JPS6058776B2 - high speed tool steel - Google Patents

high speed tool steel

Info

Publication number
JPS6058776B2
JPS6058776B2 JP20952981A JP20952981A JPS6058776B2 JP S6058776 B2 JPS6058776 B2 JP S6058776B2 JP 20952981 A JP20952981 A JP 20952981A JP 20952981 A JP20952981 A JP 20952981A JP S6058776 B2 JPS6058776 B2 JP S6058776B2
Authority
JP
Japan
Prior art keywords
steel
amount
speed tool
carbides
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20952981A
Other languages
Japanese (ja)
Other versions
JPS58113356A (en
Inventor
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP20952981A priority Critical patent/JPS6058776B2/en
Publication of JPS58113356A publication Critical patent/JPS58113356A/en
Publication of JPS6058776B2 publication Critical patent/JPS6058776B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は在来の高速度工具鋼と比較して、著しく耐熱性
、耐摩耗性および靭性にすぐれた高速度工具鋼に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high speed tool steel that has significantly superior heat resistance, wear resistance and toughness compared to conventional high speed tool steels.

超硬合金と比較して、在来の高速度工具鋼の最大の欠点
は耐熱性と耐摩耗性の欠除にあることは衆知の事実であ
る。
It is a well-known fact that the biggest drawback of conventional high-speed tool steels, compared to cemented carbides, is their lack of heat resistance and wear resistance.

この原因は高速度工具鋼の耐熱性がCとCr、W、Mo
、V等を含有する基地からのマルテンサイト変態による
硬化と合金炭化物の析出硬化の両者によつて決定される
ことにある。硬化度の絶対値は基地中のC、Cr、w、
Mo、Vの固溶量と析出量によつ−Cほとんど決定され
、高温における硬さの低下度(軟化抵抗)は前記元素の
固溶量と析出炭化物の種類によつて支配される。そして
Cr、Mo、W、Vの炭化物の順序に低温から析出する
ために、逆に表現すれは基地中のW、Vの含有量が多い
程、軟化抵抗は向上することになる。以上により高速度
工具鋼の耐熱性の向上のためには基地中のC、Cr、M
o、W、V等の元素の固溶量を増加させ、この際できる
だけW、V等の合金の固溶量を増加させることが好まし
いことになる。
The reason for this is that the heat resistance of high-speed tool steel is limited to C, Cr, W, and Mo.
, V, etc., and hardening due to martensitic transformation from a base containing V, etc., and precipitation hardening of alloy carbides. The absolute value of the degree of hardening is determined by C, Cr, w,
-C is mostly determined by the amount of solid solution of Mo and V and the amount of precipitation, and the degree of decrease in hardness at high temperatures (softening resistance) is controlled by the amount of solid solution of the above elements and the type of precipitated carbide. Since carbides of Cr, Mo, W, and V precipitate in the order of low temperature, in other words, the higher the content of W and V in the matrix, the better the softening resistance becomes. From the above, in order to improve the heat resistance of high-speed tool steel, it is necessary to
It is preferable to increase the amount of solid solution of elements such as o, W, and V, and at this time, increase the amount of solid solution of alloys such as W and V as much as possible.

この方策としてCr、Mo、W、V等の合金元素含有量
に対するCの相対的添加量を増加させることによつて炭
化物の析出量を増加させた高CタイプのAIS1M7、
M4l、M42等の一連の鋼種が開発されたり、前記合
金元素量の固溶量の増加と焼戻時の析出炭化物の凝集軟
化を抑える効果があるCoの添加が一般的に行なわれ、
現在の広範囲な多種類の高速度工具鋼の銅種を構成する
に到つている。
As a measure to this end, AIS1M7 is a high-C type that increases the amount of carbide precipitation by increasing the amount of C added relative to the content of alloying elements such as Cr, Mo, W, and V.
A series of steel types such as M4l and M42 have been developed, and it is common to add Co, which has the effect of increasing the solid solution amount of the alloying elements and suppressing the agglomeration and softening of precipitated carbides during tempering.
Copper grades have come to constitute the current wide variety of high-speed tool steels.

ただこのような在来手法では以下のような理由によつて
基地中のCと合金元素量は増加てきない限界がある。(
1)状態図的に在来高速度工具鋼の組成範囲では、融液
からオーステナイトと共晶炭化物に分解する反応〔L−
γ+M6C〕(■4。
However, with such conventional methods, there is a limit to which the amount of C and alloying elements in the base cannot be increased due to the following reasons. (
1) In the phase diagram, in the composition range of conventional high-speed tool steel, the reaction of decomposition from melt into austenite and eutectic carbide [L-
γ+M6C] (■4.

C)が存在し、この反応温度以上の高温オーステナイト
化温度は採用できない。この反応温度はStevenヨ
〔(G、S、Steven、A、E、Nehrenb
erg:TransASM57(1964)P、925
〕によればTe(゜F)■2310−200(%C)+
40(%V)+8(%W)+5(%Mo)なる式で示さ
れる。
C) exists, and a high austenitizing temperature higher than this reaction temperature cannot be adopted. This reaction temperature is determined by Steven [(G, S, Steven, A, E, Nehrenb
erg: TransASM57 (1964) P, 925
]According to Te(°F)■2310-200(%C)+
It is expressed by the formula: 40(%V)+8(%W)+5(%Mo).

この式はC0.7〜1.3%、Cr3.5〜4.5%、
V1.0〜5.0%、W0〜18%、M00〜9%、C
00〜15%含む材料に適用てきるとされており、例え
ばSKH9では1256゜cとなる。この共晶反応温度
以上てオーステナイト化すると村料中に液相が発生する
ことになり、基地中の合金固溶量はこの温度で絶対的制
限を受ける。(2)基地の軟化抵抗は焼戻炭化物の種類
によつて変化し、Cr23c6くMO2C<W2C<V
4C3の順番で析出温度は高くなる。換言すると基地中
にVを多く含有するほど軟化抵抗は増加することになる
。しかしVの供給源となるVC炭化物は基地に固溶しが
たく、在来鋼種では前式の温度以下でのVの基地への固
溶量は最高1.6%以下とされている。以上の理由によ
り、在来鋼種では鋼の組成に関係なく基地組成は0.5
〜0.6%C,3〜8%W,4〜5%Cr,O.9〜1
.6%Vの範囲にあるとされ(佐藤知雄、西沢泰二、村
井弘佑、鉄と鋼第4岬NO5P.2l)結果的に高速度
工具鋼の耐熱性は大きく向上できないと考えられていた
This formula is C0.7-1.3%, Cr3.5-4.5%,
V1.0-5.0%, W0-18%, M00-9%, C
It is said that it can be applied to materials containing 00 to 15%, for example, SKH9 has a temperature of 1256°C. If austenitization occurs above this eutectic reaction temperature, a liquid phase will be generated in the material, and the amount of solid solution of the alloy in the matrix is subject to an absolute limit at this temperature. (2) The softening resistance of the base changes depending on the type of tempered carbide, and Cr23c6 MO2C<W2C<V
The precipitation temperature increases in the order of 4C3. In other words, the more V is contained in the base, the more the softening resistance increases. However, VC carbide, which is a source of V, is difficult to form a solid solution in the matrix, and in conventional steel types, the amount of V dissolved in the matrix at a temperature below the above equation is said to be 1.6% or less at maximum. For the above reasons, the base composition of conventional steel types is 0.5 regardless of the steel composition.
~0.6%C, 3~8%W, 4~5%Cr, O. 9-1
.. 6%V (Tomoo Sato, Taiji Nishizawa, Hirosuke Murai, Tetsu-to-Hagane No.4 Misaki NO5P.2l) As a result, it was thought that the heat resistance of high-speed tool steel could not be significantly improved. .

本発明はこのような従来概念と発想を異にし、ひとつに
は凝固過程中て在来鋼種では必然的に生じていたL→γ
+M6Cの共晶反応を阻止する化学成分とすることによ
り、存在するM6C炭化物はすべて基地中に固溶せしめ
、あわせて、共晶反応が−消失されるため高温のオース
テナイト化が可能となることにより、MC型炭化物の基
地への固溶量を増大せしめ、耐熱性にすぐれた材料を提
供することを目的とするものてある。
The present invention differs from such conventional concepts and ideas, and one is that L→γ, which naturally occurs in conventional steel types, during the solidification process.
By using a chemical component that inhibits the eutectic reaction of +M6C, all existing M6C carbides are dissolved in the matrix, and at the same time, the eutectic reaction is eliminated, making high-temperature austenitization possible. The purpose of this method is to increase the amount of solid solution of MC type carbide in the matrix and provide a material with excellent heat resistance.

本発明の高速度工具鋼は、重量比でCl.O〜1.8,
%,Cr3.O〜6.0%,W+2M08〜12%,V
O.8〜2.2%,Nb2.O〜7.0%,V+Nb2
.6〜9.0%,V/NbO.7以下、COl2%以下
その他1%以下のS】,Mnならびに不可避的に混入す
る不純物と残m下eよりなることを特徴とするものであ
る。
The high speed tool steel of the present invention has a weight ratio of Cl. O~1.8,
%, Cr3. O~6.0%, W+2M08~12%, V
O. 8-2.2%, Nb2. O~7.0%, V+Nb2
.. 6-9.0%, V/NbO. 7 or less, CO1 or less, 2% or less, and 1% or less of S], Mn, and unavoidably mixed impurities, and the remainder.

しかして!本発明において最も特徴とする点は、w+2
rV10(W当量)が8〜12%と在来鋼種より低合金
量側で抑えられていること(現行のJIS規格ではw当
量はSKH6が11.0%ともつとも低く、SKHlO
が12.5%でこれに次ぐ。AISI規格ではAISI
M5Oの8%がもつとも低い。ドイツ規格ではS3−3
一2が9%である。上記M5O,S3−3−2は通常セ
ミハイスと称される低合金ハイスである。)。および■
+Nbの合計含有量が2.6〜9%でかつV/Nb″が
0.7以下に規定されていることであり、これらの成分
的組み合わせによりオーステナイト状態において実質的
に隅C型炭化物が消失し、換言すれば焼入時の昇温過程
でγ十隅C−+Lの反応が抑制され、高温オーステナイ
ト化が可能となる。この結果としてVC炭化物はほとん
ど基地に固溶され残留するM℃の未固溶炭化物が結晶粒
の成長抑制効果と耐摩耗付与効果を与えることになる。
以下本発明の実施例を詳述する。第1表に本発明鋼と従
来鋼、比較鋼の化学成分を示す。
But! The most distinctive feature of the present invention is that w+2
The rV10 (W equivalent) is suppressed at 8 to 12%, which is lower than that of conventional steels (according to the current JIS standard, the w equivalent is low at 11.0% for SKH6;
This comes next at 12.5%. In the AISI standard, AISI
8% of M5O is very low. S3-3 according to German standards
12 is 9%. The above-mentioned M5O and S3-3-2 are low-alloy high-speed steel usually called semi-high-speed steel. ). and■
The total content of +Nb is 2.6 to 9% and V/Nb'' is specified to be 0.7 or less, and the combination of these components substantially eliminates corner C-type carbides in the austenitic state. In other words, the reaction of γ ten corner C-+L is suppressed during the temperature raising process during quenching, making high-temperature austenitization possible.As a result, most of the VC carbides are dissolved in the base, and the remaining M℃ The undissolved carbide provides an effect of suppressing the growth of crystal grains and an effect of imparting wear resistance.
Examples of the present invention will be described in detail below. Table 1 shows the chemical components of the invention steel, conventional steel, and comparative steel.

第1表の試料Aは本発明鋼の基本成分である。表中試料
B−1は試料A(7)W当量、V/Nb比、V+Nb量
、CO含有量を本発明の組成内で変動させたものてある
。試料J,K,Lは比較鋼て試料Jは従来鋼種のSKH
lO、試料K,Lは試料A〜1(7)V/Nbを変動さ
せたものである。以上の1渥料を小型高周波溶解炉を使
つて大気溶解し、10kgの鋼塊を得た。これを通常の
SKHlOと同じ熱間加工条件で20wrm角に鍛伸し
、860′Cで完全焼なまし後、各種試験に供した。第
2表は、1180,1220,1260℃でオーステナ
イト化後油冷した各試料中の残留炭化物のX線回折,結
果および12400Cで焼入後560,600,640
℃で1hr×3回焼戻後の硬さならびに1270゜Cま
で高温オーステナイト化後の共晶炭化物の溶融状況を観
察した結果を示すものである。X線回折結果の残留炭化
物中( )で示したも.のは、わずかに回折現象が認め
られるもので、残留炭化物が微量存在していると判定さ
れたものである。
Sample A in Table 1 is the basic component of the steel of the present invention. Sample B-1 in the table is Sample A (7) in which the W equivalent, V/Nb ratio, V+Nb amount, and CO content were varied within the composition of the present invention. Samples J, K, and L are comparative steels. Sample J is conventional steel type SKH.
1O, Samples K and L were obtained by varying V/Nb of Samples A to 1 (7). The above raw materials were melted in the atmosphere using a small high-frequency melting furnace to obtain a 10 kg steel ingot. This was forged into a square shape of 20 wrm under the same hot working conditions as normal SKHlO, completely annealed at 860'C, and then subjected to various tests. Table 2 shows the X-ray diffraction results of residual carbides in each sample oil-cooled after austenitizing at 1180, 1220, and 1260°C, and 560, 600, and 640
This figure shows the results of observing the hardness after tempering at 1 hour x 3 times at 1 hour and the melting state of eutectic carbide after high temperature austenitization up to 1270°C. The residual carbide in the X-ray diffraction results is also shown in parentheses. In this case, a slight diffraction phenomenon was observed, and it was determined that a small amount of residual carbide was present.

またX線回折結果によると本発明鋼は11800C以上
のオーステナイト化てM6C型炭化物がほとんど存在し
ないことが明らかである。併せて試料D,Iを除くと残
留炭化物はM℃の1種のみで試料D,Iも1260℃の
オーステナイト化ではX℃の1種のみとなる。これらに
比較し、試料J,K,LはいずれもM6C炭化物が残留
し、VC炭化物も同様に残留する。Nbを2%含有する
試料KはM℃炭化物も当然残留する。かかることく、本
発明鋼は在来鋼対比、M6C炭化物と■C型炭化物が高
温オーステナイト化で存在しないという金属組織的に際
立つた特徴を有する。
Furthermore, according to the X-ray diffraction results, it is clear that the steel of the present invention is austenitized at a temperature of 11,800 C or higher, and almost no M6C type carbide exists. In addition, if Samples D and I are excluded, there is only one type of residual carbide at M°C, and when samples D and I are austenitized at 1260°C, there is only one type of residual carbide at X°C. Compared to these, M6C carbide remains in all of Samples J, K, and L, and VC carbide also remains. In sample K containing 2% Nb, M°C carbides also remain as a matter of course. Thus, compared to conventional steels, the steel of the present invention has a distinctive metallographic feature in that M6C carbides and type C carbides do not exist due to high-temperature austenitization.

かつ、従来鋼、比較鋼が1260℃以下て共晶炭化物の
溶融を示すのに対し、本発明鋼は1270゜Cでも共晶
炭化物の溶融は顕著には認められなかつた。次に本発明
鋼は非常に高い焼戻硬さの絶対値と高い焼戻軟化抵抗を
有することが明らかである。
Further, while the conventional steel and comparative steel showed melting of eutectic carbides at temperatures below 1260°C, no significant melting of eutectic carbides was observed in the steel of the present invention even at 1270°C. Next, it is clear that the steel according to the invention has a very high absolute value of tempering hardness and a high resistance to tempering softening.

例えば試料A鋼は試料J鋼(SKHlO)対比、560
゜C〜640゜Cの範囲でHRC2以上高い焼戻硬さを
与える。高速度工具鋼中では高価合金元素であるW,M
O含有量が低いにも拘らず、かかる高い焼戻硬さを有す
ることは省資源という観点からも効果がある。COをほ
とんど含まない試料Gでも試料J(SKHlO)対比同
等の焼戻硬さを有することも特筆に値する。以上のこと
く本発明鋼は在来鋼対比高い焼戻硬さ、すなわち耐熱性
を有することが明らかとなつ゛た。
For example, sample A steel is 560 compared to sample J steel (SKHlO).
Provides tempering hardness higher than HRC2 in the range of °C to 640 °C. W and M are expensive alloying elements in high-speed tool steel.
Having such high tempering hardness despite the low O content is also effective from the viewpoint of resource saving. It is also noteworthy that Sample G, which contains almost no CO, has a tempering hardness equivalent to that of Sample J (SKHlO). From the above, it has become clear that the steel of the present invention has higher tempering hardness, that is, higher heat resistance than conventional steel.

第3表に靭性の評価試験結果を示す。Table 3 shows the toughness evaluation test results.

試験方法は5φ×70eの棒鋼の中央1点荷重方式の抗
折テストで行なつた。従来鋼J(SKHlO)、比較鋼
K,L対比本発明鋼は高硬度を有すると共に同等の耐破
壊強度を有し、靭性においてもすぐれていることが明ら
かである。
The test method was a bending test using a single point loading method on a 5φ x 70e steel bar. In comparison with conventional steel J (SKHlO) and comparative steels K and L, it is clear that the steel of the present invention has high hardness, equivalent fracture resistance, and superior toughness.

第4表は電解抽出法で試料A鋼と試料J鋼(SKHlO
)の基地組成を測定した結果である。
Table 4 shows sample A steel and sample J steel (SKHlO
) is the result of measuring the base composition of

試料A鋼は試料J鋼対比基地中のW,MO,V,COの
合金元素量が高い値が得られている。冒頭でも述べたご
とく、これが本発明鋼の高い耐熱性の原因となつている
こへ?明ら力びeある。第5表にS45Cの焼なまし材
([18175)の棒鋼を53rT1/Min,6Or
Tl/Minの切削速度で外周長手方向を連続切削した
ときの工具寿命の測定結果を示す。
Sample A steel has higher amounts of alloying elements of W, MO, V, and CO in the base compared to sample J steel. As mentioned at the beginning, this is the reason for the high heat resistance of the steel of the present invention. There is clearly a strength. Table 5 shows S45C annealed steel bars ([18175) at 53rT1/Min, 6Or
The measurement results of the tool life when continuous cutting is performed in the longitudinal direction of the outer circumference at a cutting speed of Tl/Min are shown.

すべて切込は1.0TIr1n1送りは0.3TWt/
Revである。本発明鋼はいずれも比較鋼対比すぐれた
切削耐久性を示す。COをほとんど含まない試料G鋼で
も試料J鋼と同等の耐久性を有する。次に成分限定の理
由について述べる。
All depth of cut is 1.0TIr1n1 feed is 0.3TWt/
Rev. All of the steels of the present invention exhibit superior cutting durability compared to comparative steels. Even sample G steel, which contains almost no CO, has the same durability as sample J steel. Next, we will discuss the reasons for limiting the ingredients.

Cは基地のマルテンサイト硬化の他にCr,W,MO,
■等の焼戻析出炭化物へのCの供給源および残留するM
℃炭化物のCの供給源として必須の元素である。
In addition to the base martensite hardening, C is Cr, W, MO,
Source of C to temper precipitated carbides such as ■ and residual M
It is an essential element as a source of C in carbides.

C量はなる式で示される化学的当量値を目安とすること
ができる。最高C量は他元素の添加量に応じて適宜決定
されるべきで、後述する本発明のCr,W,MO,■,
Nb等の含有量との関係において下限1%、上限1.8
%が必要である。
The amount of C can be based on the chemical equivalent value shown by the following formula. The maximum amount of C should be determined appropriately depending on the amount of other elements added, and the maximum amount of C should be determined appropriately depending on the amount of other elements added.
In relation to the content of Nb, etc., the lower limit is 1% and the upper limit is 1.8
%is necessary.

Crは材料の焼入性向上のために在来の高速度工具鋼と
同一の考え方でも必須元素である。
Cr is an essential element in the same way as conventional high-speed tool steel in order to improve the hardenability of the material.

3%未満では焼入性に劣り、6%を越ると硬さの絶対値
が低下するのて3〜6%とした。
If it is less than 3%, the hardenability will be poor, and if it exceeds 6%, the absolute value of hardness will decrease, so it was set at 3 to 6%.

W(5M0は本発明においては焼戻時のW2C,MO2
Cの二次硬化の主因となる析出炭化物への供給源として
必須であるが、在来高速度工具鋼と異なり未固溶炭化物
の生成には殆んど必要がない。
W (5M0 is W2C, MO2 at the time of tempering in the present invention)
It is essential as a supply source for precipitated carbides, which are the main cause of secondary hardening of C, but unlike conventional high-speed tool steels, it is hardly necessary for the formation of undissolved carbides.

W(5M0の効果は1%MOが0.5%のWと同等の効
果を有する意味において、W+2M0で示されるW当量
で規定される。W+?0量が8%を下廻ると基地中のW
+2M0量が減少し、焼戻硬さが十分でなく、12%を
越えるとr!4Gc炭化物が未固溶炭化物として残留す
るのて12%を上限とする。
The effect of W (5M0 is defined by the W equivalent expressed as W+2M0 in the sense that 1% MO has the same effect as 0.5% W. When the amount of W+?0 is less than 8%, the W
+2 The amount of M0 decreases, the tempering hardness is insufficient, and if it exceeds 12%, r! Since 4Gc carbide remains as undissolved carbide, the upper limit is set at 12%.

■とNbは同じくMC型炭化物の生成傾向がきわめて強
いということにおいて類似した傾向を有する。
(2) and Nb have similar tendencies in that they have a very strong tendency to form MC type carbides.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でC1.0〜1.8%、Cr3.0〜6.0
%、W+2Mo8〜12%、V0.8〜2.2%、Nb
2.0〜7.0%でV+Nbが2.6〜9.0%、V/
Nbが0.7以下、Co12%以下、Si、Mn1%以
下、残部不可避的に混入する不純物とFeよりなり、1
180℃以上のオーステナイト化温度でM_6C型炭化
物を実質的に残留せず耐熱性、耐摩耗性、靭性にすぐれ
たことを特徴とする高速度工具鋼。
1 C1.0-1.8%, Cr3.0-6.0 in weight ratio
%, W+2Mo8-12%, V0.8-2.2%, Nb
2.0-7.0%, V+Nb is 2.6-9.0%, V/
Nb is 0.7 or less, Co is 12% or less, Si, Mn is 1% or less, the remainder is unavoidably mixed impurities and Fe, 1
A high-speed tool steel characterized by having excellent heat resistance, wear resistance, and toughness without substantially remaining M_6C type carbides at an austenitizing temperature of 180°C or higher.
JP20952981A 1981-12-26 1981-12-26 high speed tool steel Expired JPS6058776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20952981A JPS6058776B2 (en) 1981-12-26 1981-12-26 high speed tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20952981A JPS6058776B2 (en) 1981-12-26 1981-12-26 high speed tool steel

Publications (2)

Publication Number Publication Date
JPS58113356A JPS58113356A (en) 1983-07-06
JPS6058776B2 true JPS6058776B2 (en) 1985-12-21

Family

ID=16574293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20952981A Expired JPS6058776B2 (en) 1981-12-26 1981-12-26 high speed tool steel

Country Status (1)

Country Link
JP (1) JPS6058776B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392805B (en) * 1988-02-15 1991-06-25 Boehler Gmbh HIGH SPEED ALLOY, METHOD FOR THEIR PRODUCTION AND USE THEREOF
JPH0288745A (en) * 1988-09-27 1990-03-28 Nippon Steel Corp Wear-resistant cast iron roll material
JP3257649B2 (en) * 1993-05-13 2002-02-18 日立金属株式会社 High toughness high speed steel member and method of manufacturing the same
BRPI0603856A (en) * 2006-08-28 2008-04-15 Villares Metals Sa hard alloys of lean composition

Also Published As

Publication number Publication date
JPS58113356A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
JP3257649B2 (en) High toughness high speed steel member and method of manufacturing the same
US2828202A (en) Titanium tool steel
PL202086B1 (en) METHOD FOR MAKING AN ABRASION RESISTANT STEEL PLATE AND PLATE OBTAINED thereby
CA2412525C (en) Steel alloy, plastic moulding tool and tough-hardened blank for plastic moulding tools
US4946644A (en) Austenitic stainless steel with improved castability
US6200528B1 (en) Cobalt free high speed steels
US3380861A (en) Sintered steel-bonded carbide hard alloys
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
US4036640A (en) Alloy steel
JPH01222036A (en) Malageing steel
CA1260367A (en) Method of manufacturing pressure vessel steel with high strength and toughness
Sage Effect of vanadium, nitrogen, and aluminium on the mechanical properties of reinforcing bar steels
JPS6058776B2 (en) high speed tool steel
US3847599A (en) Corrosion resistant austenitic steel
CN103834864B (en) A kind of 9Cr2BAlN alloy tool steel
US4544420A (en) Wrought alloy body and method
US3928088A (en) Ferritic stainless steel
CN104099515A (en) Steel, formed heat treatment steel and production method thereof
EP0256121A4 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability.
US2885284A (en) Ferrous alloy
US3741822A (en) High strength steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JP3780690B2 (en) Hot work tool steel with excellent machinability and tool life
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method