JPS6059164B2 - How to use low-pressure steam discharged from a sulfur recovery plant - Google Patents

How to use low-pressure steam discharged from a sulfur recovery plant

Info

Publication number
JPS6059164B2
JPS6059164B2 JP3427682A JP3427682A JPS6059164B2 JP S6059164 B2 JPS6059164 B2 JP S6059164B2 JP 3427682 A JP3427682 A JP 3427682A JP 3427682 A JP3427682 A JP 3427682A JP S6059164 B2 JPS6059164 B2 JP S6059164B2
Authority
JP
Japan
Prior art keywords
pressure
steam
pressure steam
sulfur
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3427682A
Other languages
Japanese (ja)
Other versions
JPS58151307A (en
Inventor
一彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3427682A priority Critical patent/JPS6059164B2/en
Publication of JPS58151307A publication Critical patent/JPS58151307A/en
Publication of JPS6059164B2 publication Critical patent/JPS6059164B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は硫黄回収プラントから排出される低圧蒸気の
有効利用法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively utilizing low pressure steam discharged from a sulfur recovery plant.

排煙脱硫装置からもたらされる硫黄酸化物を直接環元
して、あるいはまた硫化水素とのクラウス反応によつて
、単体硫黄を回収する場合には、還元反応器又はクラウ
ス反応器の下流側に硫黄コンデンサを設け、反応器から
流出する硫黄蒸気を水と間接的に熱交換させて液体硫黄
に凝縮させる方法が採られている。
When recovering elemental sulfur by direct ring reduction of sulfur oxides coming from flue gas desulfurization equipment or alternatively by Claus reaction with hydrogen sulfide, sulfur is added to the downstream side of the reduction reactor or Claus reactor. A method is used in which a condenser is installed to indirectly exchange heat with water to condense the sulfur vapor flowing out of the reactor into liquid sulfur.

この方法によれば、硫黄コンデンサに供給された冷却水
は、一般に気・液混相で硫黄コンデンサから排出される
が、このものは次いで蒸気ドラムに送られ、ここで蒸気
相と液相とが分離されて液相は随時補給される冷却水と
共に硫黄コンデンサに循環される。 ところで上記の如
き硫黄回収方法では、硫黄コンデンサの下部領域も含め
て、液体硫黄を扱う導管、ポンプ、貯槽などは、液体硫
黄の凝固を防止するうえで、135〜150℃程度に維
持する必要があり、この保温乃至は加熱を蒸気で行なう
のには、常時ほぼ一定量の蒸気を必要とする。
According to this method, the cooling water supplied to the sulfur condenser is generally discharged from the sulfur condenser in a gas-liquid mixed phase, which is then sent to a steam drum where the vapor and liquid phases are separated. The liquid phase is circulated to the sulfur condenser together with cooling water that is replenished from time to time. By the way, in the above sulfur recovery method, the pipes, pumps, storage tanks, etc. that handle liquid sulfur, including the area below the sulfur condenser, must be maintained at a temperature of about 135 to 150 °C to prevent the liquid sulfur from solidifying. However, in order to perform this heat retention or heating with steam, a substantially constant amount of steam is required at all times.

これに対し、前述しf蒸気ドラムから排出される蒸気は
その量が装置の運転状況によつて変動するばかりでなく
、圧力も2.5〜3.7に9/clt、a比(127〜
140℃)程度であるため、液体硫黄を扱う導管、ポン
プ、貯槽などの保温乃至は加熱用蒸気として利用しにく
い。従つて、従来は液体硫黄を扱う部分の保温乃至加熱
には、外部供給源からの高圧蒸気が利用されている。
本発明は硫黄回収プラントの蒸気ドラムから排出される
ところの、そのままでは殆ど有効利用の途のない低圧蒸
気を高圧蒸気と混合して液体硫黄の凝固防止を図るため
の熱源として利用する方法を提案するものである。
On the other hand, as mentioned above, the amount of steam discharged from the F steam drum not only varies depending on the operating conditions of the equipment, but also the pressure ranges from 2.5 to 3.7 (9/clt), and the a ratio (127 to 3.7).
(140°C), it is difficult to use it as heat-insulating or heating steam for conduits, pumps, storage tanks, etc. that handle liquid sulfur. Therefore, conventionally, high-pressure steam from an external source has been used to insulate or heat parts that handle liquid sulfur.
The present invention proposes a method in which low-pressure steam, which is discharged from the steam drum of a sulfur recovery plant and which cannot be used effectively as it is, is mixed with high-pressure steam and used as a heat source to prevent liquid sulfur from solidifying. It is something to do.

而して本発明の方法は高圧蒸気発生源からもたらされ
る高圧蒸気を第1調圧弁を介してエジエクタの第1流体
入口に導入し、硫黄回収プラントの蒸気ドラムから排出
される低圧蒸気をエジエクタの第2流体入口に導入して
中圧蒸気を発生させ、前記の高圧蒸気がエジエクタをバ
イパスしてエジエクタの出口側に通ずるラインに、第1
調圧弁より0.1〜0.5k9/Ai低い圧力で作動す
る第2調圧弁を設け、エジエクタから発生する中圧蒸気
の量を第1及び第2調圧弁にて調節しながら、その中圧
蒸気を保温及び/又は加熱用蒸気として硫黄回収プラン
トに循環することからなる。
Therefore, the method of the present invention introduces high-pressure steam from a high-pressure steam generation source into the first fluid inlet of the ejector through the first pressure regulating valve, and introduces low-pressure steam discharged from the steam drum of the sulfur recovery plant into the ejector. The medium pressure steam is introduced into the second fluid inlet to generate medium pressure steam, and the high pressure steam bypasses the ejector and connects the first
A second pressure regulating valve is provided that operates at a pressure 0.1 to 0.5k9/Ai lower than that of the pressure regulating valve, and while the amount of intermediate pressure steam generated from the ejector is controlled by the first and second pressure regulating valves, the intermediate pressure is It consists of circulating the steam to the sulfur recovery plant as insulation and/or heating steam.

添付図面にそつて本発明の方法を説明すると、硫黄酸化
物の還元反応器又はクラウス反応器などの反応器1から
流出する硫黄蒸気は硫黄コンデンサ2に供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS To explain the method of the invention with reference to the accompanying drawings, sulfur vapor exiting a reactor 1, such as a sulfur oxide reduction reactor or a Claus reactor, is fed to a sulfur condenser 2.

硫黄蒸気は蒸気ドラム3から戻される冷却水とコンデン
サ2内で間接的に熱交換し、凝縮温度まで冷却されて液
体硫黄に凝縮する。この液体硫黄はコンデンサ2の下部
から硫黄タンク4に導かれ、硫黄ポンプ5を経て硫黄貯
蔵タンク6に供給される。一方、硫黄コンデンサ2に供
給された冷却水は、硫黄蒸気との熱交換によつて部分的
に蒸発せしめられ、気・液混相の状態でコンデンサ2の
上部から蒸気ドラム3に供給される。
The sulfur vapor indirectly exchanges heat with the cooling water returned from the steam drum 3 in the condenser 2, is cooled to the condensation temperature, and is condensed into liquid sulfur. This liquid sulfur is led from the lower part of the condenser 2 to a sulfur tank 4, and is supplied to a sulfur storage tank 6 via a sulfur pump 5. On the other hand, the cooling water supplied to the sulfur condenser 2 is partially evaporated by heat exchange with sulfur vapor, and is supplied from the upper part of the condenser 2 to the steam drum 3 in a gas/liquid mixed phase state.

蒸気ドラム3では蒸気相と液相が相互に分離され、液相
は冷却水としてコンデンサ2に循環される。既述した通
り、蒸気ドラムから回収される蒸気相は2.5〜3.7
k9/CFll.abS程度の低圧蒸気であつて、飽和
蒸気としてもその温度は127〜147℃てあり、加え
てその蒸気量も装置の運転状況によつてかなり変動する
ので、液体硫黄を扱う導管、ポンプ、貯槽などの保温乃
至加熱に利用しにくいのが実情である。本発明では蒸気
ドラム3から排出される低圧蒸気は、ドラム内圧制御弁
7及び逆止弁8を設けたライン9を通つて、エジエクタ
10の第2流体入口に導入される。エジエクタ10の第
1流体(駆動流体ともいう)入口には、高圧蒸気発生源
11からもたらされる高圧蒸気が第1調圧弁12を介し
て導入され、これによつてエジエクタ10からは中圧蒸
気が発生する。エジエクタ10は低圧蒸気の回収率が最
大になるように設計されることはもちろんである。エジ
エクタ10から発生する中圧蒸気はライン15に流れて
、図示の通り冷却水子熱器16、硫黄貯蔵タンク6、硫
黄ポンプ5、硫黄コンデンサ2の下部領域などを保温及
び/又は加熱するための蒸気として利用されるが、この
蒸気は液体硫黄の凝固の確実に防止するうえで、通常3
.3〜4.9k9/Clt.abs(135〜150℃
)の圧力に保持されていなければならない。多くの場合
、この圧力はエジエクタ10に第1流体として導入され
る高圧蒸気の量を、第1調圧弁12で調節することによ
つて維持することができる。しかし、系内での中圧蒸気
の消費量が増大した場合は、中圧蒸気を上記の設定圧に
維持しておくことが困難である。従つて、本発明では高
圧蒸気発生源11からの高圧蒸気を、ライン15にバイ
パスさせるライン13を設けると共に、このバイパスラ
イン1に第1調圧弁12よりも0.1〜0.5kg/a
l低い圧力で作動する第2調圧弁14を設け、ライン1
5を流れる中圧蒸気の圧力を圧力発信器兇で検知しなが
ら、中圧蒸気を次のように調圧する。
In the steam drum 3, a vapor phase and a liquid phase are separated from each other, and the liquid phase is circulated to the condenser 2 as cooling water. As mentioned above, the vapor phase recovered from the steam drum is between 2.5 and 3.7
k9/CFll. It is a low-pressure steam on the order of abS, and its temperature is 127 to 147°C even as saturated steam.In addition, the amount of steam varies considerably depending on the operating conditions of the equipment, so it is difficult to use conduits, pumps, and storage tanks that handle liquid sulfur. The reality is that it is difficult to use it for heat insulation or heating. In the present invention, low pressure steam discharged from the steam drum 3 is introduced into the second fluid inlet of the ejector 10 through a line 9 provided with a drum internal pressure control valve 7 and a check valve 8. High-pressure steam from a high-pressure steam generation source 11 is introduced into the first fluid (also referred to as driving fluid) inlet of the ejector 10 via the first pressure regulating valve 12, whereby medium-pressure steam is supplied from the ejector 10. Occur. Of course, the ejector 10 is designed to maximize the recovery rate of low pressure steam. Medium-pressure steam generated from the ejector 10 flows into a line 15 for insulating and/or heating the cooling water heater 16, the sulfur storage tank 6, the sulfur pump 5, the lower region of the sulfur condenser 2, etc., as shown in the figure. Used as a vapor, this vapor is usually
.. 3-4.9k9/Clt. abs(135-150℃
) must be held at a pressure of In many cases, this pressure can be maintained by adjusting the amount of high-pressure steam introduced into the ejector 10 as the first fluid using the first pressure regulating valve 12. However, when the consumption of intermediate pressure steam within the system increases, it is difficult to maintain the intermediate pressure steam at the above set pressure. Therefore, in the present invention, a line 13 is provided to bypass the high-pressure steam from the high-pressure steam generation source 11 to the line 15, and the bypass line 1 is 0.1 to 0.5 kg/a lower than the first pressure regulating valve 12.
l A second pressure regulating valve 14 that operates at a lower pressure is provided, and the line 1
While detecting the pressure of the medium-pressure steam flowing through 5 with a pressure transmitter, the pressure of the medium-pressure steam is regulated as follows.

すなわち、第1調圧弁12によつて3.3〜4.9k9
/C7ll.aメに設定された中圧蒸気の系内での消費
量が増大し、その圧力が設定圧よりも0.1〜0.5k
9/Crl低くなつた際には、圧力発信器円からの電気
信号を受けて第2調圧弁14が作動し、高圧蒸気を直接
ライン15に導入することによつて中圧蒸気の圧力を維
持するのてある。この方法は中圧蒸気の圧力を検出して
第1及び第2調圧弁の開閉を行なうものであるが、圧力
の代りに温度を検出して同様な制御を行なうこもできる
。但し、この場合は応答速度が圧力による場合よりも多
少遅くなる。また別法として、第1及び第2調圧弁をそ
れぞれ自刃式圧力制御弁として、圧力発信器に代えて導
圧管にてライン15と第1及び第2調圧弁を連絡させる
ことでライン15の中圧蒸気を調圧することもてきる。
なお、中圧蒸気の消費量が少なく、エジエクタ10によ
つて低圧蒸気の吸引が行なわれない時は、逆止弁8によ
り中圧蒸気の逆流を防止すると共に、蒸気ドラム3から
の低圧蒸気はリリーフ弁17より系外へ放出される。
That is, 3.3 to 4.9k9 depending on the first pressure regulating valve 12
/C7ll. The consumption of medium-pressure steam in the system increases, and the pressure is 0.1 to 0.5 k higher than the set pressure.
9/Crl becomes low, the second pressure regulating valve 14 operates in response to an electric signal from the pressure transmitter circle, and maintains the pressure of medium pressure steam by introducing high pressure steam directly into line 15. There is something to do. Although this method detects the pressure of intermediate pressure steam to open and close the first and second pressure regulating valves, it is also possible to perform similar control by detecting temperature instead of pressure. However, in this case, the response speed is somewhat slower than when using pressure. Alternatively, the first and second pressure regulating valves may each be self-bladed pressure control valves, and the line 15 may be connected to the first and second pressure regulating valves through a pressure conduit instead of a pressure transmitter. It is also possible to regulate the pressure of steam.
Note that when the consumption of medium-pressure steam is small and low-pressure steam is not sucked by the ejector 10, the check valve 8 prevents the medium-pressure steam from flowing backward, and the low-pressure steam from the steam drum 3 is It is released from the system through the relief valve 17.

以上述べて来たところから明らかな通り、本発明によれ
ば、硫黄回収プラントの蒸気ドラムから排出されるとこ
ろの、従来はほとんど活用できなかつた低圧蒸気を、保
温乃至は加熱用の中圧蒸気として利用することができ、
従つて高圧蒸気単独で系内の保温乃至は加熱を行なう場
合に比べて、高圧蒸気の消費量を大幅に節減することが
できる。
As is clear from what has been described above, according to the present invention, low-pressure steam discharged from the steam drum of a sulfur recovery plant, which could hardly be utilized in the past, can be used as medium-pressure steam for heat retention or heating. It can be used as
Therefore, the amount of high-pressure steam consumed can be significantly reduced compared to the case where the system is kept warm or heated using high-pressure steam alone.

さらにまた本発明では蒸気ドラムから排出される低圧蒸
気量が変動しても、保温乃至は加熱に必要な中圧蒸気量
を常に確保することができ、しかもその中圧蒸気量は消
費量に応じて調節可能であるので、中圧蒸気を過不足な
く提供できる利点もある。
Furthermore, according to the present invention, even if the amount of low-pressure steam discharged from the steam drum fluctuates, the amount of medium-pressure steam necessary for keeping warm or heating can be always secured, and the amount of medium-pressure steam depends on the consumption amount. Since the pressure can be adjusted, it has the advantage of being able to provide just the right amount of medium-pressure steam.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すフローシートである。 1;反応器、2;硫黄コンデンサ、3;蒸気ドラム、4
;硫黄タンク、5;硫黄ポンプ、6;硫黄貯蔵タンク、
7;蒸気ドラム内圧制御弁、8;逆止弁、10;エジエ
クタ、11;高圧蒸気発生源、12;第1調圧弁、14
;第2調圧弁、16;冷却水子熱器、17;リリーフ弁
、円;圧力発信器。
The drawing is a flow sheet showing one embodiment of the present invention. 1; Reactor, 2; Sulfur condenser, 3; Steam drum, 4
; sulfur tank; 5; sulfur pump; 6; sulfur storage tank;
7; Steam drum internal pressure control valve, 8; Check valve, 10; Ejector, 11; High pressure steam generation source, 12; First pressure regulating valve, 14
; Second pressure regulating valve, 16; Cooling water heater, 17; Relief valve, circle; Pressure transmitter.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧蒸気発生源からもたらされる高圧蒸気を第1調
圧弁を介してエジエクタの第1流体入口に導入し、硫黄
回収プラントの蒸気ドラムから排出される低圧蒸気をエ
ジエクタの第2流体入口に導入して中圧蒸気を発生させ
、前記高圧蒸気がエジエクタをバイパスしてエジエクタ
の出口側に通ずるラインに、第1調圧弁より0.1〜0
.5kg/cm^2低い圧力で作動する第2調圧弁を設
け、エジエクタから発生する中圧蒸気の量を第1及び第
2調圧弁にて調節しながら、その中圧蒸気を保温及び/
又は加熱用蒸気として硫黄回収プラントに循環すること
からなる前記低圧蒸気の利用法。
1. High pressure steam brought from a high pressure steam generation source is introduced into a first fluid inlet of the ejector through a first pressure regulating valve, and low pressure steam discharged from a steam drum of a sulfur recovery plant is introduced into a second fluid inlet of the ejector. medium-pressure steam is generated, and the high-pressure steam bypasses the ejector and is connected to the line leading to the outlet side of the ejector through a first pressure regulating valve.
.. A second pressure regulating valve that operates at a lower pressure of 5 kg/cm^2 is provided, and while the amount of intermediate pressure steam generated from the ejector is controlled by the first and second pressure regulating valves, the intermediate pressure steam is kept warm and/or
or a method of utilizing said low-pressure steam comprising circulating it to a sulfur recovery plant as heating steam.
JP3427682A 1982-03-04 1982-03-04 How to use low-pressure steam discharged from a sulfur recovery plant Expired JPS6059164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3427682A JPS6059164B2 (en) 1982-03-04 1982-03-04 How to use low-pressure steam discharged from a sulfur recovery plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3427682A JPS6059164B2 (en) 1982-03-04 1982-03-04 How to use low-pressure steam discharged from a sulfur recovery plant

Publications (2)

Publication Number Publication Date
JPS58151307A JPS58151307A (en) 1983-09-08
JPS6059164B2 true JPS6059164B2 (en) 1985-12-24

Family

ID=12409634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3427682A Expired JPS6059164B2 (en) 1982-03-04 1982-03-04 How to use low-pressure steam discharged from a sulfur recovery plant

Country Status (1)

Country Link
JP (1) JPS6059164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085516Y2 (en) * 1988-05-23 1996-02-14 矢崎総業株式会社 Display circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886850A (en) * 2010-07-19 2010-11-17 李树生 Low-temperature steam exhaust recovery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085516Y2 (en) * 1988-05-23 1996-02-14 矢崎総業株式会社 Display circuit

Also Published As

Publication number Publication date
JPS58151307A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
KR870001256B1 (en) Exhaust gas heat recovery system in internal combustion engine
US4179895A (en) Cooling system using low potential and high potential energies
JPS6059164B2 (en) How to use low-pressure steam discharged from a sulfur recovery plant
US6460338B1 (en) Absorption waste-heat recovery system
US4364240A (en) Temperature-dependent output control for a heat pump absorber
CA1267819A (en) System for recovering drain from feed-water heaters in a generating plant
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
US3248304A (en) Fluid control for steam compressor type distillation apparatus
US5867988A (en) Geothermal power plant and method for using the same
HUE027635T2 (en) Removal of sulphur from flue gas with possibility of recovering water
SU1451436A1 (en) Method of operation of waste-heat recovery boiler plant
JPH05144452A (en) Fuel cell power generating system
JPS6311571Y2 (en)
JPH02241909A (en) Mixing ratio adjusting device for mixed fluid cycle plant
JP3010086B2 (en) Cogeneration power plant
JP3659659B2 (en) Exhaust gas boiler
JP2001201007A (en) Temperature control device for heater
JPH0842802A (en) Device for controlling generating quantity of intermediate/low pressure steam in exhaust gas boiler
RU2036378C1 (en) Method of heating water
JPH04363870A (en) Fuel cell power generating system
JPS5932606A (en) Cold heat power generating plant
JPS6364710B2 (en)
JPS6144260A (en) Controller for absorption heat pump
SU985336A1 (en) Steam turbine plant
JPH08200603A (en) Vaporizer system for exhaust heat recovery boiler