's reaction formula, the above object was successfully achieved and the present invention was completed.

以下本発明を詳しく説明する。本発明は、電解沈殿銅を
低濃度の硫酸溶液で浸出処理して得られる浸出液に、過
酸化水素水溶液および硫化砒素(Asβ3)を添加、混
合し、生成する硫化銅を分離、除去し、得られる液に亜
硫酸ガスを導入して該液中の砒素を亜砒酸(AS2O3
)として晶出させることを特徴とする。
The present invention will be explained in detail below. The present invention involves adding and mixing an aqueous hydrogen peroxide solution and arsenic sulfide (Asβ3) to a leachate obtained by leaching electrolytically precipitated copper with a low-concentration sulfuric acid solution, separating and removing the produced copper sulfide, and Sulfur dioxide gas is introduced into the liquid to remove arsenic from the liquid.
) is characterized by being crystallized as

本発明で出発原料として用いる電解沈殿銅は、含砒素銅
精鉱を製錬して電気銅を製造する過程でいわゆる粗銅の
電解精製に際して生成する電解液を晶析した後液から脱
銅および脱砒電解するときに生成するスライム形状のも
のであつて、通常は銅精鉱の溶錬工程(例えば自溶炉)
へ循環されるものである。
The electrolytically precipitated copper used as a starting material in the present invention is produced by removing copper from the electrolytic solution produced during electrolytic refining of blister copper in the process of producing electrolytic copper by smelting arsenic copper concentrate. It is a slime-like substance produced during arsenic electrolysis, and is usually used in the smelting process of copper concentrate (e.g. flash furnace).
It is circulated to

参考として電解沈殿銅の組成を例示すると下記のとおり
である。本発明てはまず、電解沈殿銅を低濃度の硫酸溶
液て浸出処理してCu2+およびAs5+を主として含
む浸出液を調製する。
For reference, an example of the composition of electrolytically precipitated copper is as follows. In the present invention, first, electrolytically precipitated copper is leached with a low concentration sulfuric acid solution to prepare a leaching solution mainly containing Cu2+ and As5+.

この浸出液の調製に際しては目的物としての高純度の亜
砒酸を得るためにアンチモン(Sb)の溶出を可及的に
防止することが必要であつて、そのためには低濃度の硫
酸溶液、好ましくは10y/′以下の濃度でPHl〜1
.5の硫酸溶液を用いる。この浸出に際しては、電解沈
殿銅のスラリー濃度が100〜250y/eになるよう
に硫酸溶液を添加し、これに空気を1〜5e/Min/
eの程度で吹込みながら、常温乃至90℃の温度で攪拌
下に6〜8時間浸出を行なうとよい。この浸出により電
解沈殿銅中の厄が75〜85%の浸出率で液中に浸出さ
れる。次いで、上述のようにして得た浸出液に硫化砒素
(AS2S3)を添加して該浸出液中のCUSO4との
間に脱銅反応(3CUS04+,AS2S3+4H20
+3CUS+2HAS02+3H2S04)を行わせる
のであるが、本発明ではこの脱銅反応に際して過剰のA
S2O3が早期析出するのを最小限に抑制することによ
つて砒素の実収率を高めるために過酸化水素の水溶液を
予め上記浸出液に添加する。
When preparing this leachate, it is necessary to prevent the elution of antimony (Sb) as much as possible in order to obtain high-purity arsenous acid as the target product. PHL ~ 1 at a concentration below /'
.. Use the sulfuric acid solution in step 5. During this leaching, a sulfuric acid solution is added so that the slurry concentration of electrolytically precipitated copper becomes 100 to 250 y/e, and air is added to this at a rate of 1 to 5 e/min/e.
It is preferable to perform the leaching for 6 to 8 hours with stirring at room temperature to 90° C. while blowing at a level of e. By this leaching, the impurities in the electrolytically precipitated copper are leached into the solution at a leaching rate of 75 to 85%. Next, arsenic sulfide (AS2S3) was added to the leachate obtained as described above, and a copper removal reaction (3CUS04+, AS2S3+4H20
+3CUS+2HAS02+3H2S04), but in the present invention, excess A is removed during this copper removal reaction.
An aqueous solution of hydrogen peroxide is added in advance to the leachate in order to increase the actual yield of arsenic by minimizing the early precipitation of S2O3.

又、上記浸出液中に溶出したアンチモンの可成りの量(
65〜80%)が砒素の一部がA>203として早期析
出する際に同時に析出し脱銅反応により生成する脱銅残
渣としての硫化銅と随伴して系外へ分離、除去されるの
で、反応液中のAs/Sbの比率が顕著に高まり、その
結果目的生成物としてのAS2O3の結晶のアンチモン
による汚染を0.6%以下にすることが可能となる。又
、上記脱銅反応に際してのアンチモンの脱除を効率的に
行なうには、上記浸出液に添加する硫化砒素はAS2O
3であることが必要であつて、もしAS2O3を使用す
る場合には目的とする高純度の亜砒酸は得られない。
In addition, a considerable amount of antimony (
65 to 80%) is separated and removed from the system together with copper sulfide as a decoppered residue that precipitates at the same time when a part of arsenic precipitates as A>203 and is generated by the decoppered reaction. The As/Sb ratio in the reaction solution increases significantly, and as a result, it becomes possible to reduce the contamination of the AS2O3 crystals as the target product by antimony to 0.6% or less. In addition, in order to efficiently remove antimony during the copper removal reaction, the arsenic sulfide added to the leachate should be AS2O.
3, and if AS2O3 is used, the desired high purity arsenous acid cannot be obtained.

本発明では上記硫化砒素(AS2S3)として、銅精鉱
の製錬に際して溶錬工程(例えば自溶炉)で発生する排
ガス中の砒素を硫化物として固定した゛ものを使用し得
る。この排ガス中の砒素の固定は該ガスを水で洗浄して
砒素を水中に溶出させ、得られる水溶液を硫化水素ガス
、水硫化ソーダなどの硫化剤で硫化処理することにより
得られる。このようにして得られる硫化砒素はケーキ状
を呈しているのでスラリー形態にして上記浸出液に添加
するとよい。因みに、上記固定して得られる硫化砒素の
組成(乾量基準)の一例を示ずと下記のとおりである。
上記浸出液に過酸化水素水溶液および硫化砒素(AS2
S3)のスラリーを添加して脱銅反応を行なうに際して
は、過酸化水素を該浸出液中の生成するAs3+に対し
てH2O2として0.5〜3.0当量添加し、次いて液
中のCu2+に対して約当量のAS2S3を添加して、
60〜90℃の温度て攪拌下に0.5〜1時間程度反応
させるとよい。ここで過酸化水素の添加量が過剰になる
と脱銅反応により生成した脱銅残渣(CuS)の一部が
再溶解するので留意する必要がある。なお、AS2S3
のスラリーは一度に全部添加せずに分割して添加するこ
とがMのロスを少くするうえで有利である。本発明では
電解沈殿銅の浸出液のAS2S3による脱銅反応を過酸
化水素の存在下で行なうので、前述したごとく、脱銅反
応に伴なつてAS2O3の早期晶出(脱銅反応により生
成したHAsO2の飽和溶解度が小さいために起る)を
最小限に抑制することができる。
In the present invention, the arsenic sulfide (AS2S3) may be one in which arsenic in the exhaust gas generated in the smelting process (for example, a flash furnace) during the smelting of copper concentrate is fixed as sulfide. Arsenic in the exhaust gas is fixed by washing the gas with water to elute the arsenic into the water, and sulfurizing the resulting aqueous solution with a sulfurizing agent such as hydrogen sulfide gas or sodium hydrogen sulfide. Since the arsenic sulfide obtained in this manner is in the form of a cake, it is preferably added to the above-mentioned leachate in the form of a slurry. Incidentally, an example of the composition (dry weight basis) of the arsenic sulfide obtained by fixing is as follows.
Add hydrogen peroxide aqueous solution and arsenic sulfide (AS2) to the above leachate.
When adding the slurry in S3) to carry out the copper removal reaction, hydrogen peroxide is added in an amount of 0.5 to 3.0 equivalents as H2O2 to the As3+ generated in the leachate, and then hydrogen peroxide is added to the Cu2+ in the solution. About equivalent amount of AS2S3 is added to
The reaction may be carried out at a temperature of 60 to 90°C with stirring for about 0.5 to 1 hour. Note that if the amount of hydrogen peroxide added becomes excessive, a portion of the copper removal residue (CuS) generated by the copper removal reaction will be redissolved, so care must be taken. In addition, AS2S3
It is advantageous to add the slurry in parts, rather than adding it all at once, in order to reduce the loss of M. In the present invention, the copper removal reaction using AS2S3 of the electrolytically precipitated copper leachate is carried out in the presence of hydrogen peroxide, so as mentioned above, the early crystallization of AS2O3 (HAsO2 generated by the copper removal reaction) is accompanied by the copper removal reaction. (occurring due to low saturation solubility) can be suppressed to a minimum.

すなわち、過酸化水素は上記反応により生成したHAs
O2の少くとも一部を溶解度の大きいAs5+に酸化し
て過剰のAS2O3が晶出するのを抑制して最終的にA
S2O3の収率を高めるのに役立つ。又、このことは、
上記脱銅反応により生成する亜砒酸と、上記浸出液中に
既に存在するAs5+とにより脱銅反応液中の砒素の濃
度が高まることになるので該液を濃縮することなく直接
SO2で還元して亜砒酸を晶出させることを可能にする
。更に、本発明では脱銅反応に前記排ガス中の砒素をA
S2S3として固定した硫化砒素を用いるので銅電解液
の浄液法として用いられる通常の電解説銅(9〜101
]寺間)や冷凍法(2〜3時間)に比し該反応を短時間
(4).5〜1時間)で且つ実質上100%の効率で進
行させることができる。
That is, hydrogen peroxide is HAs produced by the above reaction.
At least a part of O2 is oxidized to highly soluble As5+ to suppress the crystallization of excess AS2O3 and finally to A.
Helps increase the yield of S2O3. Also, this means that
The concentration of arsenic in the copper removal reaction solution will increase due to the arsenic acid produced by the copper removal reaction and the As5+ already present in the leachate, so the solution is directly reduced with SO2 without concentrating the solution to remove arsenic acid. Enables crystallization. Furthermore, in the present invention, arsenic in the exhaust gas is used in the decopper removal reaction.
Since fixed arsenic sulfide is used as S2S3, it is different from ordinary electrolytic copper (9 to 101) used as a copper electrolyte purification method.
]Terama) and the freezing method (2 to 3 hours), the reaction time is shorter (4). 5 to 1 hour) and with virtually 100% efficiency.

上述のようにして電解沈殿銅の浸出液に脱銅反応を行わ
せて得られる反応液には亜硫酸ガス(SO2)を吹込み
などにより導入して液中の砒素イオン(As3+,As
5+)をAS2O3として晶出させる。
Sulfur dioxide gas (SO2) is introduced into the reaction solution obtained by performing a copper removal reaction on the leaching solution of electrolytically precipitated copper as described above by blowing, etc. to remove arsenic ions (As3+, As
5+) is crystallized as AS2O3.

反応液へのSO2の導入は0.5′/Min/′程度の
導入量で常温乃至80゜Cの温度で1〜3時間行なうと
よい。このSO2の導入により反応液中の砒素の82〜
85%がAS2O3として晶出する。このようにして得
られる晶出AS2O3は99.4%以上の高い純度を有
し且つアンチモン含有率が極めて低い高品位のものであ
るので、近年種々の半導体素子材料として注目されてい
るガリウム砒素、アルミニウム砒素等を製造するための
金属砒素の製造原料として適していると言える。又、本
発明によると、含砒素銅精鉱の製錬過程における電解精
製工程で得られる電解沈殿銅と、上記銅精鉱の溶錬工程
で発生する排ガス中の砒素を固定して得られる硫化砒素
(AS2S3)とから上述したような高品位な亜砒酸を
製造し得るので、本発明に係る亜砒酸の製造法を、例え
ば現在実施されている代表的な銅製錬法である自溶製錬
法に組合わせて行なうと、含砒素の高い銅鉱石の製錬容
易となり、加うるに脱砒処理のための設備規模も縮少し
得るので経済的にも非常に有利になる利点がある。
The introduction of SO2 into the reaction solution is preferably carried out at a temperature of room temperature to 80° C. for 1 to 3 hours at a rate of about 0.5'/Min/'. By introducing this SO2, the amount of arsenic in the reaction solution is 82~
85% crystallizes as AS2O3. The crystallized AS2O3 thus obtained is of high quality with a high purity of 99.4% or more and an extremely low antimony content, so gallium arsenide, which has been attracting attention as a material for various semiconductor devices in recent years, It can be said that it is suitable as a raw material for producing metal arsenic for producing aluminum arsenic and the like. Further, according to the present invention, electrolytically precipitated copper obtained in the electrolytic refining process in the smelting process of arsenic copper concentrate and sulfide obtained by fixing arsenic in exhaust gas generated in the smelting process of the copper concentrate described above Since the above-mentioned high-grade arsenous acid can be produced from arsenic (AS2S3), the method for producing arsenous acid according to the present invention can be applied to, for example, the flash smelting method, which is a typical copper smelting method currently in use. When used in combination, it becomes easy to smelt copper ore with a high arsenic content, and in addition, the scale of equipment for arsenic removal treatment can be reduced, which has the advantage of being very economically advantageous.

以下に実施例を示して本発明を更に具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1出発原料として自溶製錬法の過程で生成した下
記組成の電解沈殿銅を用いた。
Example 1 As a starting material, electrolytically precipitated copper having the following composition produced in the process of self-smelting was used.

上記組成の電解沈殿銅のスラリー(濃度160v/e)
31に空気′/Mln/′の割合で吹込みながら、濃度
32f/eの硫酸溶液を浸出液のPHが1.5に保たれ
るように滴下し、80′Cの温度で8時間浸出を行ない
、この浸出液を沖別した。
Electrolytically precipitated copper slurry with the above composition (concentration 160v/e)
A sulfuric acid solution with a concentration of 32f/e was added dropwise to the leaching solution while blowing air at a ratio of '/Mln/' into the solution to maintain the pH of the leachate at 1.5, and leaching was carried out at a temperature of 80'C for 8 hours. Then, this leachate was filtered out.

なお淵別残渣は自溶炉へ戻して溶錬工程に付した。次い
で、上述のようにして得られた浸出後液(CU2+67
.14f/E..AS3+0.5y/E,.AS5+1
8.4v/eおよびSb+0.61f/eを含有する)
2.6fに過酸化水素水溶液(上記浸出後液中の生成A
s3+イオン濃度に対してH2O2として1.5当量)
を添加し、次いで上記浸出後液中のCu2+イオン濃度
に対して1.2当量のAs?3をスラリー形態で添加し
て1時間反応させた。なお、AS2S3スラリーの添加
は6回に分けて等量宛をI紛間隔て添加するようにして
行なつた。反応終了後の液中の,As3+、AS5+お
よびSbの量を分析た結果は表1に示すとおりである。
又、参考として、上記浸出後液に過酸化水素を添加せず
に反応を行なつた場合、並びに過酸化水素を浸出後液中
のAs3+イオン濃度に対して0.5,1.0,2.0
,2.5並びに3.0当量宛添加して反応を行なつた場
合に得られた各反応液についても同様にして分析した結
果を併わせて表1に示した。表1にみられるように、過
酸化水素の添加量の増加により浸出後液中のM酸化率が
上昇してAsの実収率も向上するが、Sbの脱除率は逆
に減少する。なお、過酸化水素の添加量が3.0当量を
超えると脱銅反応により沈殿した脱銅残渣中のCuSが
硫酸酸性のもとでH2O2により再溶解して目的とする
,AS2O3の品位を低減させるようになるので留意す
べきである。次いで、上記反応後液をP別して主として
CuSから成る脱銅残渣を除去した後(なお、枦別残渣
は自溶炉へ戻して溶錬工程に付した)の炉液に70℃の
温度でSO2ガスを該p液1e当り0.5′/Minの
割合で吹き込み還元を行なつて、亜砒酸(.AS2O3
)を晶出させた。
The Fuchibetsu residue was returned to the flash furnace and subjected to the smelting process. Next, the post-leaching solution obtained as described above (CU2+67
.. 14f/E. .. AS3+0.5y/E,. AS5+1
8.4v/e and Sb+0.61f/e)
At 2.6f, hydrogen peroxide aqueous solution (formed A in the solution after leaching)
1.5 equivalents as H2O2 with respect to s3+ ion concentration)
was added, and then 1.2 equivalents of As? was added to the Cu2+ ion concentration in the leached solution. 3 was added in the form of a slurry and reacted for 1 hour. The AS2S3 slurry was added in six equal amounts at intervals of one millimeter. Table 1 shows the results of analyzing the amounts of As3+, AS5+ and Sb in the solution after the reaction was completed.
Also, as a reference, when the reaction was carried out without adding hydrogen peroxide to the solution after leaching, and when hydrogen peroxide was added to the As3+ ion concentration in the solution after leaching, the concentration was 0.5, 1.0, 2. .0
, 2.5, and 3.0 equivalents of each reaction solution were analyzed in the same manner, and the results are also shown in Table 1. As shown in Table 1, an increase in the amount of hydrogen peroxide added increases the M oxidation rate in the post-leaching solution and improves the actual yield of As, but on the contrary, the removal rate of Sb decreases. Note that if the amount of hydrogen peroxide added exceeds 3.0 equivalents, CuS in the decoppered residue precipitated by the decoppering reaction will be redissolved by H2O2 under acidic sulfuric acid, reducing the quality of the target AS2O3. This should be kept in mind as it may cause Next, the post-reaction liquid was separated with P to remove the decoppered residue mainly consisting of CuS (the decoppered residue was returned to the flash furnace and subjected to the smelting process), and then SO2 was added to the furnace liquid at a temperature of 70°C. Arsenous acid (.AS2O3
) was crystallized.

得られた晶出AS2O3の品位は99.77%であつた
。なお、参考として過酸化水素を添加しない場合、並び
に過酸化水素を上記の各量を添加した場合に得られたそ
れぞれの脱銅反応後液についても同様にしてSO2ガス
を吹き込んで還元を行なつてAS2O3を晶出させ、得
られた各晶出,AS2O3の品位を分析した結果を表2
に示す。
The quality of the crystallized AS2O3 obtained was 99.77%. For reference, the respective post-copper removal solutions obtained when no hydrogen peroxide was added and when the above amounts of hydrogen peroxide were added were also reduced by blowing SO2 gas in the same manner. Table 2 shows the results of crystallizing AS2O3 and analyzing the quality of each crystallized AS2O3.
Shown below.

表2にみられるように、FI2O2の添加量が3.0当
.量附近になると、上述した理由により晶出.AS2O
3の品位が低下するようになる。
As shown in Table 2, the amount of FI2O2 added was 3.0 equivalents. When the amount approaches, crystallization occurs for the reasons mentioned above. AS2O
The quality of 3 will begin to deteriorate.

実施例2 出発原料として別の銅製錬法の過程で生成した下記組成
の電解沈殿銅を用い、浸出液に対する過酸化水素の添加
量を1.5当量に代えて1.0当量にするほかは実施例
1に記載と同様の手順で実施した。
Example 2 Electrolytically precipitated copper with the following composition produced in the process of another copper smelting method was used as a starting material, and the amount of hydrogen peroxide added to the leachate was changed to 1.0 equivalent instead of 1.5 equivalent. The procedure was similar to that described in Example 1.

電解沈殿銅の組成: 上記電解沈殿銅の浸出後液の組成並びに該浸出”後液に
脱銅反応を行なわせた反応後液の組成は下記のとおりで
ある。
Composition of electrolytically precipitated copper: The composition of the electrolytically precipitated copper solution after leaching and the composition of the reaction solution obtained by subjecting the leaching solution to a copper removal reaction are as follows.

また、上記反応後液をSO2ガスの導入により還元して
得られる晶出AS2O3の品位は99.5%であり、還
元後液はASl4.O9/E..CUOy/ElsbO
.O6y/eおよびH?04161y/eの組成であつ
た。
Furthermore, the quality of the crystallized AS2O3 obtained by reducing the above reaction liquid by introducing SO2 gas is 99.5%, and the reduced liquid is ASl4. O9/E. .. CUOy/ElsbO
.. O6y/e and H? The composition was 04161y/e.

上記の結果から、電解沈殿銅の浸出後液の脱銅反応によ
り100%の脱銅率が達成され、反応後液は濃縮しなく
てもAsが82%の実収率で晶出されたことが分る。
From the above results, a 100% copper removal rate was achieved through the copper removal reaction of the solution after leaching electrolytically precipitated copper, and As was crystallized at an actual yield of 82% without concentrating the solution after the reaction. I understand.

また、還元後液中に残留するAs3+は14y/eと可
成り低いことも分る。
It can also be seen that As3+ remaining in the solution after reduction is quite low at 14y/e.

なお、本例では浸出操作を開始してからAS2O3を晶
出させるまでに要した時間は約11時間であることに鑑
みて、本発明に係る亜砒酸の製造法が極めて効率的であ
ると言える。
Note that in this example, the time required from the start of the leaching operation to the crystallization of AS2O3 was approximately 11 hours, and it can be said that the method for producing arsenous acid according to the present invention is extremely efficient.

Claims (1)

【特許請求の範囲】 1 電解沈殿銅を低濃度の硫酸溶液で浸出処理して得ら
れる浸出液に、過酸化水素水溶液および硫化砒素を添加
、混合し、生成する硫化銅を分離、除去し、得られる液
に亜硫酸ガスを導入して該液中の砒素を亜砒酸として晶
出させることを特徴とする亜砒酸の製造法。 2 電解沈殿銅は含砒素銅精鉱の製錬過程における電解
精製工程より得られるものである特許請求の範囲第1項
記載の製造法。 3 硫化砒素は含砒素銅精鉱の製錬に際し生成する排ガ
ス中の砒素を硫化物として固定してスラリー形態にした
ものである特許請求の範囲第1項又は第2項記載の製造
法。 4 硫酸溶液の硫酸濃度は10g/l以下である特許請
求の範囲第1項記載の製造法。 5 硫酸溶液のpHは1乃至1.5である特許請求の範
囲第4項記載の製造法。
[Claims] 1. Hydrogen peroxide aqueous solution and arsenic sulfide are added to and mixed with the leachate obtained by leaching electrolytically precipitated copper with a low-concentration sulfuric acid solution, and the produced copper sulfide is separated and removed. A method for producing arsenous acid, which comprises introducing sulfur dioxide gas into a liquid to crystallize arsenic in the liquid as arsenous acid. 2. The manufacturing method according to claim 1, wherein the electrolytically precipitated copper is obtained from an electrolytic refining step in the smelting process of arsenic-containing copper concentrate. 3. The production method according to claim 1 or 2, wherein the arsenic sulfide is obtained by fixing arsenic in exhaust gas generated during smelting of arsenic-containing copper concentrate as sulfide and making it into a slurry form. 4. The manufacturing method according to claim 1, wherein the sulfuric acid concentration of the sulfuric acid solution is 10 g/l or less. 5. The manufacturing method according to claim 4, wherein the pH of the sulfuric acid solution is 1 to 1.5.
JP19408082A 1982-11-05 1982-11-05 Arsenous acid manufacturing method Expired JPS6059175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19408082A JPS6059175B2 (en) 1982-11-05 1982-11-05 Arsenous acid manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19408082A JPS6059175B2 (en) 1982-11-05 1982-11-05 Arsenous acid manufacturing method

Publications (2)

Publication Number Publication Date
JPS5983936A JPS5983936A (en) 1984-05-15
JPS6059175B2 true JPS6059175B2 (en) 1985-12-24

Family

ID=16318621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19408082A Expired JPS6059175B2 (en) 1982-11-05 1982-11-05 Arsenous acid manufacturing method

Country Status (1)

Country Link
JP (1) JPS6059175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620189B1 (en) * 1993-04-08 1998-01-07 AlliedSignal Inc. Process for separating arsenic acid from an aqueous mixture comprising sulfuric and arsenic acids

Also Published As

Publication number Publication date
JPS5983936A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
BRPI0620785B1 (en) method for the recovery of rare metals in a zinc leaching process
JPH0127134B2 (en)
US4389248A (en) Method of recovering gold from anode slimes
JPS6153103A (en) Recovery of high-purity tellurium from crude tellurium dioxide
JPH085671B2 (en) Copper arsenate manufacturing method
JPS6059175B2 (en) Arsenous acid manufacturing method
JP3294181B2 (en) Method for producing calcium arsenate
JPH0696455B2 (en) Method for producing high-purity cobalt sulfate
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
US1756092A (en) Method of refining nickel-copper matte
US6495024B1 (en) Method for the removal of arsenic from sulfuric acid solution
JPS60195021A (en) Method of recovery of arsenious acid from exhaust gas of refining
JPS6277431A (en) Method for selectively extracting copper and arsenic respectively from decopperizing slime
JPS59128216A (en) Manufacture of arsenious acid
JPS6247815B2 (en)
JPS5974245A (en) Separation of copper and arsenic
US4599223A (en) Separation of tungsten from rhenium
JPS6147212B2 (en)
JPS6042172B2 (en) Arsenous acid manufacturing method
JPS6247814B2 (en)
JPS594369B2 (en) Production method of high purity selenium
US5173276A (en) Method for recovery of copper from copper-containing materials
JPH0735595B2 (en) Method for treating sulfuric acid acidic solution containing antimony and bismuth
JPS6246497B2 (en)
US743209A (en) Process of obtaining sodium sulfite.