JPS605874B2 - Metallurgical furnace sampling device - Google Patents

Metallurgical furnace sampling device

Info

Publication number
JPS605874B2
JPS605874B2 JP16588580A JP16588580A JPS605874B2 JP S605874 B2 JPS605874 B2 JP S605874B2 JP 16588580 A JP16588580 A JP 16588580A JP 16588580 A JP16588580 A JP 16588580A JP S605874 B2 JPS605874 B2 JP S605874B2
Authority
JP
Japan
Prior art keywords
inert gas
furnace
pressure
gas
solid particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16588580A
Other languages
Japanese (ja)
Other versions
JPS5790573A (en
Inventor
寿光 小板橋
尚夫 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16588580A priority Critical patent/JPS605874B2/en
Publication of JPS5790573A publication Critical patent/JPS5790573A/en
Publication of JPS605874B2 publication Critical patent/JPS605874B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は冶金炉のサンプリング装置に係り、詳しくは、
流動層反応炉等の如き冶金炉から炉内ガスを炉外にもた
らすことなく、必要量の固体粒子をサンプリングできる
冶金炉のサンプリング装置に係る。
[Detailed Description of the Invention] The present invention relates to a sampling device for a metallurgical furnace.
The present invention relates to a sampling device for a metallurgical furnace that can sample a necessary amount of solid particles from a metallurgical furnace such as a fluidized bed reactor without bringing the gas inside the furnace outside the furnace.

一般に、流動層反応炉の如き冶金炉の内部は高温かつ還
元雰囲気に保持されているために、炉内の反応状況を把
握する目的で固体粒子を反応炉の採取管からサンプリン
グする時には、その採取管の途中で固体粒子を冷却して
取出し、この際に炉内の還元ガスが外部にもれるのを防
止することが必要である。
Generally, the inside of a metallurgical furnace such as a fluidized bed reactor is maintained at a high temperature and in a reducing atmosphere, so when sampling solid particles from the sampling tube of the reactor in order to understand the reaction situation inside the reactor, it is difficult to collect the solid particles. It is necessary to cool the solid particles in the middle of the tube and take them out, and at this time to prevent the reducing gas inside the furnace from leaking to the outside.

この固体粒子の冷却は通常採取管内の冷却室で行なわれ
、冷却室の下部には、2つの弁が設けられ、これら弁の
開閉によって冷却後固体粒子が排出されるよう構成され
ている。例えば、2つの弁のうちで上部の弁を開放して
固体粒子を導入し、その後上部の弁を閉じると同時に下
部の弁を開放して固体粒子は取出される。しかし、これ
ら弁の開閉が何回かくり返されると、粉の作用で弁の内
部が摩耗し、弁を閉じていても還元ガスは下の弁から外
部に漏れてしまう。このため、還元ガスの外部への漏れ
を防ぐために、弁の内側に高圧の不活性ガスを導入し、
この不活性ガスを炉内に排出流動される型式の装置も提
案されている。この装置では、炉内ガスや炉頂ガス中の
不活性ガスが増加し運転上好ましくない。また、このよ
うなシール方式としては、高炉の均庄装置があるが、高
炉では加圧、雛圧を間欠的にくり返せば十分であり、不
活性ガスの流量と圧力が変動し、この装置をそのまま流
動層反応炉のシール方式として用いることができない。
本発明は、上記欠点の解決を目的とし、具体的には冶金
炉のサンプル排出口に接続される排出管に冷却室と不活
性ガス室を形成する一方、この不活性ガス室には高圧の
不活性ガスを流動させ、冶金炉から炉内ガスをもたらす
ことなく固体粒子をサンプリングできるサンプリング装
置を提案する。
The solid particles are normally cooled in a cooling chamber within the collection tube, and two valves are provided at the bottom of the cooling chamber, and the solid particles are discharged after cooling by opening and closing these valves. For example, of the two valves, the upper valve is opened to introduce solid particles, and then the upper valve is closed and at the same time the lower valve is opened to take out the solid particles. However, if these valves are opened and closed several times, the inside of the valves will wear out due to the action of powder, and even if the valves are closed, reducing gas will leak to the outside from the lower valves. Therefore, in order to prevent the reducing gas from leaking to the outside, high-pressure inert gas is introduced inside the valve.
A type of device in which this inert gas is discharged and flowed into the furnace has also been proposed. In this device, inert gas in the furnace gas and furnace top gas increases, which is not favorable for operation. Another example of such a sealing method is a leveling device for a blast furnace, but in a blast furnace, it is sufficient to intermittently repeat pressurization and pressure, and the flow rate and pressure of the inert gas fluctuate, so this device cannot be used as is as a sealing method for a fluidized bed reactor.
The present invention aims to solve the above-mentioned drawbacks, and specifically, a cooling chamber and an inert gas chamber are formed in the discharge pipe connected to the sample discharge port of a metallurgical furnace. We propose a sampling device that can flow inert gas and sample solid particles without bringing in the furnace gas from the metallurgical furnace.

すなわち、本発明は流動層反応炉等の如き冶金炉のサン
プル排出口に接続され、しかも、この流動層反応炉等か
ら採取された必要量のサンプルを冷却する冷却室と、不
活性ガスの流入口ならびに流出口を有する不活性ガス室
が形成されるサンプル排出管を具え、このサンプル排出
管の不活性ガス室内の圧力を前記流動層反応炉内のガス
圧力より常に高く調整する圧力調整手段を設けて成るこ
とを特徴とする。
That is, the present invention provides a cooling chamber connected to a sample outlet of a metallurgical furnace such as a fluidized bed reactor, and a cooling chamber for cooling a required amount of sample taken from the fluidized bed reactor, etc., and a flow of inert gas. A sample discharge pipe in which an inert gas chamber having an inlet and an outlet is formed, and pressure regulating means for adjusting the pressure in the inert gas chamber of the sample discharge pipe to be always higher than the gas pressure in the fluidized bed reactor. It is characterized by being provided with.

以下、図面によって本発明について詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

まず、第1図は鉄鉱石等の流動層反応炉の縦断面図であ
り、第2図は本発明の一つの実施例に係るサンプリング
装置の縦断面図であって、第1図において符号1で一般
的に示す反応炉の内部には多孔板3を設け、その上部に
、例えばスクリュフィーダの如き鉄鉱石供給装置2によ
って鉄鉱石を供給する。
First, FIG. 1 is a vertical cross-sectional view of a fluidized bed reactor for iron ore, etc., and FIG. 2 is a vertical cross-sectional view of a sampling device according to one embodiment of the present invention. A perforated plate 3 is provided inside the reactor generally shown in FIG.

流動化ガスは下部の流入口7から供給し、炉内は上向流
として流動し炉頂ガス管8から排出され、この間、流動
化ガスにより鉄鉱石ならびに石炭は流動化され、鉄鉱石
は還元され、還元鉄は製品としてスクリュフィーダ5を
通って反応炉1から排出され、ホッパ6に貯蔵される。
なお、反応炉1の下部には排出管4bを設けて、製品と
しての還元鉄がサンプリングできるよう構成され、製品
の性質を検査する。次に、上記構成の反応炉1において
鉄鉱石等の還元状態を知るために、略々中央に排出口4
aを形成し、排出口4aから反応生成物の固体粒子を抽
出し、排出口4aには第2図に示す如くサンプリング排
出管9を接続する。
Fluidizing gas is supplied from the inlet 7 at the bottom, flows upward in the furnace, and is discharged from the top gas pipe 8. During this time, iron ore and coal are fluidized by the fluidizing gas, and the iron ore is reduced. The reduced iron is discharged as a product from the reactor 1 through the screw feeder 5 and stored in the hopper 6.
Note that a discharge pipe 4b is provided at the lower part of the reactor 1 so that reduced iron as a product can be sampled, and the properties of the product can be inspected. Next, in order to know the reduction state of iron ore, etc. in the reactor 1 having the above configuration, an outlet 4 is placed approximately in the center.
solid particles of the reaction product are extracted from the outlet 4a, and a sampling outlet pipe 9 is connected to the outlet 4a as shown in FIG.

この排出管9には冷却室10と不活性ガス室11を形成
し、冷却室10と不活性ガス室11の間に弁12aを介
設する一方、不活性ガス室11の先端には弁12bを取
付ける。この冷却室10は反応炉1の内部からサンプリ
ングされた固体粒子が冷却できれば、いずれにも構成で
きるが、通常は2重機造とし、内外筒の間の環状室10
aに冷却水が流動するよう横成すれば十分である。また
、不活性ガス室11は流入口11aから不活性ガスが導
入され、排出ローlbから排出できるよう構成し、更に
、この不活性ガスは反応炉1内の圧力より高く保持する
ために、例えば、圧力調整弁等の圧力調整手段13を設
ける。このように排出管を構成するとともに、圧力調整
手段13によって、その不活性ガス室11内を流動する
不活性ガスの圧力を炉内ガス圧力以上に保持すると、炉
内から固体粒子を炉内ガスを漏らすことなくサンプリン
グできる。すなわち、排出管の反応炉の近接部には冷却
室10が形成されているため、サンプリングした固体粒
子は、まずそこで冷却される。この場合、2つの弁12
a,12bは閉じており、固体粒子の冷却が終ったとき
に弁12aを開く。このようにすると、固体粒子は不活
性ガス室11に入り、そのときに弁12aは閉じる一方
、弁12bは開いて固体粒子は容器141こ取り出す。
不活性ガス室11には、流入口11aから不活性ガスが
導入され排出口11bから排出されているが、圧力調整
手段13によって不活性ガスの圧力P2は炉内ガス圧力
、とくに排出管取出口近くの圧力P,より大きく調整さ
れている。このため、この高圧不活性ガスによって炉内
ガスは封鎖されて漏れることがない。この場合、P,,
P2の差はPL<P2一P,くPuの範囲内に入るよう
に調整するのが好ましい。この場合、下限のPLは負で
ない範囲で出来るだけ小さい方が良く、一般には約1仇
肌QO以上が好ましい。上限のPuは大きすぎると不活
性ガスの必要量が多くなり、操業上影響しない範囲で小
さい方が良いが、一般には、500肋日20以下が好ま
しい。要するに、このように不活性ガスの圧力をコント
ロールすると、反応炉内の圧力が変動しても、常に不活
性ガス圧力を還元ガス圧力よりも高く保つことができ、
また、圧力制御することによって、不活性ガス消費量を
少なく保つことができる。また、サンプリング時に2つ
の弁12a,12bは連続的にくり返して開閉するとき
は、固体粒子のかみ込みや摩耗により、あるいは、上部
からの冷却不十分な固体粒子の熱作用などによって、弁
のガスシールが不完全になり易い。つまり、炉内ガスは
シール性のない弁12a,12bを通って外部に漏れ易
く、炉内ガス中にはCOや広など含まれ有害爆発性であ
って、きわめて危険である。この場合、不活性ガス室1
1に流入口11aのみを取付けて、排出ロー lbを取
付けておかないと、不活性ガスにより炉内ガスが外部に
出るのを防ぐことはできるが、かなりの量の不活性ガス
が炉内に入り、このため、炉内ガスの不活性ガスの増加
や炉項ガス量の増加現象によって流動層内の粒子の飛び
出しや排ガス管の圧力上昇などが起こり易い。しかし、
本発明では、冷却室11に流入口11aとともに、排出
口11bが取り付けてあるため、流入口11aから入っ
た不活性ガスが排出口11bから出るのでこの問題がな
い。なお不活性ガスのほかに、反応炉1では、炉頂ガス
を循環させて下部の流入口7から吹き込むので、この炉
頂ガス循環系路の途中で脱炭酸装置を設けてC02を除
去して、その除去されたC02を不活性ガスの代りに使
用することもできる。また、不活性ガスの流れ方向は固
体粒子の移動方向に対し、並流と向流のどちらも可能で
あるが、弁12bから漏れるガスの炉内への流入を減少
させるには向流の方が望ましい。不活性ガスの流量は弁
12aから漏れる炉内ガスの5〜1ぴ音以上あれば良い
。また、排出口11bのガスを時々分析して漏れてくる
炉内ガス量に応じて不活性ガス量を調節することが出来
る。また、流入口11aの取り付け位置は、不活性ガス
室11の底部に取り付けると、固体粒子が流入ローla
内に入り込み易いため、そこに金網11cを取り付ける
のが好ましい。
A cooling chamber 10 and an inert gas chamber 11 are formed in this discharge pipe 9, and a valve 12a is interposed between the cooling chamber 10 and the inert gas chamber 11, while a valve 12b is provided at the tip of the inert gas chamber 11. Install. This cooling chamber 10 can be configured in any way as long as the solid particles sampled from inside the reactor 1 can be cooled, but it is usually a double structure, with an annular chamber 10 between the inner and outer cylinders.
It is sufficient if the cooling water is arranged horizontally so that the cooling water flows through a. Further, the inert gas chamber 11 is configured such that an inert gas is introduced from an inlet 11a and can be discharged from the discharge roll 1b.Furthermore, in order to maintain this inert gas higher than the pressure inside the reactor 1, for example, , a pressure regulating means 13 such as a pressure regulating valve is provided. When the discharge pipe is configured in this manner and the pressure of the inert gas flowing in the inert gas chamber 11 is maintained at a pressure higher than the furnace gas pressure by the pressure regulating means 13, solid particles are removed from the furnace by the furnace gas. can be sampled without leaking information. That is, since the cooling chamber 10 is formed in the discharge pipe near the reactor, the sampled solid particles are first cooled there. In this case, two valves 12
a, 12b are closed, and valve 12a is opened when the solid particles have finished cooling. In this way, the solid particles enter the inert gas chamber 11, at which time the valve 12a is closed, while the valve 12b is opened and the solid particles are removed from the container 141.
Inert gas is introduced into the inert gas chamber 11 from the inlet 11a and is discharged from the outlet 11b, and the pressure P2 of the inert gas is controlled by the pressure adjusting means 13 to the furnace gas pressure, especially the exhaust pipe outlet. The nearby pressure P is adjusted to be larger. Therefore, the gas in the furnace is sealed off by this high-pressure inert gas and does not leak. In this case, P,,
It is preferable to adjust the difference in P2 so that it falls within the range of PL<P2-P, Pu. In this case, the lower limit PL is preferably as small as possible within a non-negative range, and generally it is preferably about 1 QO or more. If the upper limit of Pu is too large, the amount of inert gas required will increase, and it is better to be smaller as long as it does not affect the operation, but in general, it is preferably 500 days or less. In short, by controlling the inert gas pressure in this way, even if the pressure inside the reactor fluctuates, the inert gas pressure can always be kept higher than the reducing gas pressure.
Furthermore, by controlling the pressure, the amount of inert gas consumed can be kept low. In addition, when the two valves 12a and 12b are repeatedly opened and closed during sampling, the gas in the valves may be caused by entrapment or abrasion of solid particles, or by thermal action of solid particles that are insufficiently cooled from above. The seal tends to be incomplete. In other words, the furnace gas easily leaks to the outside through the valves 12a and 12b which do not have sealing properties, and the furnace gas contains CO and carbon dioxide, which is harmful and explosive and extremely dangerous. In this case, inert gas chamber 1
If only the inlet port 11a is attached to 1 and the discharge row lb is not attached, the inert gas can prevent the gas inside the furnace from going outside, but a considerable amount of inert gas will still enter the furnace. Therefore, particles in the fluidized bed are likely to fly out and the pressure in the exhaust gas pipe increases due to an increase in inert gas in the furnace gas or an increase in the amount of furnace gas. but,
In the present invention, since the cooling chamber 11 is provided with the inlet port 11a and the outlet port 11b, the inert gas that enters through the inlet port 11a exits through the outlet port 11b, so this problem does not occur. In addition to the inert gas, in the reactor 1, the top gas is circulated and blown in from the inlet 7 at the bottom, so a decarboxylation device is installed in the middle of the top gas circulation path to remove CO2. , the removed CO2 can also be used instead of an inert gas. Furthermore, the flow direction of the inert gas can be either cocurrent or countercurrent with respect to the moving direction of the solid particles, but countercurrent is preferred in order to reduce the flow of gas leaking from the valve 12b into the furnace. is desirable. The flow rate of the inert gas should be at least 5 to 1 pep of the furnace gas leaking from the valve 12a. Furthermore, the amount of inert gas can be adjusted depending on the amount of gas leaking into the furnace by occasionally analyzing the gas at the exhaust port 11b. In addition, if the inlet 11a is installed at the bottom of the inert gas chamber 11, the solid particles will flow into the inlet roll la.
Since it is easy to get inside, it is preferable to attach a wire mesh 11c there.

また、この流入口11aは不活性ガス室11の上部11
dに取り付けることができ、この際は金網を取付ける必
要がない。また、不活性ガス室11の容積、つまり 2
つの弁12a,12bの間の長さは冷却室10と同一長
さにすれば十分であり、冷却室10の長さはサンプリン
グに必要とする固体粒子量によって決めれば十分である
Further, this inlet 11a is connected to the upper part 11 of the inert gas chamber 11.
d, and there is no need to attach a wire mesh in this case. In addition, the volume of the inert gas chamber 11, that is, 2
It is sufficient that the length between the two valves 12a and 12b is the same as that of the cooling chamber 10, and the length of the cooling chamber 10 may be determined depending on the amount of solid particles required for sampling.

また、上記構成のサンプリング装置には、例えば、M・
Fe計等の分析装置を接続して、サンプリング後の固体
粒子中から所要の成分を自動的に分折できる。
In addition, the sampling device having the above configuration includes, for example, M.
By connecting an analyzer such as an Fe analyzer, required components can be automatically separated from the solid particles after sampling.

すなわち、第3図は分折装置を接続した場合の一例の配
置図であって、この場合においては容器14に代えて、
分析装置としてM・Fe計15を接続したものである。
That is, FIG. 3 is a layout diagram of an example in which a fractionating device is connected, and in this case, instead of the container 14,
An M.Fe meter 15 is connected as an analyzer.

このM・Fe計は発振回路15a、そのコイル部15b
ならびに周波数カウンター5cから成って、サンプリン
グした固体粒子は弁12bを開いて、一定容積のセル1
6dに充填する。このセル15dの外側はコイル部15
bからなっていて、充填時とブランク時のコイル部15
bの周波数の差が固体粒子の還元率と比例関係にあるの
で、この周波数をカウンタ15cで測定すれば固体粒子
の還元率を知ることが出来る。測定後の固体粒子は弁1
6を開いて容器14aに採取される。以上詳しく説明し
た通り、本発明は冶金炉のサンプル排出口に接続され、
しかも、この冶金炉から採取された必要量のサンプルを
冷却する冷却室と不活性ガスの流入口ならびに流出口を
有する不活性ガス室が形成されるサンプル排出口を具え
、このサンプル排出管の不活性ガス室内の圧力を前0誌
冶金炉内のガス圧力より常に高く調整する圧力手段を設
けて成るものである。
This M.Fe meter has an oscillation circuit 15a and a coil section 15b.
and a frequency counter 5c, the sampled solid particles open the valve 12b and pass through the cell 1 with a certain volume.
Fill to 6d. The outside of this cell 15d is the coil portion 15.
The coil part 15 consists of b, and the coil part 15 at the time of filling and when blanking.
Since the difference in frequency b is proportional to the reduction rate of the solid particles, the reduction rate of the solid particles can be determined by measuring this frequency with the counter 15c. After measurement, solid particles are removed from valve 1.
6 is opened and collected into a container 14a. As explained in detail above, the present invention is connected to the sample outlet of a metallurgical furnace,
Moreover, it is equipped with a cooling chamber for cooling the required amount of sample taken from the metallurgical furnace, and a sample discharge port in which an inert gas chamber having an inlet and an outlet for inert gas is formed. A pressure means is provided for adjusting the pressure in the active gas chamber to always be higher than the gas pressure in the metallurgical furnace.

従って、サンプリングされた固体粒子の中には、不活性
ガスが通過し、不活性ガスの圧力は調節されているため
、不活性ガスによって炉内ガスタが遮断されるために炉
内ガスの炉外への漏れを防ぐことができる。
Therefore, inert gas passes through some of the sampled solid particles, and the pressure of the inert gas is regulated. leakage can be prevented.

また、本発明はこれら以外に固体粒子を取り扱う粉粒体
装置に一般に適用できる。
Furthermore, the present invention is generally applicable to powder and granular equipment that handles solid particles other than these.

【図面の簡単な説明】[Brief explanation of the drawing]

0 第1図は鉄鉱石等の流動層反応炉の縦断面図であり
、第2図は本発明の一つの実施例に係るサンプリング装
置の縦断面図であり、第3図は分析装置を接続した場合
の一例の配置図である。 符号1…・・・反応炉、2・・・…鉄鉱石供給装置、3
5…・・・多孔板、4a…・・・排出口、4b・・・・
・・排出管、5……スクリユフイーダ、6……ホツパ、
7……流入口、8・・・・・・炉項ガス管、9・・…・
サンプリング排出管、10…・・・冷却室、10a・・
・・・・環状室、11……不活性ガス室、11a,11
c……流入0口、11b……排出口、11d……金網、
12a,12b……弁、13……圧力調整手段、14,
14a…・・・容器、15・・・・・・M・Fe計、1
5a・…・・発振回路、15b・・・…コイル部、15
c……周波数カウンタ、15d……セル、16……タ弁
、P.・・・・・・不活性ガスの圧力、P2・・・・・
・炉内ガス圧力。 第1図 第2図 第3図
0 Fig. 1 is a longitudinal sectional view of a fluidized bed reactor for iron ore, etc., Fig. 2 is a longitudinal sectional view of a sampling device according to one embodiment of the present invention, and Fig. 3 is a longitudinal sectional view of a sampling device according to an embodiment of the present invention. FIG. Code 1...Reactor, 2...Iron ore supply device, 3
5...Perforated plate, 4a...Discharge port, 4b...
...Exhaust pipe, 5...Skuriyuida, 6...Hotsupa,
7... Inflow port, 8... Furnace gas pipe, 9...
Sampling discharge pipe, 10...Cooling chamber, 10a...
...Annular chamber, 11...Inert gas chamber, 11a, 11
c... Inflow 0 port, 11b... Outlet, 11d... Wire mesh,
12a, 12b...Valve, 13...Pressure adjustment means, 14,
14a... Container, 15... M・Fe meter, 1
5a...Oscillation circuit, 15b...Coil part, 15
c...Frequency counter, 15d...Cell, 16...Ta valve, P. ...Inert gas pressure, P2...
・Furnace gas pressure. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 冶金炉のサンプル排出口に接続され、しかも、この
冶金炉から採取された必要量のサンプルを冷却する冷却
室と不活性ガスの流入口ならびに流出口を有する不活性
ガス室が形成されるサンプル排出管を具え、このサンプ
ル排出管の不活性ガス室内の圧力を前記冶金炉内のガス
圧力より常に高く調整する圧力調整手段を設けて成るこ
とを特徴とする冶金炉のサンプリング装置。
1. A sample that is connected to the sample outlet of a metallurgical furnace and has an inert gas chamber that has a cooling chamber for cooling the required amount of sample taken from the metallurgical furnace and an inert gas inlet and outlet. 1. A sampling device for a metallurgical furnace, comprising a discharge pipe, and pressure adjusting means for adjusting the pressure in the inert gas chamber of the sample discharge pipe to always be higher than the gas pressure in the metallurgical furnace.
JP16588580A 1980-11-27 1980-11-27 Metallurgical furnace sampling device Expired JPS605874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16588580A JPS605874B2 (en) 1980-11-27 1980-11-27 Metallurgical furnace sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16588580A JPS605874B2 (en) 1980-11-27 1980-11-27 Metallurgical furnace sampling device

Publications (2)

Publication Number Publication Date
JPS5790573A JPS5790573A (en) 1982-06-05
JPS605874B2 true JPS605874B2 (en) 1985-02-14

Family

ID=15820821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16588580A Expired JPS605874B2 (en) 1980-11-27 1980-11-27 Metallurgical furnace sampling device

Country Status (1)

Country Link
JP (1) JPS605874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131141A (en) * 1986-11-21 1988-06-03 Fuji Photo Film Co Ltd Photograph-containing card

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131141A (en) * 1986-11-21 1988-06-03 Fuji Photo Film Co Ltd Photograph-containing card

Also Published As

Publication number Publication date
JPS5790573A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
US4106210A (en) Solids discharge system with cooling means for pressurized fluid bed reactors
US7600950B2 (en) Device to transfer catalyst from a low pressure vessel to a high pressure vessel and purge the transferred catalyst
US3710808A (en) Pressure lock for feeding particulate material to and removing it from a pressure vessel
JPS605874B2 (en) Metallurgical furnace sampling device
EP0946320A1 (en) Plant for transferring liquid metal, method of operation, and refractories
US6759027B1 (en) Method and installation for carrying out a three phase chemical reaction under pressure
US8075227B2 (en) Device to transfer catalyst from a low pressure vessel to a high pressure vessel and purge the transferred catalyst
US2858125A (en) Reagent feeding apparatus
US2915339A (en) Discharge means for storage vessels
AU773851B2 (en) Method of charging a pressurized container with granular solids
US3250128A (en) Sampling device
US5031805A (en) Processes and device for dosing free-flowing media
CA1088751A (en) Process and apparatus for blending fluids to maintain concentration of one below a predetermined maximum
US3884453A (en) Bottom blown steel converter and means for controlling injection of powdered material with process gasses therein
JPS61187628A (en) Device for extracting pressure pulse in duct and/or vessel through which gas-solid flow is flowed
US5183495A (en) Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
CN207123381U (en) A kind of adsorption tower grid device for evaluating performance
CN106457188A (en) Radial flow horizontal catalytic reactor
JPS6270501A (en) Sealing device for outlet side of belt furnace for heat treatment of metallic powder
CN205974575U (en) Unloading pipe nitrogen air valve device
US3680849A (en) Charging device for a blast furnace
JP3273104B2 (en) Operation method of coke packed bed type smelting reduction furnace
JPH1028857A (en) Apparatus for quantitatively taking out powder-grain
JPH1053331A (en) Powder and grain conveying system in gaseous flow
JPH0560515B2 (en)