JPH0696455B2 - Method for producing high-purity cobalt sulfate - Google Patents

Method for producing high-purity cobalt sulfate

Info

Publication number
JPH0696455B2
JPH0696455B2 JP18647786A JP18647786A JPH0696455B2 JP H0696455 B2 JPH0696455 B2 JP H0696455B2 JP 18647786 A JP18647786 A JP 18647786A JP 18647786 A JP18647786 A JP 18647786A JP H0696455 B2 JPH0696455 B2 JP H0696455B2
Authority
JP
Japan
Prior art keywords
cobalt
aqueous solution
added
cobalt sulfate
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18647786A
Other languages
Japanese (ja)
Other versions
JPS6345131A (en
Inventor
修 山本
守一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18647786A priority Critical patent/JPH0696455B2/en
Publication of JPS6345131A publication Critical patent/JPS6345131A/en
Publication of JPH0696455B2 publication Critical patent/JPH0696455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコバルトメツキ浴の建浴用,補給用,磁性材料
用,電子材料用等に有用な高純度硫酸コバルトの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high-purity cobalt sulfate which is useful for building a cobalt plating bath, replenishing, magnetic material, electronic material and the like.

〔従来の技術〕 従来、高純度の硫酸コバルトの製造方法としては、 イ)硫酸に金属コバルトやコバルト粉等を溶解したもの
に鉄粉と硫化物を作用させて不純物を沈殿させる方法。
[Prior Art] Conventionally, as a method for producing high-purity cobalt sulfate, (a) a method in which iron powder and sulfide are allowed to act on a solution of metallic cobalt or cobalt powder dissolved in sulfuric acid to precipitate impurities.

ロ)硫酸に金属コバルトやコバルト粉等を溶解したもの
に硫化ソーダや水硫化ソーダを加え不純物を沈殿させる
方法。
B) A method in which sodium sulfide or sodium hydrosulfide is added to a solution of metallic cobalt or cobalt powder dissolved in sulfuric acid to precipitate impurities.

ハ)溶媒注出で不純物を除去する方法等が実用化されて
いる。
C) A method of removing impurities by pouring a solvent has been put into practical use.

しかしながら上記イ),ロ),ハ)の方法で得られた高
純度硫酸コバルトは極低濃度までの不純物、特にニツケ
ルの除去が難しく製造効率が悪いという欠点があつた。
However, the high-purity cobalt sulfate obtained by the above methods (a), (b), and (c) has a drawback that it is difficult to remove impurities up to an extremely low concentration, especially nickel, and the production efficiency is poor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明の目的は、上記の問題点を解消し、高純度度の硫
酸コバルト水溶液、または結晶を効率よく製造する方法
を提供することにある。
An object of the present invention is to solve the above problems and provide a method for efficiently producing a highly pure cobalt sulfate aqueous solution or a crystal.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために、本願発明者等は不純物を含
有する硫酸コバルト水溶液にコバルト粉を加え、これに
水硫化ソーダ、硫化ソーダまたは硫化水素を加えて反応
させ、生成した沈殿を分離した液に少量の次亜塩素酸
ソーダ、もしくは過酸化水素を添加することにより不純
物として存在するニツケル,鉄,銅などが極低濃度まで
沈殿除去できることを見出し、本発明の方法に到達した
ものである。
In order to achieve this object, the inventors of the present application added cobalt powder to an aqueous solution of cobalt sulfate containing impurities, and added sodium hydrosulfide, sodium sulfide or hydrogen sulfide to the reaction to cause a reaction. The inventors have found that nickel, iron, copper, etc., which are present as impurities, can be precipitated and removed to an extremely low concentration by adding a small amount of sodium hypochlorite or hydrogen peroxide to the method of the present invention.

即ち、本発明の方法は硫酸コバルト水溶液1中に不純
物として例えばニツケルを0.03〜0.1g、鉄を0.005〜0.0
8g含有し、pH2〜5である上記水溶液1当りコバルト
細粉を1〜10g添加し、攪拌しながら水硫化ソーダ、硫
化ソーダもしくは硫化水素を上記水溶液1当り2〜10
g加え、攪拌しながら反応させる。
That is, the method of the present invention uses, for example, 0.03 to 0.1 g of nickel and 0.005 to 0.0 g of iron as impurities in the cobalt sulfate aqueous solution 1.
1 to 10 g of cobalt fine powder is added per 1 of the above aqueous solution containing 8 g and pH of 2 to 5 and sodium hydrosulfide, sodium sulfide or hydrogen sulfide is added to 2 to 10 per 1 of the above aqueous solution with stirring.
Add g and react with stirring.

この過程で不純物として含まれるニツケルおよび銅が上
記硫酸コバルト水溶液から沈殿除去される。次に上記水
溶液を吸引過し、液を攪拌しながら上記水溶液1
当り例えば5〜20mlの次亜塩素酸ソーダ、もしくは過酸
化水素水を加え、生成した鉄やマンガン等の不純物を含
む沈殿を分離させる。
Nickel and copper contained as impurities in this process are precipitated and removed from the cobalt sulfate aqueous solution. Next, the above aqueous solution is suctioned and the above aqueous solution 1 is stirred while stirring the solution.
For example, 5 to 20 ml of sodium hypochlorite or hydrogen peroxide solution is added to separate the formed precipitate containing impurities such as iron and manganese.

本発明の方法において、硫酸コバルト水溶液は例えば電
気コバルトの硫酸溶解、あるいは電解的に溶解するなど
して製造することができるが、不純物を除去した後、結
晶化したり電気コバルトを電解採取するのであるから、
硫酸コバルト濃度を比較的高くしておくことが有利であ
り、硫酸コバルト水溶液のコバルト濃度を50g/l以上の
場合に本発明の方法を適用できる。これよりコバルト濃
度が低い場合にはコバルトの実収率が低下して不利であ
る。
In the method of the present invention, the aqueous solution of cobalt sulfate can be produced, for example, by dissolving electric cobalt in sulfuric acid or electrolytically dissolving it, but after removing impurities, it is crystallized or electric cobalt is electrowinned. From
It is advantageous to keep the cobalt sulfate concentration relatively high, and the method of the present invention can be applied when the cobalt concentration of the cobalt sulfate aqueous solution is 50 g / l or more. When the cobalt concentration is lower than this, the actual yield of cobalt is lowered, which is disadvantageous.

上記水溶液の不純物のニツケル0.03〜0.1g/l、鉄0.005
〜0.08g/l等は電気コバルトから入つてくるものであ
り、添加するコバルト粉はシュウ酸塩の熱分解、あるい
は炭酸塩や水酸化物を水素還元して得たもので、粒度は
200メツシユ(0.074mm)アンダーであることが好ましい
い。コバルト粉の添加量を上記水溶液1当り1〜10g
としたのは1g未満では添加の効果が充分出ないこと、ま
た10gを超えて添加した場合でも10g以下の結果と差が認
められないからである。
Nickel 0.03 ~ 0.1g / l of impurities in the above aqueous solution, iron 0.005
~ 0.08g / l comes from electric cobalt, and the cobalt powder to be added is obtained by thermal decomposition of oxalate or hydrogen reduction of carbonate or hydroxide.
It is preferably 200 mesh (0.074 mm) under. The amount of cobalt powder added is 1 to 10 g per 1 of the above aqueous solution.
The reason is that if the amount is less than 1 g, the effect of the addition is not sufficient, and even if the amount exceeds 10 g, there is no difference with the result of 10 g or less.

コバルト粉を加えた上記水溶液にさらに水硫化ソーダ、
硫化ソーダ、または硫化水素を1種以上2〜10g/l添加
するのは上記水溶液に含有される不純物(ニツケル、
銅)を極低濃度にまで分離するために好ましい添加量で
あり、2g/l未満では充分な効果が得られないし、10g/l
を超えて添加しても除去効率はもはや向上せず、コバル
トの共沈量も増加してコバルトの収率を悪くするに過ぎ
ない。この時、液温を50℃以上に保つて反応させると、
反応時間を短縮できる。反応が平衡に達するには50℃以
上で30分間以上を要する。少量の次亜塩素酸ソーダ、も
しくは過酸化水素水を添加して不純物の鉄、マンガン等
を分離した上記硫酸コバルト水溶液にはナトリウムが0.
04g/l程度含有されているが、蒸発濃縮して結晶化した
後、再溶解、再結晶操作により比較的容易に0.005g/l以
下にまで低下させることができる。
Sodium hydrosulfide is added to the above aqueous solution containing cobalt powder,
Adding 2 to 10 g / l of one or more kinds of sodium sulfide or hydrogen sulfide is an impurity contained in the above aqueous solution (nickel,
(Copper) is a preferable addition amount for separating to an extremely low concentration. If it is less than 2 g / l, a sufficient effect cannot be obtained and 10 g / l
If it is added in excess, the removal efficiency will no longer be improved, and the coprecipitation amount of cobalt will also increase, only degrading the yield of cobalt. At this time, if the reaction is performed while keeping the liquid temperature at 50 ° C or higher,
The reaction time can be shortened. It takes 30 minutes or longer at 50 ° C or higher to reach equilibrium. Sodium hypochlorite or a hydrogen peroxide solution was added to remove impurities such as iron and manganese, and the like, and the cobalt sulfate aqueous solution contained 0.
Although it is contained in an amount of about 04 g / l, it can be relatively easily lowered to 0.005 g / l or less by re-dissolving and re-crystallizing operations after crystallization by evaporation and concentration.

〔作用〕[Action]

本発明の方法において、硫酸コバルト水溶液にコバルト
粉を添加する目的は、硫酸コバルト水溶液の酸化還元電
位を下げて、不純物のニツケル等を硫化物として分離し
易くする触媒的な作用をさせるためである。
In the method of the present invention, the purpose of adding cobalt powder to the cobalt sulfate aqueous solution is to lower the redox potential of the cobalt sulfate aqueous solution and to make a catalytic action that facilitates the separation of nickel as impurities as sulfides. .

次に水硫化ソーダ、硫化ソーダ、または硫化水素を上記
水溶液に添加するのは、水溶液に含有されているニツケ
ル、銅等を硫化物として上記水溶液から分離するのが目
的であるが、添加量が上記水溶液に含有されている不純
物を硫化するのに必要な量(0.06〜0.13g/l)を大幅に
上回つているのは、上記水溶液中のコバルトの一部も不
純物と共沈させることにより、極低濃度不純物の硫酸コ
バルト水溶液を得ようとするからである。
Next, the addition of sodium hydrosulfide, sodium sulfide, or hydrogen sulfide to the above aqueous solution is intended to separate nickel, copper, etc. contained in the aqueous solution from the above aqueous solution as sulfides, but the addition amount is The amount that is significantly higher than the amount required to sulfurize the impurities contained in the above aqueous solution (0.06 to 0.13 g / l) is significantly exceeded by coprecipitating some of the cobalt in the above aqueous solution with the impurities. This is because an attempt is made to obtain a cobalt sulfate aqueous solution having an extremely low concentration of impurities.

続いて、少量の次亜塩素酸ソーダ、もしくは過酸化水素
水を添加するのは上記水溶液に含有される鉄、マンガン
を酸化除去する目的である。
Subsequently, a small amount of sodium hypochlorite or hydrogen peroxide solution is added for the purpose of oxidizing and removing iron and manganese contained in the aqueous solution.

〔実施例〕〔Example〕

実施例1 コバルト濃度が127g/l、pH3.5の硫酸コバルト水溶液5l
をビーカに採り、これを恒温槽で60℃に保ち、別にシユ
ウ酸コバルトを熱分解して得られたコバルト粉25gを上
記水溶液に攪拌しながら添加した。次に200g/lに調整し
た水硫化ソーダ水溶液200ccを上記硫酸コバルト水溶液
を攪拌しながら添加して、30分間攪拌しながら反応させ
た。この水溶液を吸引過分離後、液に次亜塩素酸ソ
ーダ(有効塩素12%)を5cc加え、30分間攪拌しながら
反応させた。生成した沈殿を吸引過により分離した反
応終液および恒温槽に上記水溶液の入つたビーカーを浸
して蒸発濃縮冷却した結晶の分析結果を第1表に示す。
Example 1 5 l of cobalt sulfate aqueous solution having a cobalt concentration of 127 g / l and a pH of 3.5
Was taken in a beaker, kept at 60 ° C. in a constant temperature bath, and 25 g of cobalt powder obtained by thermally decomposing cobalt oxalate was added to the above aqueous solution while stirring. Next, 200 cc of an aqueous solution of sodium hydrosulfide adjusted to 200 g / l was added to the above aqueous solution of cobalt sulfate while stirring and reacted for 30 minutes while stirring. After this aqueous solution was suction-separated, 5 cc of sodium hypochlorite (effective chlorine 12%) was added to the solution, and the mixture was reacted for 30 minutes while stirring. Table 1 shows the analysis results of crystals obtained by immersing the beaker containing the above-mentioned aqueous solution in a reaction-terminated liquid in which the generated precipitate was separated by suction and a constant temperature bath, and evaporating, concentrating and cooling.

実施例2 コバルト濃度が78g/l、pH3.5の硫酸コバルト水溶液につ
いて実施例1と同条件で実施試験した結果を第2表に示
す。
Example 2 Table 2 shows the results of an implementation test conducted under the same conditions as in Example 1 on an aqueous cobalt sulfate solution having a cobalt concentration of 78 g / l and a pH of 3.5.

実施例3 始液およびコバルト粉の添加量、温度等は実施例1と同
じで200g/lに調整した水硫化ソーダの添加量を100cc
(実施例1の1/2)とし、別後の操作も実施例1と同
一で行つた結果を第3表に示す。
Example 3 The addition amount of starting solution and cobalt powder, temperature, etc. were the same as in Example 1, and the addition amount of sodium hydrosulfide adjusted to 200 g / l was 100 cc.
Table 3 shows the results of (1/2 of Example 1) and the same operations as in Example 1 except for the above.

実施例4 始液およびコバルト粉の添加量、温度等は実施例1と同
じで硫化ソーダを200g/lに調整したものを200cc添加し
別後の操作も実施例1と同一にして行つた結果を第4
表に示す。
Example 4 The result of performing the same procedure as in Example 1 except that 200 cc of the starting solution and the amount of cobalt powder added, the temperature, etc. were the same as those in Example 1, 200 cc of sodium sulfide was adjusted to 200 g / l, and the other operations were performed The fourth
Shown in the table.

実施例5 始液およびコバルト粉の添加量、温度等は実施例1と同
じで硫化水素をガラス管を通して吹込んだ倍について実
施した。吹込量は60分間に26ノルマルlであり、別後
の操作も実施例1と同一にして行つた結果を第5表に示
す。
Example 5 The starting solution and the amount of cobalt powder added, the temperature, etc. were the same as in Example 1, and the same procedure was carried out for the times when hydrogen sulfide was blown through the glass tube. The blowing amount was 26 normal l in 60 minutes, and the operation after the same procedure as in Example 1 was carried out. The results are shown in Table 5.

〔発明の効果〕 本発明方法に従つて製造された硫酸コバルト水溶液はコ
バルト濃度が60〜120g/l、ニツケル、鉄、銅の含有量が
いずれも0.002g/l未満、コバルトの実収率は90%以上で
あり、また上記硫酸コバルト水溶液を蒸発濃縮、冷却し
て得られる硫酸コバルト結晶はコバルト20.0〜20.6%、
ニツケル0.0002%未満、鉄0.0002%未満、銅0.0001%未
満、亜鉛0.001%未満である。再結晶操作により上記硫
酸コバルト水溶液のナトリウムは0.005g/l未満にするこ
とも比較的容易にできるので、従来法による硫酸コバル
ト結晶がニツケル0.01〜0.05%、鉄0.0005〜0.0005%、
銅0.0003〜0.0005%含有していたのと比較すると、本発
明は高純度硫酸コバルトの製造方法として好適であり、
コバルトめつき浴の建浴用、補給用、磁性材料、電子材
料用として極めて有用性の高いものである。
(Effect of the invention) The cobalt sulfate aqueous solution produced according to the method of the present invention has a cobalt concentration of 60 to 120 g / l, nickel, iron, and copper contents of less than 0.002 g / l, and the actual yield of cobalt is 90. % Or more, and the cobalt sulfate crystals obtained by evaporating and concentrating the above cobalt sulfate aqueous solution and cooling are cobalt 20.0 to 20.6%,
Nickel is less than 0.0002%, iron is less than 0.0002%, copper is less than 0.0001%, and zinc is less than 0.001%. Sodium in the cobalt sulfate aqueous solution by recrystallization operation can be relatively easily less than 0.005 g / l, cobalt sulfate crystals by the conventional method nickel 0.01 ~ 0.05%, iron 0.0005 ~ 0.0005%,
Compared with containing 0.0003 to 0.0005% copper, the present invention is suitable as a method for producing high-purity cobalt sulfate,
It is extremely useful as a bath for cobalt plating baths, as a replenisher, as a magnetic material, and as an electronic material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コバルトを50g/l以上含有する硫酸コバル
ト水溶液に、該水溶液1当りコバルト粉を1〜10g加
えた後、さらに該水溶液に水硫化ソーダ、硫化ソーダま
たは硫化水素のうち1種以上を上記水溶液1当り2〜
10g加え、撹拌しながら反応させた後、生成した沈殿を
分離した液に少量の次亜塩素酸ソーダ、もしくは過酸
化水素を添加して生成した沈殿を分離することを特徴と
する高純度硫酸コバルトの製造方法。
1. A cobalt sulfate aqueous solution containing 50 g / l or more of cobalt, to which 1 to 10 g of cobalt powder per 1 aqueous solution is added, and then one or more of sodium hydrosulfide, sodium sulfide, and hydrogen sulfide are added to the aqueous solution. 2 to 1 per the above aqueous solution
After adding 10 g and reacting with stirring, a small amount of sodium hypochlorite or hydrogen peroxide is added to the liquid from which the formed precipitate has been separated, and the formed precipitate is separated. Manufacturing method.
JP18647786A 1986-08-08 1986-08-08 Method for producing high-purity cobalt sulfate Expired - Lifetime JPH0696455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18647786A JPH0696455B2 (en) 1986-08-08 1986-08-08 Method for producing high-purity cobalt sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18647786A JPH0696455B2 (en) 1986-08-08 1986-08-08 Method for producing high-purity cobalt sulfate

Publications (2)

Publication Number Publication Date
JPS6345131A JPS6345131A (en) 1988-02-26
JPH0696455B2 true JPH0696455B2 (en) 1994-11-30

Family

ID=16189164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18647786A Expired - Lifetime JPH0696455B2 (en) 1986-08-08 1986-08-08 Method for producing high-purity cobalt sulfate

Country Status (1)

Country Link
JP (1) JPH0696455B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828668B2 (en) * 1990-07-10 1996-03-21 三洋電機株式会社 Audio signal encoding method
CN102515842B (en) * 2011-11-23 2013-08-07 陕西科技大学 Method for preparing cobalt sulfide nano film by ultrasonic chemical method
US9321656B2 (en) * 2012-07-10 2016-04-26 Basf Se Process for preparing aqueous solutions of cobalt sulfate
EP2872447B1 (en) * 2012-07-10 2016-12-28 Basf Se Procédé de fabrication de solutions aqueuses de sulfate de cobalt
JP6471912B2 (en) * 2016-06-21 2019-02-20 住友金属鉱山株式会社 Method for producing high purity cobalt sulfate aqueous solution
JP6929240B2 (en) * 2018-03-30 2021-09-01 Jx金属株式会社 Manufacturing method of cobalt sulfate for batteries
JP7219646B2 (en) * 2019-03-20 2023-02-08 Jx金属株式会社 High Purity Cobalt Sulfate Powder
ES2960719T3 (en) * 2020-09-09 2024-03-06 Northvolt Ab Process for preparing battery grade metal sulfate solutions

Also Published As

Publication number Publication date
JPS6345131A (en) 1988-02-26

Similar Documents

Publication Publication Date Title
US2353782A (en) Electrolytic preparation of sodium ferricyanide
JP6299620B2 (en) Method for producing nickel sulfate
JPS58110435A (en) Manufacture of ferric potassium
JPH0696455B2 (en) Method for producing high-purity cobalt sulfate
CN109562956B (en) Purified potassium hexafluoromanganate and method for purifying potassium hexafluoromanganate
JP4276322B2 (en) Method for producing high purity alkali stannate compound
US2124564A (en) Metal purification
JP2753855B2 (en) Manufacturing method of copper plating material
US4599223A (en) Separation of tungsten from rhenium
US2722510A (en) Process of preparing alkali metal-titanium fluoride
JP3585603B2 (en) Method for producing high-purity strontium carbonate
US2313680A (en) Manufacture of thiocyanates
US5173276A (en) Method for recovery of copper from copper-containing materials
US3825652A (en) Production of manganese(ii)salt solutions
US2959465A (en) Method of purifying crude nickel sulfate
CN113460976B (en) Purification method of tin-containing tellurium dioxide
US2446313A (en) Process for production of electrolytic manganese
US1228119A (en) Process of treating aluminum skimmings, screenings, dross, slags, or analogous aluminous materials.
US3723604A (en) Process for removing thiourea as an impurity from alkali-and alkaline earth-metal rhodanides
US2730429A (en) Method of making substantially pure
JP2001031419A (en) Purification of copper sulfate
JPH01275436A (en) Production of cobalt chloride having high purity
US3502430A (en) Process for preparing ammonium perchlorate
JPS6247814B2 (en)
US1367409A (en) Process of producing ferrous oxid