JPS605878A - Control method of discharge impedance of sputtering device - Google Patents

Control method of discharge impedance of sputtering device

Info

Publication number
JPS605878A
JPS605878A JP11184983A JP11184983A JPS605878A JP S605878 A JPS605878 A JP S605878A JP 11184983 A JP11184983 A JP 11184983A JP 11184983 A JP11184983 A JP 11184983A JP S605878 A JPS605878 A JP S605878A
Authority
JP
Japan
Prior art keywords
target
current
substrate
discharge impedance
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11184983A
Other languages
Japanese (ja)
Other versions
JPH0225988B2 (en
Inventor
Hisaharu Obinata
小日向 久治
Tomohisa Sawada
沢田 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP11184983A priority Critical patent/JPS605878A/en
Publication of JPS605878A publication Critical patent/JPS605878A/en
Publication of JPH0225988B2 publication Critical patent/JPH0225988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To increase the number of substrates to be treated per sheet of target by decreasing gradually the current to be passed to an electromagnet which generates a magnetic field on the front furface of a target disposed oppositely to a substrate holder and maintaining the discharge impedance approximately constant. CONSTITUTION:Negative potential is applied from a spouttering power source 5 to a target 4 disposed oppositely to a substrate holder 3 holding a substrate 2 in a vacuum chamber 1 and said target 4 is sputtered by the magnetron discharge generated by the effect of the magnetic field of an electromagnet 6 to form a film on the substrate 2. The change in the discharge impedance with a decrease in the thickness of the target 4 owing to erosion 9 according to progression of the sputtering with such sputtering device is detected with the ammeter 11 or voltmeter 12 of the sputtering power source 5 and the current of a DC power source 8 for exciting the electromagnet 6 is decreased according to the detected current or voltage vlaue so that the above-mentioned discharge impedance is maintained constant. The target 4 is sputtered until the target is thinned by the above-mentioned disposition, by which the number of the substrates to be treated per sheet of the target is increased.

Description

【発明の詳細な説明】 本発明はマグネトロン捜のスノξツタリング装置;qの
放電インピーダンスili’l (ff11方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetron search snow ξ tutting device; the discharge impedance ili'l (ff11 method of q).

従来この種装置は真壁室内のSiウェア1等の基板が取
付けらり、る基板ホルダに対向させてA4その他のター
ゲットを設け1例えば該ホルダと該ターゲットの間にD
CC電圧より市7位差ケ与えると共にdメタ−ゲットの
前面にrid磁石或は永久磁石の磁界を作用させてマグ
ネトロン放′t〕を生じさせ、該ターゲットの物質をス
パッタして基板表面に該物質の薄膜を形成するゲ一般と
する。而してターゲットはスパッタに伴1(つ1口、)
ヨンの進行で次第に飛iij、 l、て薄くなるもので
あり、その薄化に伴ないターゲットのtiiT而Vて面
ける実質的な電磁石の磁束密Wが増大し、次のような不
都合を生ずる。即ち磁束密度が’I”i大すると放電イ
ンピーダンスが小さくなり、Cの時スノ々ツタ電流は次
第に3?il加し、しfいにQ」、スノぐツタ電源の定
格値に達してし−ようので一定の定’jit力制御が次
ILシく、多数枚の基板に一定I1.:、、 1r1j
で順次薄膜を形成したあ−)合初J’J]K、処1」さ
オlまたノ(s板の膜厚と終期に処理さね、た基板の痕
)1.とが大きく異なる不都合があり、1枚のターゲッ
トで多くの基板ケ処理出来ず経済的でない。
Conventionally, in this type of device, a substrate such as Si ware 1 in a Makabe chamber is attached, and an A4 or other target is provided facing the substrate holder.
A difference of 7 degrees from the CC voltage is applied, and a magnetic field from a lid magnet or a permanent magnet is applied to the front surface of the D metal target to generate magnetron radiation, which sputters the target material onto the substrate surface. In general, it is a material that forms a thin film of material. Therefore, the target is 1 (one mouth,) with the spatter
The magnetic flux density W of the electromagnet that faces the target increases with the thinning, which causes the following problems. . That is, as the magnetic flux density increases, the discharge impedance decreases, and at C, the Sunotsuta current gradually increases by 3?il, and finally, at Q, it reaches the rated value of the Sunotsuta power supply. Therefore, constant I1. :,, 1r1j
Thin films were sequentially formed using the following steps: (film thickness of the plate and traces of the final substrate) 1. However, there is a disadvantage that there is a large difference between the two targets, and it is not economical because many substrates cannot be processed with one target.

本発明はこう(−た不:15合等を解決することを目的
としたもので真空室内の基板が取付けら−Jする基板ホ
ルダに対向式せてターゲットを設け、Jターゲットに7
2222154口により負電位を与えルト共K Df;
ターゲラ) (D 15i1 iM VC’r’rL 
iin 石(7) fa界?作用させてマグネトロン放
Tχを生じさせ、該ターゲットをスノ?ツタする式のく
)のに於て、放電インピ−ダンスを略一定にλ、;(持
するように前記電磁石に流す電流を1:方法下げること
を特徴とする。
The purpose of the present invention is to solve the problem of 15 cases, etc., and a target is provided in a facing manner to a substrate holder in which a substrate is mounted in a vacuum chamber.
2222154 Apply a negative potential to the bottom K Df;
Targera) (D 15i1 iM VC'r'rL
iin stone (7) fa world? It acts to generate magnetron emission Tχ, and the target is exposed to snow? In the vine type, the current flowing through the electromagnet is lowered by 1 so that the discharge impedance is kept approximately constant λ.

本発明の実施例を図面につき説明すると(1)は臭突排
気さコ1.た兵を室、(2)に薄膜が形成さJ7.る基
板、(3)は該基板(21全敗伺ける基板ホルダ、(4
)はターゲットを示し、をンホルダ(3)とターゲット
(4)は該真視苓(1)内に対向して設けられ、図示の
ようなりC或はRFのスパッタ′11−4源(5)を接
続して例えばホルダ(3)とターゲット(4)の1■1
1に’Ili、位差が与えらノLる。(に)は該ターゲ
ットi、llの背後にバッキングプレート(7)を介し
で設けた′l’ijl磁石、18)は該7Q;磁石(6
)を励磁するI) CL7)電(、;1でめる。
An embodiment of the present invention will be explained with reference to the drawings.(1) shows the odor exhaust pipe 1. A thin film was formed on (2) J7. (3) is a board holder that can completely defeat the board (21), (4)
) indicates a target, a holder (3) and a target (4) are provided facing each other in the viewing area (1), and a C or RF sputter source (5) is provided as shown in the figure. For example, connect holder (3) and target (4) 1■1
1, no difference is given. (18) is the 'l'ijl magnet provided behind the targets i and ll via the backing plate (7), and 18) is the 7Q;
) to excite I) CL7) Electricity (,;

以上の<7″I成のスパッタリング□純bX tf:、
従来より知られたものであり、真空富(1)を真空化す
ると共にArその他の希ガスを注入し、電磁石田)を励
磁すると共にスパッタ電源(5)を入り1−るとターゲ
ット(4)の前面にマグネトロン放電が生じ、励起さノ
したイオンによりスノ々ツタさ力たターゲット(4)の
物質が基板(2)の表面に薄114!状に付着する。
Sputtering of <7″ I □Pure bX tf:,
This is a conventionally known method, in which the vacuum chamber (1) is evacuated, Ar and other rare gases are injected, the electromagnetic field (electromagnetic field) is excited, and the sputtering power source (5) is turned on and the target (4) is turned on. A magnetron discharge occurs in front of the substrate (2), and the material of the target (4) is splattered by the excited ions and forms a thin film (114) on the surface of the substrate (2)! It adheres to the shape.

fオターゲット(4)ハ例えば)−9さ3 cTnのA
/−で4i′# 3jV。
f o target (4) e.g.) -9sa3 cTn A
/- and 4i'# 3jV.

さノ1、その表面には水平磁束密既で例えば釣25 ’
Oガウスの磁界が電磁石(6)により与えられる。また
基板(2)は順次交・代でターゲット(4)とン寸向し
て位置さ力、る。
1, the surface is dense with horizontal magnetic flux, for example, 25'
A magnetic field of O Gauss is provided by an electromagnet (6). Further, the substrate (2) is sequentially and alternately positioned in the same direction as the target (4).

ターケラ) +41 Uスパックのエロージョンで次ε
Bに点線(℃〕)で示すように薄くなり、その表面の7
.′(束密度が高′よる結果放電インピーダンスが小さ
くなって定電力動作をさせる場合スノぐツタ’i’j’
i、 lス(5)が゛nt流定格一杯になる。
Terkera) +41 Next ε due to erosion of U Spack
It becomes thinner as shown by the dotted line (°C) in B, and the surface 7
.. (As a result of high flux density, the discharge impedance becomes small and when constant power operation is performed, snow ivy 'i'j'
The i and l baths (5) reach their full current rating.

本発明はターゲット(4)の薄化に伴なう放電インピー
ダンスの変化示スノξツタ’(rJ、源(5)の電流或
G′ま、i4j圧の変化VC於て注祝し、実施例では該
′in流が定格電流一杯に近ずくまでJe、1大するか
或u 該’lli、圧が設定値徒で下1坤したとき電磁
石(6)の゛電流を下げ、放電インピーダンスを略一定
K frill nするようにした。
The present invention focuses on changes in discharge impedance due to thinning of the target (4). Then, increase the current by 1 or increase the current until the current approaches the full rated current. When the pressure drops below the set value by 1, lower the current of the electromagnet (6) and reduce the discharge impedance. It was set to a constant K frill n.

これを更に説明すノア、ば、ターゲット14)のエロー
ジョンの進行に伴ないスパッタ電源(5)のtD5流及
び1に圧は夫々第2図のA及びBで示すように次第に上
昇及び下V沖する穴化が見られ、該出、流Aが点Cで示
した定格一杯か、もしくは一杯に近い′t1流値に達す
るか或は該電圧Bが点りで示すように設定値Eよりも下
F’N したことを回路(10)の電流針引)或は′B
4圧n[けaで検知し、’i1i、磁石+6)の電jI
fe Fを点Gで示すように下げる。こhAでよって放
電インピーダンスは曲臼Hで示したように略一定に割ぞ
:11され、スパッタ′rjU i1ス(5)の冗4各
出力を越えることなく多数の基板(2)を処理出来曲綜
工で示したようVC基板(2)の膜JヴもP[3一定に
得られる。こf′Lを従来の場合と比較すれば、従来は
基板121 k 200 A / seeの成J1r%
 M MLで約1400枚の処321枚数を越えると放
電インピーダンスが小さくなりスノξツタ′1−に源(
5)は定格型流出カ一杯VCなるので、ターゲット(4
)を新品VC父侯する必要があったが、本発明のように
′電磁石(6)の′11z流を下げれば放電インピーダ
ンスを1400枚の処理枚数を越えても略一定となし得
、ターゲット(4)が非常に薄くなる1で有効に使用す
ることが出来る。
To further explain this, as the erosion of the target 14) progresses, the tD5 current and pressure of the sputtering power source (5) gradually rise and fall as shown in A and B in Figure 2, respectively. A hole is observed, and the output current A reaches the full rated value shown at point C, or reaches the current value 't1, which is close to full, or the voltage B becomes lower than the set value E as shown by the dot. Lower F'N The current needle of circuit (10)) or 'B
4 pressure n [detected by ke a, 'i1i, magnet +6) electric jI
fe Lower F as shown at point G. Therefore, the discharge impedance is divided into approximately constant values as shown by the turntable H, and a large number of substrates (2) can be processed without exceeding the output of the sputtering space (5). As shown in the curved heddle, the film JV of the VC substrate (2) can also be obtained at a constant value of P[3. Comparing this f′L with the conventional case, the conventional case shows that the growth of the substrate 121 k 200 A/see J1r%
M When the number of sheets exceeds 321, which is about 1400 sheets in ML, the discharge impedance becomes small and the source (
5) becomes VC with full rated type outflow power, so the target (4
), but by lowering the '11z flow of the electromagnet (6) as in the present invention, the discharge impedance can be kept approximately constant even when the number of sheets processed exceeds 1400 sheets, and the target ( 4) can be effectively used in 1, where it becomes very thin.

電磁石(6)の71を流を下げることにより放電インピ
−ダンスが略−足となる理由は、該?5、流を一トげる
ことでターゲット(4)の前面の6n束密度が小さくな
ることが原因である。
What is the reason why the discharge impedance becomes approximately zero by lowering the current through 71 of the electromagnet (6)? 5. This is because the 6n flux density in front of the target (4) decreases by increasing the flow.

実施例ではスノぐツタ回路(101の電圧が500 V
以下に下った時電磁石(6)の電流をIAだけ下げてf
ttlJ Iしたが、回路]10)の電流計0.3)或
は電圧>3i If21に接続した引算器(【3)に、
r、シ「]も磁石(に)の電源(8)の?Ij;流を制
御するようにしてもよく、またril、磁石1に1の電
流をより多くの回斂でj’jj次下げることも用11ヒ
であり、連続的に下げることも可能で・ちる。
In the example, the snow ivy circuit (the voltage of 101 is 500 V
When the current falls below, lower the current of the electromagnet (6) by IA and f
ttlJ I, but circuit] 10) ammeter 0.3) or voltage > 3i To the subtractor ([3) connected to If21,
r, si'] may also be made to control the current of the power supply (8) of the magnet (to), and ril, the current of 1 to the magnet 1 is lowered by j'jj with more turns. It also has a power of 11, and can be lowered continuously.

このように本発明によるときは′i%’i;磁石の電流
をv;:1次下げて放電インピーダンスを略−足にに′
j;持するようにしたのでターゲットのエロージョンが
進行してもスパッタ電淵の+11力に不足を・牙たすこ
となく定’71C力でスノVツタリングを行なえ、ター
ゲットを交14.)することなく長時間多数枚の基板を
処理出来、作!11能率が向上し、クーフットを有効利
用し得て経済的であり、基板Oて形成さり、る薄脆の厚
さも略一定のj(を好なものが得られる等の効果がある
In this way, according to the present invention, the current of the magnet is lowered by the first order, and the discharge impedance is reduced to approximately -1.
j; Since it has been made to last, even if the erosion of the target progresses, you can perform snow V tsuttering with a constant '71C force without having to overcome the +11 force of the sputter electric force, and cross the target 14. ) It is possible to process a large number of boards for a long time without having to do anything. 11. Efficiency is improved, it is economical as it is possible to effectively utilize the Kufut, and the thin and brittle thickness of the substrate O can be formed with a substantially constant thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実1t(’j、しjl(7)心図、ε
P12図は基板処理イ又数と、電υ[シ、・i、)l:
Ii及び放電インピーダンスの111j係を示す異図で
ある。 (1)・・・真空室 (2)・・基板
Figure 1 shows the fruit of the present invention 1t('j, shijl(7) heart diagram, ε
Figure P12 shows the substrate processing number and the electric current υ [shi,・i,)l:
It is a different diagram showing the 111j coefficient of Ii and discharge impedance. (1)...Vacuum chamber (2)...Substrate

Claims (1)

【特許請求の範囲】[Claims] 真空室内の基板が取付けられる基板ホルダに対向させて
ターゲラトラ設け、1亥ターゲツトにスノξツタ電源に
より負′154位を与えると共に該ターゲットの前面に
届、磁石の(は界を作用させてマグネトロン放電を生じ
させ、譲ターゲットをスパッタする式のものに於て、放
電インピーダンスを略一定に維持するように前記′II
I磁石に流す電流を順次下げることを特倣とするスパッ
タリング装p′4゛の放電インピーダンス1iilJ仰
方法。
A target rattler is provided facing the substrate holder to which the substrate is attached in the vacuum chamber, and a negative 154 position is applied to the target by a power source, which reaches the front of the target, and the field of the magnet acts to generate a magnetron discharge. In the method of sputtering a target, the above-mentioned 'II
A method for increasing the discharge impedance of a sputtering device p'4' by sequentially lowering the current flowing through the I magnet.
JP11184983A 1983-06-23 1983-06-23 Control method of discharge impedance of sputtering device Granted JPS605878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11184983A JPS605878A (en) 1983-06-23 1983-06-23 Control method of discharge impedance of sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11184983A JPS605878A (en) 1983-06-23 1983-06-23 Control method of discharge impedance of sputtering device

Publications (2)

Publication Number Publication Date
JPS605878A true JPS605878A (en) 1985-01-12
JPH0225988B2 JPH0225988B2 (en) 1990-06-06

Family

ID=14571701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11184983A Granted JPS605878A (en) 1983-06-23 1983-06-23 Control method of discharge impedance of sputtering device

Country Status (1)

Country Link
JP (1) JPS605878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078486A1 (en) * 2006-12-25 2008-07-03 Idemitsu Kosan Co., Ltd. Method for producing transparent conductive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934709B2 (en) * 1996-09-11 2007-06-20 キヤノンアネルバ株式会社 Low pressure discharge sputtering apparatus and sputtering control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110872A (en) * 1981-12-23 1983-07-01 Hitachi Ltd Vacuum exhauster

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110872A (en) * 1981-12-23 1983-07-01 Hitachi Ltd Vacuum exhauster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078486A1 (en) * 2006-12-25 2008-07-03 Idemitsu Kosan Co., Ltd. Method for producing transparent conductive film

Also Published As

Publication number Publication date
JPH0225988B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
US5830330A (en) Method and apparatus for low pressure sputtering
Waits Planar magnetron sputtering
US4693805A (en) Method and apparatus for sputtering a dielectric target or for reactive sputtering
Window et al. Ion‐assisting magnetron sources: Principles and uses
US6613199B1 (en) Apparatus and method for physical vapor deposition using an open top hollow cathode magnetron
EP0818556A1 (en) A method for providing full-face high density plasma deposition
JPS61221363A (en) Sputtering apparatus
JPS62158863A (en) Film forming apparatus
KR101113123B1 (en) Method of sputtering
JPS605878A (en) Control method of discharge impedance of sputtering device
JPS5943546B2 (en) sputtering equipment
Matsuoka et al. rf and dc discharge characteristics for opposed‐targets sputtering
JP2000273629A (en) Formation of low resistance metallic thin film
JPS59179784A (en) Sputtering device
JPS61246368A (en) Depositing method for metallic film
JPS6127464B2 (en)
JPH01240645A (en) Vacuum deposition apparatus
JPH0159351B2 (en)
JPS61127862A (en) Method and device for forming thin film
JPH0734245A (en) Sputtering device
JPS6321297A (en) Production of thin film of piezoelectric zinc oxide crystal
JP2003213410A (en) Method and apparatus for sputtering
JPH07268624A (en) Electric discharge device
JPS62127465A (en) Sputtering device
JPS62200530A (en) Manufacture of vertical magnetic recording medium