JPS6059097B2 - Power supply device for electrical discharge machining - Google Patents

Power supply device for electrical discharge machining

Info

Publication number
JPS6059097B2
JPS6059097B2 JP10159979A JP10159979A JPS6059097B2 JP S6059097 B2 JPS6059097 B2 JP S6059097B2 JP 10159979 A JP10159979 A JP 10159979A JP 10159979 A JP10159979 A JP 10159979A JP S6059097 B2 JPS6059097 B2 JP S6059097B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
machining
power supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10159979A
Other languages
Japanese (ja)
Other versions
JPS5627734A (en
Inventor
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10159979A priority Critical patent/JPS6059097B2/en
Publication of JPS5627734A publication Critical patent/JPS5627734A/en
Publication of JPS6059097B2 publication Critical patent/JPS6059097B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/20Relaxation circuit power supplies for supplying the machining current, e.g. capacitor or inductance energy storage circuits

Description

【発明の詳細な説明】 この発明は、電極と加工液を介して被加工物との間に
形成される加工間隙に放電を行わせて放電切削加工する
放電加工用の電源装置に関するもので、特にワイヤ電極
を用いるワイヤカット放電加工用の電源装置として適す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device for electrical discharge machining that performs electrical discharge machining by generating electrical discharge in a machining gap formed between an electrode and a workpiece through a machining fluid. It is particularly suitable as a power supply device for wire-cut electrical discharge machining using wire electrodes.

第1図は従来のワイヤカット放電加工装置の一例を示
す構成図で、1は被加工物、2はワイヤ電極、3はタン
ク4に貯蔵された加工液、5はこの加工液3を圧送する
ポンプ、6は加工液3をワイヤ電極2の加工部2Aと被
加工物1の対向する加工間隙に噴射するノズル、7はワ
イヤ電極2の供給リール、8A、8Bは上下で上記ワイ
ヤ電極2の加工部2Aの位置を規定する上部ワイヤガイ
ドおよび下部ワイヤガイド、9はワイヤ電極2への給電
部、10はワイヤ電極2に適当なテンションを与えなが
ら上記ワイヤ電極2を巻取る巻取りール、11は被加工
物1を載せたテーブル、12、13はこのテーブル11
をX方向およびY方向にそれぞれ駆動するX軸駆動モー
タおよびY軸駆動モータ、14はこのX軸駆動モータ1
2およびY軸駆動モータ13を制御してテーブル11を
X−Y方向に移動して被加工物1がワイヤ電極2の加工
部2Aに対して所望の形状を相対的に画くよう制御する
駆動制御装置で、一般に倣い装置、N/C装置あるいは
電子計算機等からなつている。
FIG. 1 is a configuration diagram showing an example of a conventional wire-cut electrical discharge machining device, in which 1 is a workpiece, 2 is a wire electrode, 3 is a machining fluid stored in a tank 4, and 5 is a pump for pumping this machining fluid 3. 6 is a nozzle that injects the machining fluid 3 into the opposing machining gap between the machining part 2A of the wire electrode 2 and the workpiece 1; 7 is the supply reel for the wire electrode 2; 8A and 8B are the upper and lower parts of the wire electrode 2; An upper wire guide and a lower wire guide that define the position of the processing section 2A, 9 a power supply section for the wire electrode 2, 10 a winding roll for winding the wire electrode 2 while applying appropriate tension to the wire electrode 2; 11 is a table on which the workpiece 1 is placed, 12 and 13 are this table 11
an X-axis drive motor and a Y-axis drive motor that respectively drive the
2 and the Y-axis drive motor 13 to move the table 11 in the X-Y direction so that the workpiece 1 draws a desired shape relative to the processing portion 2A of the wire electrode 2. This equipment generally consists of copying equipment, N/C equipment, electronic computers, etc.

15は放電加工の加工電源装置で、これは直流電源16
と、スイッチング素子17と、放電用コンデンサ18と
、このコンデンサ18の充電電流制限抵抗器19および
スイッチング素子17のON一OFFを制御する制御装
置20とから構成され、その制御装置20は例えは一定
周期でスイッチング素子17をON−OFFさせるオシ
レーターからなつている。
15 is a machining power supply device for electric discharge machining, which is a DC power supply 16
, a switching element 17, a discharging capacitor 18, a charging current limiting resistor 19 of this capacitor 18, and a control device 20 that controls ON/OFF of the switching element 17. It consists of an oscillator that turns on and off the switching element 17 periodically.

第2図はこの装置の加工電源装置15と、被加工物1
とワイヤ電極2の加工部2Aとが対向した加工間隙とて
構成される主要部分の動作を説明する図である。
Figure 2 shows the machining power supply 15 of this device and the workpiece 1.
FIG. 4 is a diagram illustrating the operation of the main part constituted by the machining gap where the wire electrode 2 and the machining section 2A of the wire electrode 2 face each other.

放電用コンデンサ18はスイッチング素子17が0Nし
ている間、抵抗器19を介して充電され、t時間充電後
の放電用コンデンサ18の端子間電圧Vcは、直流電源
16の電圧をE1放電用コンデンサ18の容量をC、抵
抗器19の抵抗値Rとするとなる曲線で示されるように
充電されるはずである。
The discharging capacitor 18 is charged via the resistor 19 while the switching element 17 is ON, and the voltage Vc between the terminals of the discharging capacitor 18 after charging for t hours is equal to the voltage of the DC power supply 16 compared to the voltage of the E1 discharging capacitor. If the capacitance of 18 is C and the resistance value of resistor 19 is R, charging should occur as shown by the curve.

ところがワイヤ電極2の加工部2Aと被加工物1との間
の加工問隙に加工液3を通して漏洩電流が流れ、図に示
すように加工間隙に抵抗値rの漏洩抵抗が接続されたの
と等価となり、この場合の放電用コンデンサ18の充電
特性曲線は次式で示される。
However, a leakage current flows through the machining fluid 3 into the machining gap between the machining part 2A of the wire electrode 2 and the workpiece 1, and a leakage resistor with a resistance value r is connected to the machining gap as shown in the figure. The charging characteristic curve of the discharging capacitor 18 in this case is expressed by the following equation.

ここで漏洩抵抗値rは加工液3の比抵抗に関係している
ほかに、加工によつて生する加工くずの影響、加工条件
、加工液3の流量・流速等に関連して常時変化しており
、(2)式で示される放電用コンデンサ18の端子電圧
Vcの充電曲線は常に変化しているのが実情である。
Here, the leakage resistance value r is not only related to the specific resistance of the machining fluid 3, but also changes constantly due to the influence of machining waste generated during machining, machining conditions, flow rate and flow rate of the machining fluid 3, etc. The reality is that the charging curve of the terminal voltage Vc of the discharging capacitor 18 expressed by equation (2) is constantly changing.

このようにして充電された放電用コンデンサ18から放
電間隙に放電を開始した時の端子間電圧Vcを放電開始
電圧■Dとすると、この放電開始電圧V。
If the voltage Vc between the terminals when the discharging capacitor 18 charged in this way starts discharging into the discharging gap is the discharging starting voltage ■D, then this discharging starting voltage V.

は上記放電用コンデンサ18の充電曲線■Cの変化に影
響されて常に変化し、特に漏洩電流が少ない時(漏洩抵
抗値rが大の時)Vcの上昇速.度が速くなり、その結
果放電開始電圧■。が異常に高くなることがあつた。一
方、放電開始電圧V。
changes constantly under the influence of the change in the charging curve . As a result, the discharge starting voltage ■. sometimes became abnormally high. On the other hand, the discharge starting voltage V.

で放電間隙に放電した時に、放電用コンデンサ18より
放出するエネルギーWは次式で示される。すなわち放電
間隙に放出される加工エネルギーは、放電開始電圧■。
The energy W released from the discharge capacitor 18 when discharged into the discharge gap is expressed by the following equation. In other words, the machining energy released into the discharge gap is the discharge starting voltage■.

の二乗に関連しており、放電開始電圧V。を高くすると
一回の放電ての被加・工物1の切削量は多くなる反面、
ワイヤ電極2の加工部2Aの消耗量も同様に多くなり、
あまり放電開始電圧Vりが高くなとワイヤ断線が発生す
る危険性があつた。したがつて加工能率を上げる必要の
ある時には、直流電源16の電圧Eを高く設定して、ワ
イヤ断線の限界に近いエネルギーを加工間隙に与えて高
速度で加工するのが理想であるが、直流電源16の電圧
Eの設定にあたつては、漏洩抵抗値rの変動を考慮して
最悪な条件でもワイヤ断線が発生しないように低目に設
定せねばならず、その結果加工速度をあまり高速にする
ことが出来ず、加工能率が悪いという欠点があつた。
It is related to the square of the discharge starting voltage V. If the value is increased, the amount of cutting of workpiece 1 in one discharge will increase, but on the other hand,
The amount of wear on the processed portion 2A of the wire electrode 2 also increases,
If the discharge starting voltage V was too high, there was a risk of wire breakage. Therefore, when it is necessary to increase machining efficiency, it is ideal to set the voltage E of the DC power supply 16 high to apply energy close to the limit of wire breakage to the machining gap and process at high speed. When setting the voltage E of the power supply 16, it must be set to a low value so that wire breakage does not occur even under the worst conditions, taking into account the fluctuation of the leakage resistance value r, and as a result, the machining speed may not be too high. The disadvantage was that the machining efficiency was poor.

ノ さらに被加工物1の切削量は放電開始電圧■Dの二
乗に関連しているので、この放電開始電圧VOが大巾に
変動すると、加工溝巾も変化し、加工精度が悪くなる欠
点も合せ持つていた。
Moreover, since the cutting amount of the workpiece 1 is related to the square of the discharge starting voltage ■D, if this discharge starting voltage VO changes widely, the machining groove width will also change, which has the disadvantage of deteriorating the machining accuracy. I had both.

この欠点を除去するためには、放電開始電圧V・Dを一
定の値以下におさえることが必要で、例えば第3図に示
すように放電用コンデンサ18の並列に直流電源16か
ら供給される電流をバイパスする回路21を設ければよ
く、このバイパス回路は一般にゼナーダイオードなどの
定電圧素子で構成されている。
In order to eliminate this drawback, it is necessary to suppress the discharge starting voltage V・D below a certain value. For example, as shown in FIG. It is sufficient to provide a circuit 21 for bypassing the voltage, and this bypass circuit is generally composed of a constant voltage element such as a Zener diode.

ところがこのようにバイパス回路21を設けるとこの回
路には、放電用コンデンサ18の端子電圧Vcに達した
後は次式で示す13の電流が流れ、そのためこの回路2
1でPsの電力が消費される。
However, when the bypass circuit 21 is provided in this way, after reaching the terminal voltage Vc of the discharging capacitor 18, a current of 13 shown by the following equation flows through this circuit.
1 consumes power of Ps.

ここで一般に加工条件として使用される値の一例として
E=300■、VS=150V,.R=20Ωとすると
、PS=1125Wとなり、この電力は無駄に消費され
るだけでなく、熱となるので、その放熱をはからなけれ
ばならないという問題を発生させる結果となつた。特に
、数ミクロンの精度を要求されるワイヤカット放電加工
で、このような多量の熱による機械本体の熱ひずみは、
精度上好ましくなく、致命的な欠点であつた。
Here, examples of values generally used as processing conditions are E=300■, VS=150V, . When R=20Ω, PS=1125W, and this power is not only wasted, but also becomes heat, resulting in the problem that the heat must be dissipated. In particular, in wire-cut electrical discharge machining, which requires accuracy of several microns, thermal distortion of the machine body due to such a large amount of heat is
This was unfavorable in terms of accuracy and had a fatal flaw.

上記のような欠点をなくする目的で、スイッチングのみ
により、無駄な電力の発生を防ぐようにした第4図に示
した方法が提案された。
In order to eliminate the above-mentioned drawbacks, a method shown in FIG. 4 has been proposed in which the generation of wasteful power is prevented by only switching.

図中同一符号は同一または相当部分を示し、31,32
,33,34はその抵抗値がそれぞれR1、R2、R3
、R4の抵抗器で、R2/(R1+R2)=R4/(R
3+R4)の関係にあり、基準点Gに対する放電用コン
デンサ18の両端の電圧E1、E2をそれぞれ同じ割合
で分圧して制御可能なレベルの電圧11、12を得るた
めの分圧用抵抗器として作動している。
The same reference numerals in the figures indicate the same or corresponding parts, 31, 32
, 33, and 34 have resistance values R1, R2, and R3, respectively.
, R4 resistor, R2/(R1+R2)=R4/(R
3+R4), and operates as a voltage dividing resistor to divide the voltages E1 and E2 at both ends of the discharge capacitor 18 with respect to the reference point G at the same ratio to obtain voltages 11 and 12 at controllable levels. ing.

22はこの電圧e1、E2を入力して、その差(E2−
e1)を出力する差分検出回路で、その一例を第5図に
示す。
22 inputs these voltages e1 and E2 and calculates the difference (E2-
FIG. 5 shows an example of a difference detection circuit that outputs e1).

この図中35,36,37,38は、その抵抗値R,、
R6、R7、R8がすべて等しい抵抗器、23は演算増
幅器で、その出力電圧をEOl(+)側電圧をε2、(
一)側電圧をε1とするとε2、j1は次式で表わせる
。ここで演算増幅器23の増幅度を無限大に近い値にし
てあるので、(+)(−)入力端子間の電位差ははぼO
■となり、ε1=ε2と見ることが出来、この結果e1
/2+EO/2=E2/2となりなる関係が得られ、演
算増幅器23の出力E。
In this figure, 35, 36, 37, 38 are the resistance values R,...
R6, R7, and R8 are all equal resistors, and 23 is an operational amplifier, whose output voltage is set to EOl (+) side voltage by ε2, (
1) If the side voltage is ε1, ε2 and j1 can be expressed by the following equation. Here, since the amplification degree of the operational amplifier 23 is set to a value close to infinity, the potential difference between the (+) and (-) input terminals is approximately O.
■, and it can be seen that ε1=ε2, and as a result e1
/2+EO/2=E2/2 is obtained, and the output E of the operational amplifier 23 is obtained.

は、e1とE2の差(E2−e1)となり差分検出回路
22として作動する。24は、この差分検出回路22の
出力(E2一e1)と、一定電圧■Sに比例した値とし
て設定された基準電圧Vrefを比較するコンパレータ
ーで、(E2−e1)〉Vrefとなるとスイッチング
素子17を、0FFにする信号を出力する。
is the difference between e1 and E2 (E2-e1) and operates as the difference detection circuit 22. 24 is a comparator that compares the output (E2-e1) of this difference detection circuit 22 with a reference voltage Vref set as a value proportional to the constant voltage ■S, and when (E2-e1)>Vref, the switching element 17, outputs a signal to set it to 0FF.

25はこのコンパレーター24の出力と上記オシレータ
ー20の出力が入力するAND回路で、共にスイッチン
グ素子17を0Nにする信号が与えられた時のみスイッ
チング素子17を0Nさせる信号を出力する。
25 is an AND circuit into which the output of the comparator 24 and the output of the oscillator 20 are input, and outputs a signal that turns the switching element 17 ON only when both signals that turn the switching element 17 ON are given.

26はこのAND回路25の出力を増幅する増幅器で、
この出力でスイッチング素子17は0N−OFFの制御
が行われる。
26 is an amplifier that amplifies the output of this AND circuit 25;
The switching element 17 is controlled ON-OFF by this output.

このように構成された電源装置では、スイッチング素子
17の0FFによつて、コンデンサ18の端子電圧Vc
が上昇しないようにしているため、無駄熱発生はないが
、スイッチング素子17には、現実の問題として「遅れ
」の問題があり、所定の電圧に達してからスイッチング
素子17が0FFになるまでには、通常1p秒程度の時
間がかかる。
In the power supply device configured in this way, the terminal voltage Vc of the capacitor 18 is controlled by 0FF of the switching element 17.
Since this prevents the voltage from rising, there is no wasteful heat generation, but the switching element 17 actually has a "delay" problem, and the time from when the predetermined voltage is reached until the switching element 17 turns 0FF is Usually takes about 1 ps.

例えば、コンデンサ18を0.?Fし、端子電圧■Cを
100Vにしたい時、もとの直流電圧は300Vとして
、充電抵抗が10Ωとすると、この時の充電電流は、2
0A(1=81??11)であるから、コンデンサ18
が1psecの間に充電されて上昇する電圧ΔVは、す
ることになる。
For example, if the capacitor 18 is set to 0. ? F, and when you want to set the terminal voltage ■C to 100V, assuming that the original DC voltage is 300V and the charging resistance is 10Ω, the charging current at this time is 2
Since it is 0A (1=81??11), the capacitor 18
The voltage ΔV that rises after being charged during 1 psec is as follows.

この後、前記の極間の漏洩電流により、コンデンサ18
の端子電圧■Cは再び100V以下となるので、スイッ
チング素子17がONし、ほとんど同時に100■以上
となり0FF信号が出るが、再び140■になつてしま
うということを繰り返すので、本来の欠点の解決にはな
らない。本発明は、上記の欠点を除き、電圧ピーク値の
一定化と平滑を行うとともに、無駄な熱エネルギーの発
生を防ぐことを目的としている。
After this, due to the leakage current between the electrodes, the capacitor 18
Since the terminal voltage ■C becomes less than 100V again, the switching element 17 is turned on, and almost at the same time it becomes more than 100■ and a 0FF signal is output, but it becomes 140■ again.The process repeats, so the original defect is solved. It won't be. The present invention aims to eliminate the above-mentioned drawbacks, stabilize and smooth the voltage peak value, and prevent the generation of wasteful thermal energy.

第6図は、本発明の一実施例を示す回路図で、以下詳細
に説明する。
FIG. 6 is a circuit diagram showing one embodiment of the present invention, which will be described in detail below.

大容量のコンデンサC。は、加工用コンデンサ18の電
圧が、急激に上昇するのを防ぐとともに、ピーク電圧の
平均値を一定に保つ働きを持つ。該コンデンサC。は、
逆流防止ダイオードD。によつて、加工間隙からの電流
の流入はあつても、加工電流は流さない。抵抗R9は上
記コンデンサC。の端子電圧VCOが増加していくのを
防ぐリーク抵抗である。さて、上記コンデンサC。の端
子電圧■COlすなわちピーク電圧の平均値に相当する
電圧は、分圧抵抗R1、Rllにより分圧され、第5図
で説明した差分増幅回路2?″を介してコンパレーター
2Cに出力される。この出力電圧は、加工間隙のコンデ
ンサ18の端子電圧Vcとの差電圧である。コンパレー
ター24″の比較電圧が0Vで、もし、Vc>VCOの
時は、N1ゲート255スイッチング素子17′の駆動
増幅器26″を介して、上記スイッチング素子17″を
0FFにし、Vc<VCOの時は、発振器20の信号が
スイッチング素子17″に印加され、スイッチング素子
17″は0N−OFFを繰り返す。スイッチング素子1
7″のコレクタ抵抗Rl2は、主回路の抵抗19に比較
して、大きく、ほぼ加工間隙の漏洩抵抗に相当する程度
である。以上の構成によれば、主回路のスイッチング素
子17の遅れにより、基準値■Refによる電圧より大
きい値にコンデンサ18の端子電圧Vcが設定されるが
、その後は抵抗Rl2とスイッチング素子17′による
微弱な電流によつて、VCO付近に保たれるので、第4
図の回路のようにVcが大きなリップルを有することは
なくなる。設定値Vrefの設定は、加工中におけるV
COを見ながら選択すればスイッチング素子17の遅れ
にばらつきがあつても何等問題なく、所望のピーク電圧
に設定できる。この発明になる電源装置は以上のように
構成されており、これをワイヤカット放電加工装置に使
用すると、ワイヤカット放電加工の加工条件をワイヤ断
線の限界に近い加工速度に設定しても、放電用コンデン
サの充電電圧が規制されているので加工間隙における漏
洩電流の変化などの影響で、放電開始電圧■Dが上昇し
てワイヤ断線の危険性がなく、限界ぎりぎりに加工速度
を上昇させることが出来、加工能率が大巾に上昇すると
共に、放電開始電圧VDのばらつきを小さくすることが
出来加工精度も向上するという特徴をもたらすことが出
来る。
Large capacity capacitor C. has the function of preventing the voltage of the processing capacitor 18 from rising rapidly and keeping the average value of the peak voltage constant. The capacitor C. teeth,
Anti-reverse diode D. Therefore, even if current flows from the machining gap, no machining current flows. Resistor R9 is the capacitor C mentioned above. This is a leak resistance that prevents the terminal voltage VCO from increasing. Now, the above capacitor C. The terminal voltage ■COl, that is, the voltage corresponding to the average value of the peak voltage, is divided by the voltage dividing resistors R1 and Rll, and the voltage corresponding to the average value of the peak voltage is divided by the voltage dividing resistors R1 and Rll. This output voltage is the difference voltage from the terminal voltage Vc of the capacitor 18 in the machining gap.If the comparison voltage of the comparator 24'' is 0V, if Vc>VCO. At this time, the switching element 17'' is set to 0FF via the driving amplifier 26'' of the N1 gate 255 switching element 17', and when Vc<VCO, the signal from the oscillator 20 is applied to the switching element 17'', and the switching element 17'' is turned off. 17'' repeats ON-OFF. Switching element 1
The collector resistance Rl2 of 7" is larger than the resistance 19 of the main circuit, and is approximately equivalent to the leakage resistance of the processing gap. According to the above configuration, due to the delay of the switching element 17 of the main circuit, The terminal voltage Vc of the capacitor 18 is set to a value larger than the voltage determined by the reference value ■Ref, but after that it is maintained near VCO by the weak current generated by the resistor Rl2 and the switching element 17'.
Vc no longer has a large ripple as in the circuit shown in the figure. The setting value Vref is set by Vref during machining.
If the selection is made while looking at CO, the desired peak voltage can be set without any problem even if there are variations in the delay of the switching element 17. The power supply device according to the present invention is configured as described above, and when used in a wire-cut electric discharge machining device, even if the machining conditions for wire-cut electric discharge machining are set to a machining speed close to the limit of wire breakage, the electric discharge Since the charging voltage of the capacitor is regulated, there is no risk of wire breakage due to an increase in the discharge starting voltage D due to changes in leakage current in the machining gap, and it is possible to increase the machining speed to the limit. As a result, machining efficiency is greatly increased, and variations in discharge starting voltage VD can be reduced, resulting in improved machining accuracy.

また、この発明による電源装置はワイヤカット放電加工
装置のみならす、一般の放電加工装置においても異常に
高い放電開始電圧が発生することなく、ばらつきが少な
くなるので、放電開始電圧のばらつきによる面粗度やク
リアランスの変化などの問題を解決することが出来、加
工精度を向上させることが出来る。
In addition, the power supply device according to the present invention does not generate an abnormally high discharge starting voltage even in general electrical discharge machining equipment as well as wire-cut electrical discharge machining equipment, and the variation in the discharge starting voltage is reduced. It is possible to solve problems such as changes in clearance and clearance, and improve machining accuracy.

以上説明したようにこの発明による放電加工用電源装置
は放電用コンデンサの端子電圧が所望の一定電圧に制限
することが出来るので、この電源装置を使用することに
より、加工精度と加工能率の向上をはかることが出来る
とともに、電源装置としても効率のよいもので、この発
明の経済的効果、および被加工品の品質向上にはたす効
果は極めて大きいものである。
As explained above, the power supply device for electrical discharge machining according to the present invention can limit the terminal voltage of the discharge capacitor to a desired constant voltage, so by using this power supply device, machining accuracy and machining efficiency can be improved. In addition to being able to perform measurements, it is also efficient as a power supply device, and the economic effects of this invention and the effects on improving the quality of processed products are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のワイヤカット放電加工装置の構成を示す
斜視図、第2図はその要部の動作説明図、第3図、第4
図は従来のワイヤカット放電加工装置の改良例の動作説
明図、第5図は差分検出回路の回路図、第6図はこの発
明による電源装置の一実施例を示す回路図である。 図において1は被加工物、2はワイヤ電極、3は加工液
、15は電源装置、16は直流電源、17,17″はス
イッチング素子、18,C0は放電用コンデンサ、23
,23″は差分検出回路、24,2Cはコンパレーター
を示す。
Fig. 1 is a perspective view showing the configuration of a conventional wire-cut electrical discharge machining device, Fig. 2 is an explanatory diagram of the operation of its main parts, Figs.
FIG. 5 is a circuit diagram of a difference detection circuit, and FIG. 6 is a circuit diagram of an embodiment of a power supply device according to the present invention. In the figure, 1 is a workpiece, 2 is a wire electrode, 3 is a machining fluid, 15 is a power supply device, 16 is a DC power supply, 17 and 17'' are switching elements, 18 and C0 are discharge capacitors, and 23
, 23'' are difference detection circuits, and 24 and 2C are comparators.

Claims (1)

【特許請求の範囲】 1 電極と加工液を介して被加工物との間に形成される
加工間隙に放電を行わせて放電加工を行う第1のコンデ
ンサを充電する直流電源、この直流電源から上記第1の
コンデンサへの充電を制御する複数のスイッチング素子
を備えたものにおいて、上記第1のコンデンサの端子間
電圧が所望の一定値以上になると上記スイッチング素子
の一部を除いて上記第1のコンデンサに充電をしないよ
うに制御する第1の制御回路と、上記の第1のコンデン
サのピーク電圧の平均値を保持する第2のコンデンサと
、上記第1のコンデンサの電圧を比較して第1のコンデ
ンサの端子間電圧が、第2のコンデンサの端子間電圧以
上になると、上記第1のコンデンサの充電をしないよう
に残りの上記スイッチング素子を制御する第2の制御回
路を備えたことを特徴とする放電加工用電源装置。 2 ワイヤカット放電加工に使用した特許請求の範囲第
1項記載の放電加工用電源装置。
[Scope of Claims] 1. A DC power supply that charges a first capacitor that performs electrical discharge machining by causing discharge to occur in a machining gap formed between an electrode and a workpiece via a machining fluid, from this DC power supply. In the device comprising a plurality of switching elements for controlling charging of the first capacitor, when the voltage between the terminals of the first capacitor exceeds a desired constant value, the first A first control circuit that controls not to charge the capacitor, a second capacitor that maintains the average value of the peak voltage of the first capacitor, and a second capacitor that compares the voltage of the first capacitor and calculates the A second control circuit is provided for controlling the remaining switching elements so as not to charge the first capacitor when the voltage across the terminals of the first capacitor becomes equal to or higher than the voltage across the terminals of the second capacitor. Features of electrical discharge machining power supply device. 2. The electric discharge machining power supply device according to claim 1, which is used for wire cut electric discharge machining.
JP10159979A 1979-08-09 1979-08-09 Power supply device for electrical discharge machining Expired JPS6059097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10159979A JPS6059097B2 (en) 1979-08-09 1979-08-09 Power supply device for electrical discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10159979A JPS6059097B2 (en) 1979-08-09 1979-08-09 Power supply device for electrical discharge machining

Publications (2)

Publication Number Publication Date
JPS5627734A JPS5627734A (en) 1981-03-18
JPS6059097B2 true JPS6059097B2 (en) 1985-12-23

Family

ID=14304845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10159979A Expired JPS6059097B2 (en) 1979-08-09 1979-08-09 Power supply device for electrical discharge machining

Country Status (1)

Country Link
JP (1) JPS6059097B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130297U (en) * 1983-02-19 1984-09-01 株式会社日本テクナ−ト memory backup circuit
JP2652392B2 (en) * 1988-02-04 1997-09-10 ファナック株式会社 EDM power supply

Also Published As

Publication number Publication date
JPS5627734A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
US20050079276A1 (en) Apparatus and method for discharge surface treatment
EP0178330B1 (en) Power source for wire cut electrospark machining
US6291945B1 (en) Discharge lamp lighting device
US4695696A (en) Electric discharge machine with control of the machining pulse&#39;s current value in accordance with the delay time
US5539178A (en) Method and apparatus for controlling the power supply for electrical discharge machine
JPS6059097B2 (en) Power supply device for electrical discharge machining
EP0032023A1 (en) A power source for an electric discharge machine
US4833289A (en) Electric discharge machining control apparatus
JPH10293617A (en) Constant voltage power supply device and rush current preventing circuit
KR860000619B1 (en) Wire-cut electric discharge machining device
JPS61122725A (en) Regulated power supply
JPS6014650B2 (en) Power supply device for electrical discharge machining
JPS6014651B2 (en) Power supply device for electrical discharge machining
KR100439848B1 (en) Power factor compensation circuit, especially including output voltage sensing unit and input current sensing unit and pulse width control unit and soft start current control unit
JPS6052889B2 (en) Power supply device for electrical discharge machining
JPS6059098B2 (en) Power supply device for electrical discharge machining
JPS6052891B2 (en) Power supply device for wire cut electrical discharge machining
US4719327A (en) Electrical discharge machining power supply
SU1144184A1 (en) Regulator for a.c.voltage source
JPS5937172B2 (en) electrical discharge machining power supply
JPS60201824A (en) Power source for wire electric discharge machining
JPS6055855A (en) Control method and circuit for improving reliability of switching regulator
JP2623739B2 (en) Sawtooth oscillation circuit
JPS6059096B2 (en) Wire cut electrical discharge machining equipment
KR840000673B1 (en) Power source for a wire-cut electric discharge machine