JPH1053331A - Powder and grain conveying system in gaseous flow - Google Patents

Powder and grain conveying system in gaseous flow

Info

Publication number
JPH1053331A
JPH1053331A JP21098896A JP21098896A JPH1053331A JP H1053331 A JPH1053331 A JP H1053331A JP 21098896 A JP21098896 A JP 21098896A JP 21098896 A JP21098896 A JP 21098896A JP H1053331 A JPH1053331 A JP H1053331A
Authority
JP
Japan
Prior art keywords
gas
tank
granular material
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21098896A
Other languages
Japanese (ja)
Inventor
Yoshio Kimura
吉雄 木村
Yoshimi Sonoda
義民 園田
Naoki Ishida
直樹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21098896A priority Critical patent/JPH1053331A/en
Publication of JPH1053331A publication Critical patent/JPH1053331A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a powder and grain conveying system which has its failure incidence decreased and its maintenance facilitated by a means for vertically moving a valve element in place of rotational means such as a quantative feeder or a rotary valve and which continuously conveys an invariably fixed amount of powder and grain without causing pulsation. SOLUTION: A powder or grain conveying system comprises a tank 1 having a bottom plate 1a with an opening therein and storing powder and grain M, and a discharge line 4 connected to the tank 1, and a valve 5 installed the tank 1 in vertically movable manner to adjust the discharge area of the opening and having a plurality of gas injecting holes injecting gas from inside to downward, and a transferring pipe 12 connected to the discharge line 4 mixing a gas delivered from the gas source with the falling powdered or granular material passing down through the space between the discharge opening, and a gas supplying path 9, 10, to supply to the valve body to be discharged from the plurality of holes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、タンク内に収容
された微粉炭、粉鉱石などのような粉粒体を、空気源あ
るいは窒素ガス源などのような気体源に連なる輸送配管
内へ導き、タンクからの粉粒体を輸送配管内の輸送気体
(空気あるいは窒素ガスなど)により、例えば焼鈍炉、
高炉などの工業炉へ燃料として気体輸送するのに用いら
れる気体流による粉粒体輸送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for guiding a powdery or granular material such as pulverized coal or fine ore contained in a tank into a transport pipe connected to a gas source such as an air source or a nitrogen gas source. The particles from the tank are transported by a transport gas (air or nitrogen gas, etc.) in a transport pipe, for example, an annealing furnace,
The present invention relates to an apparatus for transporting granular material by a gas flow used to transport gas as a fuel to an industrial furnace such as a blast furnace.

【0002】[0002]

【従来の技術】従来、タンク内に収容された微粉炭、小
麦粉などの粉粒体を、タンク外に配され、かつ空気源の
ような気体源に連なる輸送配管へ導き、このタンクから
の粉粒体を輸送配管内を流れる輸送気体により気体輸送
する粉粒体輸送装置として、特公昭58−10333号
公報(本公報の第1図参照)に示されているようなもの
があり、これを図8及び図9を用いて説明する。
2. Description of the Related Art Conventionally, pulverized coal such as pulverized coal and flour stored in a tank is guided to a transportation pipe arranged outside the tank and connected to a gas source such as an air source. Japanese Patent Publication No. 58-10333 (see FIG. 1 of this publication) discloses an apparatus for transporting particles by gas transported in a transport pipe. This will be described with reference to FIGS.

【0003】従来の気体流による粉粒体輸送装置は、図
8に示すように、タンク本体(サイロ本体)51の漏斗
状部52の下端にクッションタンク53を連設し、この
クッションタンク53に内装された定量フィーダ54の
流出口55からロータリーバルブ56を介して輸送配管
57へ誘導路58を設けている。さらに、複数の羽根5
6aを持つ前記ロータリーバルブ56のケーシング内壁
面に、輸送配管57内の空気流(正圧)がタンク本体側
に逆流することを阻止するためのバックフィルター59
の導入口60を開口し(図9参照)、タンク本体51の
漏斗状部52に、粉粒体Mに空気を送り込んで粉粒体M
の流下を助勢するためのエアースライダ61を取り付け
たものである。そして、定量フィーダ54により切り出
され、ロータリーバルブ56の羽根56aにより下方へ
順次運ばれた粉粒体Mは、空気源に連なる輸送配管57
内の空気流により空気輸送されるようになっている。
As shown in FIG. 8, in a conventional granular material transport apparatus using a gas flow, a cushion tank 53 is continuously provided at a lower end of a funnel-shaped portion 52 of a tank body (silo body) 51. A guide path 58 is provided from an outlet 55 of a built-in fixed-quantity feeder 54 to a transport pipe 57 via a rotary valve 56. Further, a plurality of blades 5
A back filter 59 for preventing the air flow (positive pressure) in the transport pipe 57 from flowing back to the tank body side on the inner wall surface of the casing of the rotary valve 56 having 6a.
Is opened (see FIG. 9), and air is fed into the granular material M through the funnel-shaped portion 52 of the tank body 51 so that the granular material M
The air slider 61 for assisting the flow of the air is attached. The granular material M cut out by the fixed-quantity feeder 54 and sequentially transported downward by the blades 56a of the rotary valve 56 is transported by a transport pipe 57 connected to an air source.
It is designed to be pneumatically transported by the air flow inside.

【0004】[0004]

【発明が解決しようとする課題】しかし前述した従来の
粉粒体輸送装置では、タンク51より輸送配管57へ粉
粒体を排出するために長時間にわたって連続回転動作す
る定量フィーダ54およびロータリーバルブ56を採用
したものであるから、これらの定量フィーダ54および
ロータリーバルブ56に関して、その故障発生頻度が高
く、また、狭隘空間内に配設されているのでメンテナン
ス作業に多大の手間がかかるという欠点があった。
However, in the above-mentioned conventional granular material transporting apparatus, the fixed-quantity feeder 54 and the rotary valve 56 which continuously rotate for a long time to discharge the granular material from the tank 51 to the transport pipe 57 are used. Therefore, the fixed feeder 54 and the rotary valve 56 have a disadvantage that they frequently occur failures, and that they are disposed in a narrow space, so that maintenance work takes a lot of time. Was.

【0005】さらに、定量フィーダ54からの粉粒体M
を、ロータリーバルブ56の各羽根56a,56a間に
保持して輸送配管57内に供給するようにしているの
で、単位時間当たりの粉粒体輸送量が少ない場合には、
脈動が生じて連続的に常に一定量の粉粒体輸送ができ
ず、このため例えば、粉粒体として微粉炭を工業炉のバ
ーナーに燃料として気体輸送するような場合、精密温度
制御が必要な工業炉には適用できないという不具合があ
った。
Further, the powder M from the fixed-quantity feeder 54
Is held between the respective blades 56a, 56a of the rotary valve 56 and supplied into the transport pipe 57. Therefore, when the amount of the granular material transported per unit time is small,
Precise temperature control is necessary when pulsation occurs and a fixed amount of powdered material cannot be transported continuously at all times.For example, when pulverized coal is transported as gas to a burner of an industrial furnace as a fuel, fine temperature control is required. There was a problem that it could not be applied to industrial furnaces.

【0006】そこでこの発明は、タンクから粉粒体をタ
ンク外に配された輸送配管へ導き、この粉粒体を輸送配
管を流れる輸送気体により気体輸送する粉粒体輸送装置
において、従来の定量フィーダやロータリーバルブのよ
うな回転手段に代えてタンク底板開口部に対して弁体を
昇降動作させる手段を採用することにより、故障発生率
の低減とメンテナンスの容易化を図ることができ、か
つ、脈動が生じることなく連続的に常に一定量の粉粒体
輸送を行うことができる、気体流による粉粒体輸送装置
を提供することを目的とする。
Accordingly, the present invention relates to a conventional powder / particle transport apparatus for guiding a powder / particle from a tank to a transport pipe disposed outside the tank and transporting the powder / granulate by a transport gas flowing through the transport pipe. By adopting a means for moving the valve body up and down with respect to the opening of the tank bottom plate in place of a rotating means such as a feeder or a rotary valve, it is possible to reduce a failure rate and facilitate maintenance, and It is an object of the present invention to provide an apparatus for transporting a granular material by a gas flow, which can continuously transport a constant amount of a granular material without pulsation.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、この発明の気体流による粉粒体輸送装置は、開口部
が設けられたタンク底板を有し、粉粒体を収容するタン
クと、このタンクに下方で連接する粉粒体排出路と、前
記開口部の開口面積を調節すべく前記タンク内に昇降自
在に設けられ、かつ、その内部より下方に向けて気体を
噴出させる複数の気体噴出孔を有した弁体と、前記粉粒
体排出路に連結され、気体源より供給される輸送気体に
前記開口部における前記弁体との間隙を流下した粉粒体
を混入して気体輸送する輸送配管と、前記弁体にその複
数の気体噴出孔から噴出させる気体を供給する弁部噴出
気体供給管路と、を備えたことを特徴とする。また、前
記気体流による粉粒体輸送装置は、粉粒体輸送量の微調
整を行うために、前記タンクに収容された粉粒体を下方
へ加圧する気体を前記タンクに導入する粉粒体加圧用気
体供給管を備えることができる。
In order to achieve the above-mentioned object, the present invention provides an apparatus for transporting granular material by gas flow, comprising a tank bottom plate provided with an opening, and a tank for storing the granular material. A powder discharge passage connected to the tank at a lower portion, and a plurality of powder / grain discharge passages provided to be movable up and down in the tank so as to adjust the opening area of the opening, and for ejecting gas downward from the inside thereof. A valve body having a gas ejection hole, and a gas body which is connected to the particulate body discharge path and mixes powder particles flowing down a gap with the valve body at the opening into a transport gas supplied from a gas source; It is characterized by comprising a transport pipe for transporting, and a valve section ejection gas supply pipe for supplying gas ejected from the plurality of gas ejection holes to the valve body. The apparatus for transporting a granular material by the gas flow is configured to introduce a gas that pressurizes the granular material contained in the tank downward to the tank in order to finely adjust a transport amount of the granular material. A pressurized gas supply pipe can be provided.

【0008】この発明による粉粒体輸送装置において
は、従来の定量フィーダやロータリーバルブのような回
転装置に代えてタンク内に弁体を設け、タンク底板の開
口部に対して前記弁体を昇降動作させて開口部の開口面
積を調節するようにしたものであるから、弁体は輸送開
始・停止時および粉粒体輸送量の変更時のみ作動させれ
ばよく、従来装置に比べて、故障発生率の低減とメンテ
ナンスの容易化を図ることができる。
In the apparatus for transporting granular material according to the present invention, a valve is provided in the tank in place of a conventional rotary device such as a fixed-quantity feeder or a rotary valve, and the valve is moved up and down with respect to the opening of the tank bottom plate. Since the valve is operated to adjust the opening area of the opening, the valve element only needs to be activated at the start and stop of transport and when the amount of powdered material transported is changed. The occurrence rate can be reduced and maintenance can be facilitated.

【0009】また、この発明による粉粒体輸送装置にお
いては、弁体に複数の気体噴出孔を設け、弁体内部から
下方に向けて空気などの気体が噴出されるので、輸送配
管に向けてタンク内の粉粒体を、タンク底板の開口部に
おける弁体との間隙から円滑に流下させることができ、
脈動が生じることなく連続的に常に一定量の粉粒体輸送
を行うことができる。
Further, in the granular material transport apparatus according to the present invention, a plurality of gas ejection holes are provided in the valve body, and a gas such as air is ejected downward from the inside of the valve body. The powder in the tank can smoothly flow down from the gap between the valve body at the opening of the tank bottom plate,
It is possible to constantly transport a fixed amount of the granular material without pulsation.

【0010】そして、タンク内に収容された粉粒体を下
方へ加圧する気体をタンク内に導入する粉粒体加圧用気
体供給管が備わっているときには、この粉粒体加圧用気
体の供給量を加減することで、粉粒体輸送量の微調整を
行うことができる。
[0010] When a gas supply pipe for pressurizing the granular material contained in the tank is introduced into the tank for introducing a gas for compressing the granular material downward, the supply amount of the gas for compressing the granular material is provided. By fine adjustment of the amount, fine adjustment of the amount of transport of the granular material can be performed.

【0011】[0011]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照して説明する。図1はこの発明に係る気体流に
よる粉粒体輸送装置の一例を示す概略構成図、図2は図
1に示すタンクのタンク底板に設けられた開口部を説明
するための図、図3は図1に示す弁体の平面図、図4は
図1に示す弁体の側面断面図、図5は図1に示す弁体の
正面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an example of a granular material transport device using a gas flow according to the present invention, FIG. 2 is a diagram for explaining an opening provided in a tank bottom plate of the tank shown in FIG. 1, and FIG. FIG. 4 is a side sectional view of the valve body shown in FIG. 1, and FIG. 5 is a front view of the valve body shown in FIG.

【0012】図1において、1は例えば微粉炭などのよ
うな粉粒体Mを収容するタンクであり、このタンク1
は、円筒胴部の下方に漏斗状部を連接し、漏斗状部の下
端にタンク底板1aを設ける一方、円筒胴部上に上蓋1
cを設けてなるものである。前記タンク底板1aには平
面視で大略T字形の開口部1bが設けられており(図2
参照)、タンク上蓋1c上には、ボールバルブ2を備え
た粉粒体供給用のホッパー3が配設されている。4はタ
ンク1に下方で連接した漏斗状の粉粒体排出路である。
In FIG. 1, reference numeral 1 denotes a tank for accommodating a granular material M such as pulverized coal, for example.
Is connected to a funnel-shaped portion below the cylindrical body, a tank bottom plate 1a is provided at the lower end of the funnel-shaped portion, and an upper lid 1 is provided on the cylindrical body.
c is provided. The tank bottom plate 1a is provided with a substantially T-shaped opening 1b in plan view (FIG. 2).
), A hopper 3 provided with a ball valve 2 for supplying a granular material is disposed on the tank lid 1c. Reference numeral 4 denotes a funnel-shaped powder discharge passage connected to the tank 1 below.

【0013】このタンク1の内部には、粉粒体Mを設定
値に応じて定量輸送するために、タンク底板1aの開口
部1bに対して昇降動作し、開口部1bに差し込まれる
ことで開口部1bの開口面積を調節する後述する弁体5
と、この弁体5に連結されて上下方向に延びる中空棒状
の弁棒6とが配設されている。そして、一方端が接続リ
ンク部を介して弁棒6に連結され、他方端がタンク外へ
引き出されたハンドル7により、弁体5を昇降させるこ
とができるように構成されている。7aは弁開度目盛り
付きハンドル支持部材、8はタンク1のハンドル貫通孔
をシールするためのゴム製シール部材である。
Inside the tank 1, the powder M is moved up and down with respect to the opening 1b of the tank bottom plate 1a and is inserted into the opening 1b in order to transport the powder M in a predetermined amount according to the set value. A valve element 5 to be described later for adjusting the opening area of the portion 1b
And a hollow rod-shaped valve stem 6 connected to the valve body 5 and extending in the vertical direction. And one end is connected to the valve rod 6 via the connection link part, and the other end is configured so that the valve body 5 can be moved up and down by the handle 7 drawn out of the tank. 7a is a handle support member with a valve opening scale, and 8 is a rubber seal member for sealing the handle through hole of the tank 1.

【0014】前記弁体5は、図3〜図5に示すように、
内部が中空で、側面視(図4参照)で全体として三角形
状をなしている。そして、開口部1bに差し込まれた状
態で上下方向にスムーズに摺動させるため、弁体5は、
その背板として、開口部1bの幅広部分に差し込まれる
ガイド板5aを有している。また、弁体5の下側傾斜面
5b、すなわち、開口部1bにおけるタンク底板1aと
の間に間隙を形成する下側傾斜面5bには、弁棒6の気
体導入通路6aを通って弁体5内部に供給されたこの例
では加圧空気を下方に向けて噴出するための複数個の気
体噴出孔5cが設けられている。各気体噴出孔5cの穴
径は2〜3mm程度である。
The valve element 5 is, as shown in FIGS.
The inside is hollow, and has a triangular shape as a whole in a side view (see FIG. 4). Then, in order to smoothly slide up and down in a state of being inserted into the opening 1b, the valve body 5 is
As its back plate, it has a guide plate 5a inserted into the wide portion of the opening 1b. The valve body 5 passes through the gas introduction passage 6a of the valve rod 6 on the lower inclined surface 5b of the valve body 5, that is, the lower inclined surface 5b that forms a gap between the opening 1b and the tank bottom plate 1a. In this example, which is supplied into the inside 5, a plurality of gas ejection holes 5c for ejecting pressurized air downward are provided. The hole diameter of each gas ejection hole 5c is about 2 to 3 mm.

【0015】そして、タンク1の円筒胴部外面には、こ
の例では圧力空気源(図示省略)に連なる弁部噴出気体
供給管9が接続される一方、タンク1内にはこの供給管
9と弁棒6の気体導入通路6aとを接続する屈曲可能な
フレキシブルチューブ10が設けられている。弁部噴出
気体供給管9、フレキシブルチューブ10、及び気体導
入通路6aを有する弁棒6は、弁体5にその複数の気体
噴出孔5cから噴出させる加圧空気を供給する弁部噴出
気体供給管路を構成している。また、タンク1の円筒胴
部外面には、タンク1内の粉粒体Mを下方へ加圧する空
気をタンク1内に導入するために、圧力空気源(図示省
略)に連なる粉粒体加圧用気体供給管11が接続されて
いる。
In this example, a valve section gas supply pipe 9 connected to a pressure air source (not shown) is connected to the outer surface of the cylindrical body of the tank 1, while the supply pipe 9 is connected to the inside of the tank 1. A bendable flexible tube 10 that connects the valve stem 6 to the gas introduction passage 6a is provided. The valve part ejecting gas supply pipe 9, the flexible tube 10, and the valve rod 6 having the gas introduction passage 6a supply the valve body 5 with pressurized air to be ejected from the plurality of gas ejection holes 5c. Make up the road. Further, on the outer surface of the cylindrical body of the tank 1, a pressurized powder body connected to a pressurized air source (not shown) for introducing air for pressurizing the powder M in the tank 1 downward into the tank 1 is provided. The gas supply pipe 11 is connected.

【0016】また、タンク1に下方で連接した粉粒体排
出路4の下端は、タンク1からの粉粒体Mを例えば工業
炉へ空気輸送すべく図示しない圧力空気源に連なる輸送
配管12の途中部分に連結されている。なお、この輸送
配管12、前記弁部噴出気体供給管9及び粉粒体加圧用
気体供給管11を流れる空気については、各配管ごと
に、その圧力、流量を所要値に調整できるようになって
いる。
The lower end of the powdery material discharge passage 4 connected to the tank 1 below is provided with a transport pipe 12 connected to a pressure air source (not shown) for pneumatically transporting the powdery material M from the tank 1 to, for example, an industrial furnace. It is connected to the middle part. The pressure and the flow rate of the air flowing through the transport pipe 12, the gas supply pipe 9 and the gas supply pipe 11 for pressurizing the granular material can be adjusted to required values for each pipe. I have.

【0017】前記構成になる粉粒体輸送装置の動作を説
明する。ホッパー3からボールバルブ2を介してタンク
1内に装入されている粉粒体Mを単位時間当たり一定量
の空気輸送を行うにあたり、まず、各配管12,9,1
1のそれぞれに、所定量の加圧空気の供給を開始する。
しかる後この例では、粉粒体輸送量に応じて予め定めら
れた弁開度になるように弁開度目盛りを見ながら人手に
よりハンドル7を操作する。これにより弁体5が上方へ
引き上げられ、開口部1bにおける弁体下側傾斜面5b
とタンク底板1aとの間に粉粒体輸送量に応じた間隙が
形成され、タンク1内の粉粒体Mは、弁体5内から下方
に噴出されている空気流とともに前記間隙から流下して
粉粒体排出路4を経て輸送配管12内へ連続的に供給さ
れる。
The operation of the granular material transporting apparatus having the above configuration will be described. In carrying out pneumatic transportation of a certain amount of granular material M charged into the tank 1 from the hopper 3 via the ball valve 2 per unit time, first, each of the pipes 12, 9, 1
The supply of a predetermined amount of pressurized air to each of the first and second airbags is started.
Thereafter, in this example, the handle 7 is manually operated while observing the valve opening scale so that the valve opening becomes a predetermined valve opening according to the amount of the granular material transported. As a result, the valve element 5 is lifted upward, and the valve element lower inclined surface 5b at the opening 1b.
A gap corresponding to the amount of the granular material transported is formed between the fuel tank and the tank bottom plate 1a, and the granular material M in the tank 1 flows down from the gap together with the air flow jetted downward from the valve element 5. The powder is continuously supplied into the transport pipe 12 through the powder discharge path 4.

【0018】このようにこの発明による粉粒体輸送装置
においては、従来の定量フィーダやロータリーバルブの
ような回転装置に代えてタンク1内に弁体5を設け、タ
ンク底板1aの開口部1bに対して弁体5を昇降動作さ
せて開口部1bの開口面積を調節するようにしたもので
あるから、弁体5は輸送開始・停止時および粉粒体輸送
量の変更時のみ作動させればよく、従来装置に比べて、
故障発生率の低減とメンテナンスの容易化を図ることが
できる。また、弁体5に複数の気体噴出孔5cを設け、
弁体内部から下方に向けて空気流が噴出されるので、輸
送配管12に向けてタンク1内の粉粒体Mを、開口部1
bにおける弁体5との間隙から円滑に流下させることが
でき、脈動が生じることなく連続的に常に一定量の粉粒
体輸送を行うことができる。
As described above, in the granular material transport device according to the present invention, the valve element 5 is provided in the tank 1 instead of the conventional rotary device such as a fixed-quantity feeder or a rotary valve, and is provided in the opening 1b of the tank bottom plate 1a. On the other hand, since the valve element 5 is moved up and down to adjust the opening area of the opening 1b, the valve element 5 can be actuated only at the start / stop of transport and at the time of changing the amount of granular material transported. Well, compared to conventional equipment,
The failure occurrence rate can be reduced and maintenance can be facilitated. Further, a plurality of gas ejection holes 5c are provided in the valve body 5,
Since the air flow is jetted downward from the inside of the valve body, the powder M in the tank 1 is moved toward the transport pipe 12 through the opening 1.
It is possible to smoothly flow down from the gap with the valve element 5 in b, and it is possible to continuously transport a constant amount of powder and granules without pulsation.

【0019】図6は図1に示す構造の粉粒体輸送装置に
おける弁開度と粉粒体輸送量との関係の一例を示すグラ
フ図である。このグラフ図は、粉粒体Mとして微粉炭を
用い、気体として加圧窒素ガスを使用し、弁部噴出気体
供給管9の窒素ガス流量を一定値(100Nリットル/
min)とし、粉粒体加圧用気体供給管11の窒素ガス
流量を変化パラメータとしたときの、弁開度(開口部1
bにおける間隙の幅寸法)と粉粒体輸送量との関係を実
験から求めたものである。なお、輸送配管12の窒素ガ
ス流量は一定で350Nリットル/minとした。ま
た、タンク1入側位置での供給管9を流れる窒素ガスの
圧力(ゲージ圧)は5.0kPaであり、タンク1入側
位置での供給管11を流れる窒素ガスの圧力(ゲージ
圧)は5.2kPaであり、粉粒体排出路4との連結位
置での輸送配管12を流れる窒素ガスの圧力(ゲージ
圧)は4.9kPaである。
FIG. 6 is a graph showing an example of the relationship between the valve opening and the amount of granular material transported in the granular material transport device having the structure shown in FIG. In this graph, pulverized coal is used as the granular material M, pressurized nitrogen gas is used as the gas, and the nitrogen gas flow rate of the valve section ejection gas supply pipe 9 is set to a constant value (100 Nl /
min), and the valve opening degree (opening 1) when the nitrogen gas flow rate of the gas supply pipe 11 for pressurizing the granular material is used as a change parameter.
The relationship between the width dimension of the gap in b) and the amount of transport of the granular material was obtained from experiments. The flow rate of the nitrogen gas in the transport pipe 12 was constant at 350 Nl / min. The pressure (gauge pressure) of the nitrogen gas flowing through the supply pipe 9 at the tank 1 inlet side position is 5.0 kPa, and the pressure (gauge pressure) of the nitrogen gas flowing through the supply pipe 11 at the tank 1 inlet side position is The pressure (gauge pressure) of the nitrogen gas flowing through the transport pipe 12 at the connection position with the powdery material discharge path 4 is 4.9 kPa.

【0020】図6に示すように、弁開度と粉粒体輸送量
とは正比例の関係が得られており、粉粒体輸送量は、弁
開度によって粗調整し、粉粒体加圧用気体供給管11の
窒素ガス流量を加減することで微調整しうることがわか
る。弁部噴出気体供給管9の窒素ガス流量は粉粒体輸送
量の調整制御には直接影響しない。なお、この装置での
代表的運転条件は、粒体輸送量:6.25kg/mi
n、固気比:10、輸送配管の窒素ガス流量:350N
リットル/min、粉粒体加圧用気体供給管の窒素ガス
流量:50Nリットル/min、弁部噴出気体供給管の
窒素ガス流量:100Nリットル/min、である。前
記固気比は、輸送気流中の粉粒体濃度を示す値であっ
て、この代表的運転条件では、6250/〔(350+
50+100)×窒素ガス密度1.25g/リットル〕
から、固気比の値は10となる。
As shown in FIG. 6, there is a direct proportional relationship between the degree of valve opening and the amount of granular material transported. It can be seen that fine adjustment can be made by adjusting the flow rate of the nitrogen gas in the gas supply pipe 11. The flow rate of the nitrogen gas in the valve section discharge gas supply pipe 9 does not directly affect the adjustment control of the transport amount of the granular material. The typical operating conditions of this apparatus are as follows: granular transport rate: 6.25 kg / mi
n, solid-gas ratio: 10, nitrogen gas flow rate of transport pipe: 350N
Liter / min, the flow rate of nitrogen gas in the gas supply pipe for pressurizing the granular material: 50 N liter / min, and the flow rate of nitrogen gas in the gas supply pipe for ejecting the valve section: 100 N liter / min. The solid-gas ratio is a value indicating the concentration of the granular material in the transport airflow, and under this typical operating condition, 6250 / [(350+
50 + 100) × nitrogen gas density 1.25 g / l]
Therefore, the value of the solid-gas ratio is 10.

【0021】図7はこの発明に係る気体流による粉粒体
輸送装置の他の例を模式的に示す構成図である。図1の
装置と異なる点は、大容量の粉粒体輸送にも適用しうる
ように、1台の大型のタンクに複数個の弁体を装備した
点にある。
FIG. 7 is a configuration diagram schematically showing another example of the apparatus for transporting a granular material by a gas flow according to the present invention. The difference from the apparatus of FIG. 1 is that a single large tank is provided with a plurality of valve elements so that it can be applied to the transportation of a large amount of powder and granular material.

【0022】すなわち、図7に示すように、粉粒体Mを
収容するタンク21の複数の各漏斗状部(この例では4
つ)には、それぞれ、漏斗状部下端に前記図2と同様の
開口部を有するタンク底板21aA ,21aB ,21a
C ,21aD が設けられるとともに、漏斗状の粉粒体排
出路24A,24B,24C,24Dが連接されてい
る。このタンク21の上蓋21cには、タンク21への
粉粒体供給用のボールバルブ22が配設され、また、タ
ンク21内の粉粒体Mを下方へ加圧する空気をタンク2
1内に導入するために、圧力空気源(図示省略)に連な
る粉粒体加圧用気体供給管31が接続されている。
That is, as shown in FIG. 7, a plurality of funnel-shaped portions (in this example, 4
2), tank bottom plates 21a A , 21a B , 21a having openings similar to those in FIG.
C, with 21a D is provided, funnel-shaped granular material discharge passage 24A, 24B, 24C, 24D are connected. The upper lid 21c of the tank 21 is provided with a ball valve 22 for supplying the granular material to the tank 21, and the air for pressurizing the granular material M in the tank 21 downward is supplied to the tank 2.
A gas supply pipe 31 for pressurizing the granular material connected to a source of pressurized air (not shown) is connected to introduce the gas into the inside 1.

【0023】そして、図7における右端の第1のタンク
漏斗状部の内部には、前記の図3〜図4に示すものと同
一構造であってタンク底板21aA の開口部(図示省
略)に対して昇降動作する弁体25Aと、内部に気体導
入通路(図示省略)を有し、この弁体25Aに連結され
て上下方向に延びる弁棒26Aとが配設されている。ま
た、弁棒26Aのタンク21外へ引き出された上端部に
は、弁棒26Aを介して弁体25Aを昇降動作させる弁
体駆動装置27Aが連結されるとともに、弁体25Aの
複数の気体噴出孔から噴出させる加圧空気を前記気体導
入通路を通して供給するための弁部噴出気体供給管29
Aが接続されている。そして、この第1のタンク漏斗状
部に下方で連接した粉粒体排出路24Aの下端は、タン
ク21からの粉粒体Mを例えば工業炉へ空気輸送すべく
図示しない圧力空気源に連なる輸送配管32Aの途中部
分に連結されている。同様の構成にて、他の3つの弁体
25B,25C,25Dもタンク21に装備されてい
る。
[0023] Then, inside the first tank funnel portion of the right end in FIG. 7, the opening of said FIGS. 3-4 in the same structure as that shown in tank bottom plate 21a A in (not shown) On the other hand, a valve body 25A that moves up and down, and a valve rod 26A that has a gas introduction passage (not shown) therein and is connected to the valve body 25A and extends in the vertical direction are provided. Further, a valve body driving device 27A for moving the valve body 25A up and down through the valve shaft 26A is connected to the upper end of the valve stem 26A drawn out of the tank 21, and a plurality of gas ejections from the valve body 25A are performed. A valve ejection gas supply pipe 29 for supplying pressurized air ejected from the hole through the gas introduction passage.
A is connected. Then, the lower end of the powder / particle discharge path 24A connected to the first tank funnel-shaped portion below is connected to a pressure air source (not shown) for pneumatically transporting the powder M from the tank 21 to, for example, an industrial furnace. It is connected to an intermediate portion of the pipe 32A. With the same configuration, the other three valve bodies 25B, 25C, and 25D are also provided in the tank 21.

【0024】このようなタンクに複数個の弁体を装備し
てなる粉粒体輸送装置においても、前記の図1に示すも
のと同様にして、故障の発生が極めて少なく、メンテナ
ンスが容易で、かつ、脈動が生じることなく連続的に常
に一定量の粉粒体輸送を行うことができる。
[0024] Also in such a granular material transport apparatus in which a plurality of valve elements are provided in such a tank, the occurrence of failures is extremely small, maintenance is easy, and similar to that shown in FIG. In addition, it is possible to constantly transport a fixed amount of powder and granules without pulsation.

【0025】[0025]

【発明の効果】以上述べたように、この発明に係る気体
流による粉粒体輸送装置によると、タンクから粉粒体を
タンク外に配された輸送配管へ導き、この粉粒体を輸送
配管を流れる輸送気体により気体輸送する粉粒体輸送装
置において、従来の定量フィーダやロータリーバルブの
ような回転手段に代えてタンク底板開口部に対して弁体
を昇降動作させるようにしたものであるから、故障発生
率の低減とメンテナンスの容易化を図ることができ、か
つ、脈動が生じることなく連続的に常に一定量の粉粒体
輸送を行うことができる。
As described above, according to the apparatus for transporting particulates by gas flow according to the present invention, the particulates are guided from the tank to the transport pipe disposed outside the tank, and the particulates are transported to the transport pipe. In a granular material transport device that transports gas by a transport gas flowing through a valve, the valve element is moved up and down with respect to the opening of the tank bottom plate in place of the conventional rotating means such as a fixed-quantity feeder or a rotary valve. In addition, it is possible to reduce the failure occurrence rate and facilitate the maintenance, and it is possible to continuously transport a constant amount of powder and granules without pulsation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明に係る気体流による粉粒体輸送
装置の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus for transporting a granular material by a gas flow according to the present invention.

【図2】図1に示すタンクのタンク底板に設けられた開
口部を説明するための図である。
FIG. 2 is a view for explaining an opening provided in a tank bottom plate of the tank shown in FIG. 1;

【図3】図1に示す弁体の平面図である。FIG. 3 is a plan view of the valve body shown in FIG.

【図4】図1に示す弁体の側面断面図である。FIG. 4 is a side sectional view of the valve body shown in FIG. 1;

【図5】図1に示す弁体の正面図である。FIG. 5 is a front view of the valve body shown in FIG. 1;

【図6】図1に示す構造の粉粒体輸送装置における弁開
度と粉粒体輸送量との関係の一例を示すグラフ図であ
る。
6 is a graph showing an example of a relationship between a valve opening degree and a granular material transport amount in the granular material transport device having the structure shown in FIG.

【図7】この発明に係る気体流による粉粒体輸送装置の
他の例を模式的に示す構成図である。
FIG. 7 is a configuration diagram schematically showing another example of the apparatus for transporting a granular material by a gas flow according to the present invention.

【図8】従来の気体流による粉粒体輸送装置の構成図で
ある。
FIG. 8 is a configuration diagram of a conventional apparatus for transporting a granular material using a gas flow.

【図9】図8の要部を説明するための図である。FIG. 9 is a diagram for explaining a main part of FIG. 8;

【符号の説明】[Explanation of symbols]

1…タンク 1a…タンク底板 1b…開口部 1c…
上蓋 2…ボールバルブ 3…ホッパー 4…粉粒体排
出路 5…弁体 5a…ガイド板 5b…下側傾斜面
5c…気体噴出孔 6…弁棒 6a…気体導入通路 7
…ハンドル 7a…弁開度目盛り付きハンドル支持部材
8…ゴム製シール部材 9…弁部噴出気体供給管 1
0…フレキシブルチューブ 11…粉粒体加圧用気体供
給管 12…輸送配管 21…タンク 21aA ,21
B ,21aC ,21aD …タンク底板 21c…上蓋
22…ボールバルブ 24A,24B,24C,24
D…粉粒体排出路 25A,25B,25C,25D…
弁体 26A,26B,26C,26D…弁棒 27
A,27B,27C,27D…弁体駆動装置 29A,
29B,29C,29D…弁部噴出気体供給管 31…
粉粒体加圧用気体供給管 32A,32B,32C,3
2D…輸送配管 M…粉粒体
Reference Signs List 1 tank 1a tank bottom plate 1b opening 1c
Upper lid 2 ... Ball valve 3 ... Hopper 4 ... Pulverized material discharge path 5 ... Valve 5a ... Guide plate 5b ... Lower inclined surface
5c: gas ejection hole 6: valve stem 6a: gas introduction passage 7
… Handle 7a… Handle support member with valve opening scale 8… Rubber seal member 9… Valve ejection gas supply pipe 1
0 ... flexible tube 11 ... granular material pressurizing gas supply pipe 12 ... transporting pipe 21 ... tank 21a A, 21
a B , 21a C , 21a D ... tank bottom plate 21c ... top cover 22 ... ball valve 24A, 24B, 24C, 24
D: Powder discharge path 25A, 25B, 25C, 25D ...
Valve body 26A, 26B, 26C, 26D ... Valve stem 27
A, 27B, 27C, 27D ... valve body driving device 29A,
29B, 29C, 29D ... valve part ejection gas supply pipe 31 ...
Gas supply pipe for powder pressurization 32A, 32B, 32C, 3
2D… Transport piping M… Powder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 開口部が設けられたタンク底板を有し、
粉粒体を収容するタンクと、このタンクに下方で連接す
る粉粒体排出路と、前記開口部の開口面積を調節すべく
前記タンク内に昇降自在に設けられ、かつ、その内部よ
り下方に向けて気体を噴出させる複数の気体噴出孔を有
した弁体と、前記粉粒体排出路に連結され、気体源より
供給される輸送気体に前記開口部における前記弁体との
間隙を流下した粉粒体を混入して気体輸送する輸送配管
と、前記弁体にその複数の気体噴出孔から噴出させる気
体を供給する弁部噴出気体供給管路と、を備えたことを
特徴とする気体流による粉粒体輸送装置。
A tank bottom plate provided with an opening;
A tank for accommodating the granular material, a granular material discharge path connected to the lower part of the tank, and a vertically movable member provided in the tank to adjust an opening area of the opening, and a lower part than the inside thereof. A valve body having a plurality of gas ejection holes for ejecting gas toward the valve body, and connected to the powdery material discharge path, and a transport gas supplied from a gas source flows down a gap between the valve body at the opening at the opening. A gas flow, comprising: a transportation pipe for mixing and transporting gas by mixing powder and granules; and a valve section ejection gas supply pipe for supplying gas ejected from the plurality of gas ejection holes to the valve element. By granular material transport equipment.
【請求項2】 前記タンクに収容された粉粒体を下方へ
加圧する気体を前記タンク内に導入する粉粒体加圧用気
体供給管を備えた請求項1記載の気体流による粉粒体輸
送装置。
2. The method according to claim 1, further comprising a gas supply pipe for pressurizing the granular material contained in the tank to introduce a gas for compressing the granular material downward into the tank. apparatus.
JP21098896A 1996-08-09 1996-08-09 Powder and grain conveying system in gaseous flow Withdrawn JPH1053331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21098896A JPH1053331A (en) 1996-08-09 1996-08-09 Powder and grain conveying system in gaseous flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21098896A JPH1053331A (en) 1996-08-09 1996-08-09 Powder and grain conveying system in gaseous flow

Publications (1)

Publication Number Publication Date
JPH1053331A true JPH1053331A (en) 1998-02-24

Family

ID=16598465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21098896A Withdrawn JPH1053331A (en) 1996-08-09 1996-08-09 Powder and grain conveying system in gaseous flow

Country Status (1)

Country Link
JP (1) JPH1053331A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936752B1 (en) * 2008-03-19 2010-01-15 한국유리공업주식회사 Desiccant supply store container
JP2012076927A (en) * 2010-09-30 2012-04-19 General Electric Co <Ge> Feed vessel and system for pneumatically conveying solid particles
US8458351B2 (en) 2006-02-13 2013-06-04 International Business Machines Corporation Substituting content for undesirable content in a web browser
CN111453447A (en) * 2020-04-10 2020-07-28 南京玻璃纤维研究设计院有限公司 Online rock wool waste cotton recovery device
CN111977404A (en) * 2020-06-29 2020-11-24 崔义 Be applied to chemical industry's reaction raw materials's conveying equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8458351B2 (en) 2006-02-13 2013-06-04 International Business Machines Corporation Substituting content for undesirable content in a web browser
KR100936752B1 (en) * 2008-03-19 2010-01-15 한국유리공업주식회사 Desiccant supply store container
JP2012076927A (en) * 2010-09-30 2012-04-19 General Electric Co <Ge> Feed vessel and system for pneumatically conveying solid particles
US9266688B2 (en) 2010-09-30 2016-02-23 General Electric Company Feed vessels and systems for pneumatically conveying solid particles
CN111453447A (en) * 2020-04-10 2020-07-28 南京玻璃纤维研究设计院有限公司 Online rock wool waste cotton recovery device
CN111977404A (en) * 2020-06-29 2020-11-24 崔义 Be applied to chemical industry's reaction raw materials's conveying equipment
CN111977404B (en) * 2020-06-29 2022-02-22 新疆国泰新华化工有限责任公司 Be applied to chemical industry's reaction raw materials's conveying equipment

Similar Documents

Publication Publication Date Title
US6523721B1 (en) Powder and granular material supply system for closed system
US6354465B2 (en) Protable device for accurately metering and delivering cohesive bulk solid powders
JPS62100321A (en) Transport system of granular material
US6012875A (en) Apparatus for dispensing granular material
US4560094A (en) Particulate solid storage container and transport method
US3237805A (en) Method and apparatus for dispensing particulate material
JPH1053331A (en) Powder and grain conveying system in gaseous flow
US4570552A (en) Process and apparatus for delivering carbon material to a furnace
KR100923228B1 (en) Pulveizer Coal Quantitative Transfer System
US3357748A (en) Material feed regulator
US6474398B1 (en) Apparatus for introducing granular mold flux onto the top of a slab being cast within a continuous casting mold
IE52827B1 (en) Feeder/distributor apparatus for granular material
JPS631631A (en) Pressure type powder quantitative feeder
CN111011412A (en) Flour conveying and kneading system
KR102096755B1 (en) Powder Feeding Apparatus transferred by Gas including Breaking Nozzle in order to improve the feeding efficiency
JP2722678B2 (en) Distribution method in high concentration transport of granular material
JPS5822216A (en) Conveying device for high pressure gas containing pulverous material
GB2116064A (en) Improvements in or relating to particle sizing systems for fluidised beds
KR19980043358A (en) Blowing amount control device in spectroscopic blowing device
JPH10109754A (en) Hopper for powder and grain
KR200264856Y1 (en) Spectroscopic stone blowing device with spectroscopic stone discharge amount control device
JP2869507B2 (en) Conveyor with coarse classifier
JPS6225471Y2 (en)
SU1440338A3 (en) Pneumatic loading arrangement for feeding pulverized or granulated material into metal melts
JPH09236246A (en) Clog releasing method for powder conveyer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104