JPS6058645A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6058645A
JPS6058645A JP58167741A JP16774183A JPS6058645A JP S6058645 A JPS6058645 A JP S6058645A JP 58167741 A JP58167741 A JP 58167741A JP 16774183 A JP16774183 A JP 16774183A JP S6058645 A JPS6058645 A JP S6058645A
Authority
JP
Japan
Prior art keywords
metal
semiconductor element
substrate
electrode
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58167741A
Other languages
Japanese (ja)
Other versions
JPS644341B2 (en
Inventor
Kenzo Hatada
畑田 賢造
Minoru Hirai
平井 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58167741A priority Critical patent/JPS6058645A/en
Publication of JPS6058645A publication Critical patent/JPS6058645A/en
Publication of JPS644341B2 publication Critical patent/JPS644341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Abstract

PURPOSE:To facilitate the installation of metal on an element electrode by a method wherein projections are formed on the surface of an insulation substrate at fixed intervals, the gaps among them are filled with an insulation substance, metallic projections are formed on the projections by electrolytic plating, and these projections are transcribed by exfoliation on the electrode provided on the surface of a semiconductor element. CONSTITUTION:Many projections 51 are formed on the surface of a base 40 made of glass, ceramic, resin, etc. at fixed intervals, and recesses 52 positioned among them are filled with the insulation substance 53 such as SiO2, Si3N4, and polyimide resin. The metallic projections 22 are adhered on the projections 51, respectively, by electrolytic plating, and made to abut against the electrode 23 provided on one surface of the semiconductor element 24 and then pressed by heating, and oxides and the like produced on the surface of the projections 22 are made to flow to the direction shown by arrows 54, resulting in obtaining an electrode of secure contact with the electrode 23 and the projection 22. Such a manner enables the commitment of processes up to the formation of the projections 22 to professional manufacturers, leading to the reduction of the cost for electrode installation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体素子等の電極端子上に金属突起を一括
接合できる形成方法に関し、電極端子上に何らの処理を
することなしに、金属突起を一括して接合するものであ
って、著しるしく簡便な工程により、確実な接合を、高
信頼度で実現できるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of forming metal protrusions on electrode terminals of semiconductor devices, etc., by which the metal protrusions can be bonded all at once on electrode terminals, without performing any processing on the electrode terminals. It is a method for joining all at once, and it is possible to achieve reliable joining with high reliability through an extremely simple process.

従来例の構成とその問題点 近年、IC,LSI等の半導体素子は各種の家庭電化製
品、産業用機器の分野へ導入されているこれら家庭電化
製品、産業用機器は省資源化、省電力化のためにあるい
は利用範囲を拡大させるために、小型化、薄型化のいわ
ゆるポータプル化が促進されてきている。
Conventional configurations and their problems In recent years, semiconductor devices such as ICs and LSIs have been introduced into various home appliances and industrial equipment fields. In order to expand the scope of use or to expand the scope of use, so-called portable devices, which are smaller and thinner, are being promoted.

半導体素子においてもポータプル化に対応するために、
パッケージングのlJS型化、薄型化が要求されてきて
いる。拡散工程、電極配線工程の終了したシリコンスラ
イスは半導体素子単位のチップに切断され、チップの周
辺に設けられたアルミ電極端子から外部端子へ電極リー
ドを取出して取扱いやすくしまた機械的保護のだめにパ
ッケージングされる。通常、これら半導体素子のパッケ
ージングにはDIL 、チップキャリヤ、フリップチッ
プ、テープキャリヤ方式等が用いられているが、DIL
、チップキャリヤの如きは半導体素子の電極端子から外
部端子へは26〜36μφのAuまたはAlの極細線で
一本づつ順次接続するものである。このために、半導体
素子上の電極端子数が増大するにしたがい、接続の箇所
の信頼度は低下するばかりか、外部端子の数もこれにし
だがって一定間隔で増大するため、パッケージングの太
きさも増大する。
In order to respond to the portupling of semiconductor devices,
There is a growing demand for packaging to be more compact and thinner. After the diffusion process and electrode wiring process have been completed, the silicon slice is cut into chips for each semiconductor element, and electrode leads are taken out from the aluminum electrode terminals provided around the chip to external terminals for easy handling and packaging for mechanical protection. will be processed. Normally, DIL, chip carrier, flip chip, tape carrier methods, etc. are used for packaging these semiconductor devices.
, chip carriers, etc., are connected one by one from the electrode terminals of the semiconductor element to the external terminals using ultrafine Au or Al wires of 26 to 36 .mu..phi. For this reason, as the number of electrode terminals on a semiconductor device increases, not only does the reliability of the connection points decrease, but the number of external terminals also increases at regular intervals, resulting in an increase in packaging thickness. The stiffness also increases.

メモリーやマイクロコンピュータ用のLSIと連結して
いるIloの如きLSIでは機能数の増大とともに、電
極端子数も60〜100端子と著しるしく増大してしま
い、前述した如く、パッケージングの大きさは、わずか
数10−の半導体素子を取扱うのに数10cmと大きく
なってしまう。
In LSIs such as Ilo, which are connected to LSIs for memory and microcomputers, as the number of functions increases, the number of electrode terminals also increases significantly to 60 to 100 terminals, and as mentioned above, the size of the packaging increases. However, in order to handle only a few tens of semiconductor elements, the size becomes several tens of centimeters.

このことは小型化、薄型化の機器の促進を妨げるもので
あった。
This has hindered the promotion of smaller and thinner devices.

一方、接続箇所の信頼性が高く、小型化、薄型化のパッ
ケージングを提供できるものとして、7リツプチツプテ
一プキヤリヤ方式がある。チップキャリヤやテープキャ
リヤ方式による半導体素子のパッケージングは半導体素
子上の電極端子上にバリヤメタルと呼ばれる多層金属膜
を設け、さらに、この多層金属膜上に電気メツキ法によ
り金属突起を設ける。フリップチップ方式の場合、前記
金属突起は半田材で構成されておシ、金属突起と回路基
板上の配線パターンを位置合せし、半田リフローさせる
ことによシ一括接合するものである。
On the other hand, there is a 7-lip chip carrier system that has high reliability at connection points and can provide smaller, thinner packaging. In packaging a semiconductor element using a chip carrier or tape carrier method, a multilayer metal film called a barrier metal is provided on the electrode terminals on the semiconductor element, and metal protrusions are further provided on this multilayer metal film by electroplating. In the case of the flip-chip method, the metal protrusions are made of a solder material, and the metal protrusions and the wiring patterns on the circuit board are aligned and bonded together by solder reflow.

一方、フィルムキャリヤ方式の場合は、一定幅の長尺の
ポリイミドテープ上に金属リード端子を設け、半導体素
子の電極端子上の前記金属突起とリード端子とを、電極
端子数に無関係に同時に一括接続するものである。した
がって、両方の方式においては一本づつ電極端子に極細
線を接続する前述のワイヤボンディング方式と比較して
、接続箇所の信頼度は高くなり、かつ半導体素子の電極
端子に設けられるバンプ(金属突起)およびIJ −ド
峠子の破填強¥f≠E 40 a N P本あスにめL
半導体素子をバンク又はリード端子のみで保持できる。
On the other hand, in the case of the film carrier method, metal lead terminals are provided on a long polyimide tape of a constant width, and the metal protrusions on the electrode terminals of the semiconductor element and the lead terminals are connected simultaneously regardless of the number of electrode terminals. It is something to do. Therefore, in both methods, the reliability of the connection points is higher than in the wire bonding method described above, in which ultra-fine wires are connected to the electrode terminals one by one. ) and IJ-Do Togeko's breaking strength ¥f≠E 40 a N P Hon Asu Nime L
Semiconductor elements can be held only by banks or lead terminals.

さらにこのために前記半導体素子上の表面に薄い保護コ
ートをするのみで機器の実装が可能となり、薄型、小型
化したパッケージングとして利用できる。
Furthermore, for this reason, devices can be mounted by simply applying a thin protective coat to the surface of the semiconductor element, and it can be used as thinner and smaller packaging.

このように、フリップチップ、テープキャリヤ方式は信
頼性、小型、薄型のパッケージング、さらにテープキャ
リヤ方式の場合は長尺のテープ状態で取扱うことができ
るから、半導体素子を実装する生産現場では操作性が抜
群である等の数々の特徴を有するものである。しかしな
がら、このフリップチップ、テープキャリヤ方式の問題
点は半導体素子の電極端子上への金属突起物の形成にあ
る。すなわち、小型、薄型化したポータプル化した機器
を生産するのはテレビ、ラジオ、ビデオ等のアセンブリ
工場である。これらアセンブリ工場では機器に組込むた
めの半導体素子を半導体メーカから購入しなければなら
ない。この時に問題になるのが、半導体メーカにおいて
、全ての半導体素子上に金属突起を形成できる実力ある
いは設備を必らずしも有していないという現実がある。
In this way, flip-chip and tape carrier methods offer reliability, small size, and thin packaging, and in the case of tape carrier methods, they can be handled in the form of long tapes, making them easy to operate at production sites where semiconductor devices are mounted. It has many features such as outstanding performance. However, a problem with this flip chip and tape carrier method is the formation of metal protrusions on the electrode terminals of the semiconductor device. In other words, it is assembly factories for televisions, radios, videos, etc. that produce portable devices that are smaller and thinner. These assembly factories must purchase semiconductor elements from semiconductor manufacturers to be incorporated into equipment. The problem at this time is that semiconductor manufacturers do not necessarily have the ability or equipment to form metal protrusions on all semiconductor elements.

せっかくの小型化、薄型化のパッケージング技術もアセ
ンブリー工場における機器の商品的魅力を発揮すること
ができない。
Even with packaging technology that makes it smaller and thinner, it is not possible to demonstrate the commercial appeal of equipment in assembly plants.

また、仮に半導体メーカで金属突起物を形成することが
できたとしても次のような問題がある。
Furthermore, even if a semiconductor manufacturer were able to form metal protrusions, there would be the following problems.

まず従来のフリップチップ、テープキャリヤ方式におけ
る半導体素子上に金属突起物を形成する通常の方法につ
いて第1図でのべる。半導体素子1上の保護膜2によっ
て被覆され、一部が開孔、露出している電極端子3上に
バリヤメタル4を形成させる(第1図a)。
First, a conventional method for forming metal protrusions on a semiconductor element in a conventional flip-chip or tape carrier method will be described with reference to FIG. A barrier metal 4 is formed on the electrode terminal 3 which is covered with the protective film 2 on the semiconductor element 1 and is partially opened and exposed (FIG. 1a).

バリヤメタル4はOr−Cu、Ti−Pa 、 Ni 
−Cu等の多層蒸着膜からなり、高真空度中で連続蒸着
して形成するものであって、Cr 、Ti 、 Niの
如き材料は電極端子3との接着力をもつ働きをする。
Barrier metal 4 is Or-Cu, Ti-Pa, Ni
It is made of a multi-layer vapor deposited film of -Cu, etc., and is formed by continuous vapor deposition in a high degree of vacuum, and the materials such as Cr, Ti, and Ni function to have adhesive strength with the electrode terminal 3.

次に半導体素子1の表面に感光性樹脂を全面に塗布し、
電極端子3上のみに開孔5を形成した感光性樹脂パター
ン6を形成させる(第1図b)。
Next, a photosensitive resin is applied to the entire surface of the semiconductor element 1,
A photosensitive resin pattern 6 having openings 5 formed only on the electrode terminal 3 is formed (FIG. 1b).

多層蒸着膜からなるバリヤメタル4をマイナス電極とし
て、電解メッキ処理(例えば7リツプチツプ方式では半
田材をフィルムキャリヤ方式ではAu材)すれば、感光
性樹脂パターン6の開孔した領域5のみに第1図Cの如
く金属突起7を所望の高さに形成することができる。
If the barrier metal 4 made of a multi-layered vapor deposited film is used as a negative electrode and electrolytic plating is performed (for example, using a solder material in the 7-lip chip method and an Au material in the film carrier method), only the area 5 in which the photosensitive resin pattern 6 has holes will be coated as shown in FIG. The metal protrusion 7 can be formed to a desired height as shown in FIG.

次に感光性樹脂パターン6を除去し、新たに、第2の感
光性樹脂を塗布し、金属突起子の周辺のみに第2の感光
性樹脂パターン8を残存させ(第1図d)、第2の感光
性樹脂ノくターン8をエツチング用マスクとして露出し
ているノくリヤメタルを除去し、不用となった第2の感
光性樹脂ノくターン8も除去すれば第1図eの構造を得
ることができる。フリップチップ方式の場合は、第1図
eの状態で回路基板上の配線パターンと位置合せし、前
記金属突起と、配線パターンとを半田リフローせしめ接
合するものである。フィルムキャリヤ方式の場合には、
完成した半導体素子1上の金属突起7に、ポリイミイド
樹脂9上に形成した金属17−ド10を重ね合せ、治具
11により12のごとく加圧、加熱すれば両者を接合で
きる。金属突起7がAu、金属リード10がSu メッ
キ処理されておれば、加熱、加圧することによりAu 
−Snの共晶物を形成し、接合することができる(第1
図f)cところがこのような従来の工程では、次のよう
なことが問題であった。
Next, the photosensitive resin pattern 6 is removed and a second photosensitive resin is applied anew, leaving the second photosensitive resin pattern 8 only around the metal protrusion (Fig. 1d). If the exposed rear metal is removed using the second photosensitive resin turn 8 as an etching mask and the unnecessary second photosensitive resin turn 8 is also removed, the structure shown in Figure 1e can be obtained. Obtainable. In the case of the flip-chip method, the wiring pattern is aligned with the wiring pattern on the circuit board in the state shown in FIG. 1e, and the metal protrusion and the wiring pattern are joined by solder reflow. In the case of film carrier method,
A metal protrusion 7 formed on a polyimide resin 9 is superimposed on the metal protrusion 7 on the completed semiconductor element 1, and the two can be bonded by applying pressure and heating using a jig 11 as shown at 12. If the metal protrusion 7 is plated with Au and the metal lead 10 is plated with Su, the Au can be plated by heating and pressurizing.
-A eutectic of Sn can be formed and bonded (first
Figure f)c However, in such a conventional process, the following problems were encountered.

■ バリヤメタルが多層金属構造であるために、金属膜
相互間の付着力、さらに金属期間でのバリヤ抵抗の発生
に注意する必要がある。すなわち金属膜相互間の付着力
が弱いと金属リード1oに外力を加えただけで、金属膜
間で剥離あるいはバリヤメタルと突起との剥離が発生し
、実用に期さない。また、同じようにバリヤ抵抗の増大
は半導体素子の本来の電気特性を損なうものである。
(2) Since the barrier metal has a multilayer metal structure, it is necessary to pay attention to the adhesion between the metal films and the occurrence of barrier resistance in the metal layer. That is, if the adhesion between the metal films is weak, simply applying an external force to the metal lead 1o will cause separation between the metal films or separation between the barrier metal and the protrusion, which is impractical. Similarly, an increase in barrier resistance impairs the original electrical characteristics of a semiconductor element.

■ 従来のこのような工程を実施するにあたっては、金
属膜の形成工程、メッキ工程、金属膜のエソチング工程
、フォトエッチ工程と、広範囲の精度の高い工程を必要
とし、その分だけ金属突起を形成するためのコストが上
昇するばかりか、歩留シ低下をまねいてしまう。
■ In order to carry out such a conventional process, a wide range of highly precise processes are required, including a metal film formation process, a plating process, a metal film etching process, and a photoetch process, and the metal projections are formed accordingly. Not only does this increase the cost of doing so, but it also causes a decrease in yield.

■ また、バリヤメタルをエツチングするのにかなシの
危険度の高い薬品を使用するために人体に対しても有害
であり、かつ公害防止にも投資する必要がある。例えば
、Cr のエツチングにはフェリシアン化カリウム、カ
セイソータ゛溶液を用いるし、Ti のエツチングには
HF系の溶液を使わなければならない。
■ Furthermore, since highly dangerous chemicals are used to etch the barrier metal, they are harmful to the human body and require investment in pollution prevention. For example, potassium ferricyanide and caustic sorter solutions must be used for etching Cr, and HF-based solutions must be used for etching Ti.

■ 第1図(f)の如くフィルムキャリヤ方式において
は、金属リード1Qと金属突起7を接合する際に共晶物
13が発生し、共晶物が半導体素子1の表面層にも落下
し、高温共晶物であるから保護膜2にクラックを生じせ
しめ、電極端子3の保護効果を減少し、信頼度の低下が
生じる。
■ In the film carrier method as shown in FIG. 1(f), eutectic 13 is generated when metal lead 1Q and metal protrusion 7 are bonded, and the eutectic also falls on the surface layer of semiconductor element 1. Since it is a high-temperature eutectic, it causes cracks in the protective film 2, reducing the protective effect of the electrode terminal 3 and lowering reliability.

発明の目的 本発明は、従来の7リツプチツフ一フイルムキヤリヤ方
式の前述した問題を一層せしめることのできる新規なる
接合方法を用いた半導体素子への金属^の形成方法を提
供せんとするものである。
OBJECTS OF THE INVENTION The present invention aims to provide a method for forming metal on a semiconductor device using a new bonding method that can further aggravate the above-mentioned problems of the conventional seven-chip one-film carrier method. .

発明の構成 本発明の主な特徴は、半導体素子の電極上に、基板に形
成して金属突起を転写方式により、一括接合形成するこ
とにある。
Structure of the Invention The main feature of the present invention is that metal protrusions formed on a substrate are collectively bonded onto electrodes of a semiconductor element by a transfer method.

実施例の説明 次に本発明の実施例を第2図で説明する。基板21上に
は、例えば電解メッキ法により半導体素子の電極と対応
した位置に金属突起22が複数個形成されている。金属
突起22はAuで形成されるものである。電極23を有
する半導体素子24は、加圧、加熱できるツール26に
吸収され、半導体素子24の電極23と基板21上の金
属突起22を位置合せし、ツール25を矢印26の方向
に下降せしめる(第2図a)。
DESCRIPTION OF THE EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIG. A plurality of metal protrusions 22 are formed on the substrate 21 by, for example, electrolytic plating at positions corresponding to the electrodes of the semiconductor element. The metal protrusion 22 is made of Au. The semiconductor element 24 having the electrode 23 is absorbed by a tool 26 that can be pressurized and heated, the electrode 23 of the semiconductor element 24 and the metal protrusion 22 on the substrate 21 are aligned, and the tool 25 is lowered in the direction of the arrow 26 ( Figure 2 a).

次いで、前記ツール26により圧接し加圧、加熱すれば
、金属突起22は半導体素子24の電極23であるアル
ミ配線側にAu−Aλの合金にて基板21から剥離され
、転写、接合されることになる。この状態を第2図[有
])に示す。
Next, by applying pressure and heating using the tool 26, the metal protrusion 22 is peeled off from the substrate 21 and transferred and bonded to the aluminum wiring side, which is the electrode 23, of the semiconductor element 24 using an Au-Aλ alloy. become. This state is shown in FIG.

金属突起22を半導体素子14の電極13に転写、接合
する際にツール26を単に圧接するのみで転写、接合す
ることもできるし、あるいはまた前記ツール15もしく
は前記基板11側に超音波振動を附加する事により、転
写接合の効率をさらに高める事ができる。
When transferring and bonding the metal protrusion 22 to the electrode 13 of the semiconductor element 14, it is possible to transfer and bond the metal protrusion 22 to the electrode 13 of the semiconductor element 14 by simply pressing the tool 26, or by applying ultrasonic vibration to the tool 15 or the substrate 11 side. By doing so, the efficiency of transfer bonding can be further improved.

前記転写接合する際の圧力は1バンプ当シ少なくとも5
y〜100fi 、温度は1工C(半導体素子)あたり
100℃〜560℃の範囲を選ぶ事ができる。
The pressure during the transfer bonding is at least 5 lbs. per bump.
y~100fi, and the temperature can be selected from a range of 100°C to 560°C per 1 C (semiconductor element).

次に金属突起を転写、接合した半導体素子24をツール
16とともに第2図すの矢印の方向に持上げ、回路基板
またはフィルムキャリヤ方式のリードに接続する方法に
ついて第3図、第4図で説明する。
Next, the method of lifting the semiconductor element 24 with the metal protrusion transferred and bonded together with the tool 16 in the direction of the arrow in FIG. 2 and connecting it to a circuit board or film carrier type lead will be explained with reference to FIGS. 3 and 4. .

回路基板30の配線パターン31と、半導体素子24の
電極23上に接合した金属突起22とを位置合せし、ツ
ール32により半導体素子24を加圧、加熱するかもし
くは超音波振動を附加することにより、金属突起22は
回路基板30の配線パターン31に接合され、第3図の
状態を得るものである。
By aligning the wiring pattern 31 of the circuit board 30 and the metal protrusion 22 bonded to the electrode 23 of the semiconductor element 24, and applying pressure and heat to the semiconductor element 24 with the tool 32, or by applying ultrasonic vibration. , the metal protrusion 22 is joined to the wiring pattern 31 of the circuit board 30 to obtain the state shown in FIG.

すなわち従来の7リツプチツプ方式の構造による接続が
容易に得られる。
That is, a connection using the conventional 7-lip chip structure can be easily obtained.

次にフィルムキャリヤのリードに接続する場合について
第4図でのべる。フィルムキャリヤは、所定の位置に開
孔部を有する長尺のポリイミド樹脂フィルム33上にC
u箔を蝕刻し、Sn メッキ処理を施こしたリード34
が開孔部まで突出しだ構造を有する。
Next, the connection to the leads of the film carrier will be described in FIG. The film carrier is a long polyimide resin film 33 having openings at predetermined positions.
Lead 34 made of etched U foil and subjected to Sn plating treatment
has a structure that protrudes to the opening.

半導体素子24の電極上に転写、接合された金属突起2
2とリード34とを位置合せし、ツール35によって加
圧、加熱せしめる。この時の加圧力は1リード当シ5y
〜100f 、ツールの温度は200℃〜660℃の範
囲が望ましい。ここでリード34と金属突起22とはリ
ード側のSn と金属突起のAu とが共晶合金を形成
し、接合されることになるが、一方、加圧、加熱される
ことによhv−ド34は金属突起22を押しつぶし、半
導体素子24の電極23のアルミ配線との間に新しい接
合面を形成するから、金属突起22と電極23は、さら
に強い接合力を得る事ができる。
Metal protrusion 2 transferred and bonded onto the electrode of semiconductor element 24
2 and the lead 34 are aligned, and the tool 35 applies pressure and heat. The pressing force at this time is 5y per lead.
~100f, and the tool temperature is preferably in the range of 200°C to 660°C. Here, the lead 34 and the metal protrusion 22 are bonded by Sn on the lead side and Au on the metal protrusion forming a eutectic alloy. 34 crushes the metal protrusion 22 and forms a new bonding surface between the electrode 23 of the semiconductor element 24 and the aluminum wiring, so that the metal protrusion 22 and the electrode 23 can obtain stronger bonding force.

なお、前述した実施例は、ツール35のみによって加圧
、加熱する手段について述べたが、ツール35によって
加圧、加熱する一方、半導体素子24の反対面36をも
加熱しても良い。この様な方式においては、ツール35
の圧力、温度を低目に設定できる効果がある。
In the above-mentioned embodiment, the means for applying pressure and heating using only the tool 35 was described, but while applying pressure and heating using the tool 35, the opposite surface 36 of the semiconductor element 24 may also be heated. In such a system, tool 35
This has the effect of allowing the pressure and temperature to be set low.

次に金属突起を形成、剥離させるだめの基板の構成につ
いてのべる。第6図は実施例のひとつである。基板21
の基台40はガラスまたはセラミック、樹脂等の絶縁性
材料で構成され、この表面に、電解メッキ時の導電路を
形成するために、金属膜41が設けられている。金属膜
41は、金属突起22を電解メッキ法によシ容易に形成
できる一方、半導体素子の電極と位置合せし、加圧、加
熱した時に容易に剥離する材料でなければならない。実
験の結果Pd、Pt、ITO,Mo、SuS材等が金属
膜41として適する事が判明した。本発明の基板21の
構造は、金属突起22を形成した後、剥離、転写せしめ
、更に再度メッキ法によシ基台4o上に金属突起22を
形成し、このサイクルを複数回繰返すことができる。し
たがって、メッキ用のマスク材42には耐久性、耐熱性
を有する材料であって、5i02.Si3N4.耐熱性
樹脂(例えばポリイミド樹脂)、高抵抗化したI T 
O、0r203等の膜を用いる事ができる。
Next, we will discuss the structure of the substrate on which metal protrusions are formed and peeled off. FIG. 6 shows one of the embodiments. Substrate 21
The base 40 is made of an insulating material such as glass, ceramic, or resin, and a metal film 41 is provided on its surface to form a conductive path during electrolytic plating. The metal film 41 must be made of a material that allows the metal protrusions 22 to be easily formed by electrolytic plating, while also being easily peeled off when aligned with the electrodes of the semiconductor element, pressurized, and heated. As a result of experiments, it has been found that materials such as Pd, Pt, ITO, Mo, and SuS are suitable for the metal film 41. The structure of the substrate 21 of the present invention is such that after forming the metal protrusions 22, the metal protrusions 22 are peeled off, transferred, and then plated again to form the metal protrusions 22 on the base 4o, and this cycle can be repeated multiple times. . Therefore, the plating mask material 42 is made of a material having durability and heat resistance, and is 5i02. Si3N4. Heat-resistant resin (e.g. polyimide resin), high resistance IT
A film of O, 0r203, etc. can be used.

第6図で基板の他の実施例についてのべる。第6図(a
)において、メッキ用の導電路となる基台Qの表面に金
属突起を形成する所定の位置に凸部51を形成せしめ、
凹部62を凸部61の一部分が突出する様に絶縁性物質
53で埋設せしめる。この様な状態において、導電路4
0を介してメッキすれば、金属突起22は、図で示され
る様に凹部52に形成される。
Another embodiment of the substrate will be described in FIG. Figure 6 (a
), a protrusion 51 is formed at a predetermined position where a metal protrusion is formed on the surface of the base Q, which becomes a conductive path for plating,
The concave portion 62 is filled with an insulating material 53 so that a portion of the convex portion 61 protrudes. In such a state, the conductive path 4
0, the metal protrusion 22 is formed in the recess 52 as shown in the figure.

次に半導体素子24の電極23と金属突起22とを位置
合せし、加圧、加熱せしめれば、金属突起22は導電路
40の凸部51によって、中央部に喰いこまれ、半導体
素子24の電極23に近い側で第6図(b)の如く矢印
54のごとく流動せしめ、この流動によって金属突起2
2の表面に形成されていた酸化物等の接合を弱める物質
は除去され、新鮮な電極表面と金属突起とが接触する事
になるから、よシ強い接合力を得る事ができる。
Next, when the electrode 23 of the semiconductor element 24 and the metal protrusion 22 are aligned, pressurized, and heated, the metal protrusion 22 is bitten into the center by the convex part 51 of the conductive path 40, and the metal protrusion 22 is bitten into the center part of the semiconductor element 24. The metal protrusion 2 is caused to flow in the direction of the arrow 54 as shown in FIG. 6(b) on the side near the electrode 23.
Substances that weaken the bond, such as oxides, that were formed on the surface of the electrode 2 are removed, and the fresh electrode surface comes into contact with the metal protrusion, making it possible to obtain a stronger bond.

以上のべた方法により、著しるしく簡単で、かつ安価に
半導体素子の電極に金属突起を接合形成することができ
る。
By the method described above, metal protrusions can be bonded to electrodes of semiconductor elements in an extremely simple and inexpensive manner.

次に以上の方法を用いた場合についてのべる。Next, we will discuss the case using the above method.

■ 従来のノリツブチップやフィルムキャリヤ方式の接
合は半導体素子上にバリヤメタルが多層金属膜で構成さ
れるために、多層膜相互間の付着力、バリヤ抵抗の発生
等が問題となる。しかしながら本発明の場合、金属突起
と半導体素子上の電極配線間に介在する金属は金属突起
のみで構成できるから、従来問題となった蒸着膜間の剥
離やバリヤ抵抗の発生がない。さらに接合部分が、全て
合金化した状態とできるため、接合部分の強度が高く、
かつバリヤ抵抗も著しく小さくでき信頼性も向上する。
(2) In the conventional Noritsu chip and film carrier type bonding, the barrier metal on the semiconductor element is composed of a multilayer metal film, which causes problems such as adhesion between the multilayer films and the occurrence of barrier resistance. However, in the case of the present invention, since the metal interposed between the metal protrusion and the electrode wiring on the semiconductor element can be composed only of the metal protrusion, there is no separation between deposited films or occurrence of barrier resistance, which has been a problem in the past. Furthermore, since all the joints can be made into an alloyed state, the strength of the joints is high,
Moreover, barrier resistance can be significantly reduced and reliability can be improved.

■ また、本発明の方法の場合、従来のフリップチップ
やフィルムキャリヤ方式に比較して、金属突起を形成す
るにあたり、バリヤメタルの如き多層膜を形成する工程
、これを所望の形状に形成するだめのフォトリソ工程、
前記多層膜をエツチング除去する工程等が不必要となる
ばかりか、材料費も削除できるのでよシ安価で経済的な
工程を実現できる。
■ Also, in the case of the method of the present invention, compared to conventional flip-chip and film carrier methods, when forming metal protrusions, there is a process of forming a multilayer film such as a barrier metal, and a process of forming this into a desired shape. photolithography process,
Not only does the process of etching and removing the multilayer film become unnecessary, but also the cost of materials can be eliminated, making it possible to realize a much cheaper and more economical process.

■ さらに多層膜であるバリヤメタルが不必要でありか
つ、バリヤメタルのエツチングが不必要であるから、こ
れらバリヤメタルをエツチングする際に用いる溶液の処
理が不必要となる。
(2) Moreover, since the barrier metal, which is a multilayer film, is unnecessary and the etching of the barrier metal is unnecessary, there is no need to treat the solution used when etching these barrier metals.

例えばバリヤメタルの一部がCr の如き材料で構成さ
れだとすれば、Or のエツチング溶液はフェリシアン
化カリウム、カセイソーダ等のいわゆる公害物質を用い
ることになるが、本発明の構成では公害の心配がない。
For example, if a part of the barrier metal is made of a material such as Cr, the Or etching solution would use so-called polluting substances such as potassium ferricyanide and caustic soda, but with the structure of the present invention, there is no concern about pollution.

■ 半導体素子上に金属突起を形成する従来の構成では
、電気的特性、外観特性の不良となる半導体素子上にも
金属突起を形成するから、金属突起の形成工程の価格が
高くなるばかりか、価格そのものが半導体素子の歩留り
に影響されることになる。本発明の方法の場合は良品の
半導体素子のみに金属突起を接合する方法であるから、
材料費や工程の無駄がなく、経済的効果が犬である。
■ In the conventional configuration in which metal protrusions are formed on the semiconductor element, the metal protrusions are also formed on the semiconductor element, which causes poor electrical and appearance characteristics, which not only increases the cost of the process of forming the metal protrusions, but also increases the cost of the process of forming the metal protrusions. The price itself is affected by the yield of semiconductor devices. In the case of the method of the present invention, metal protrusions are bonded only to non-defective semiconductor elements, so
There is no waste in material costs or processes, and the economical effects are outstanding.

■ 従来のフィルムキャリヤ方式では、フィルムテープ
は専門の製造メーカで供給することができるが、半導体
素子上に多層のバリヤメタルを介して金属突起を形成す
る工程は、IC。
■ In the conventional film carrier method, the film tape can be supplied by a specialized manufacturer, but the process of forming metal protrusions on the semiconductor element through multilayer barrier metal is difficult for IC.

LSIを最も多く使用する通常のアセンブリ工場では実
施できない。金属突起を形成するためには半導体の製造
と同様な雰囲気と設備を必要とする。すなわち、半導体
素子上に多層バリヤメタルを介して金属突起を形成する
ためには蒸着工程、フォトエッチ工程、メッキ工程、エ
ツチング除去、水洗洗浄工程等を特徴とする特に歩留り
を左右するフォトエッチ工程、蒸着工程、水洗洗浄工程
は半導体の製造に用いるクリーンルームや設備が必要で
ある。これらの工程を所有するためには膨大な資金投資
と半導体技術が不可欠であるから、電子部品の実装を半
田付けで実施してきたアセンブリ工場では、これら金属
突起工程を有することはフリノプチップやフィルムキャ
リヤ方式による実装が小型化。
This cannot be done in a normal assembly factory where LSIs are most used. Forming metal protrusions requires an atmosphere and equipment similar to those used in semiconductor manufacturing. In other words, in order to form metal protrusions on a semiconductor element through a multilayer barrier metal, a photoetching process, which is characterized by a vapor deposition process, a photoetching process, a plating process, an etching removal process, a water washing process, etc., and which affects the yield, and a vapor deposition process are required. The cleaning process requires clean rooms and equipment used in semiconductor manufacturing. Owning these processes requires a huge amount of financial investment and semiconductor technology, so in assembly factories that have traditionally mounted electronic components by soldering, having these metal protrusion processes is not possible using the Flinop chip or film carrier method. The implementation is smaller.

薄型化の実現性が高いのにもかかわらず困難であった。Although it is highly possible to achieve thinning, it has been difficult.

発明の効果 本発明を用いた方法では、フィルムテープは従来と同様
専門の製造メーカに依託することができる。また金属突
起の形成は単に指定した基板上にメッキ処理するのみで
あるから、メッキ自体の付着強度については問題視する
必要がない。何故ならば、金属突起は半導体素子の電極
上に転写するのであるから、付着強度は、むしろ弱い方
が良い。
Effects of the Invention In the method using the present invention, the film tape can be outsourced to a specialized manufacturer as in the past. Furthermore, since the metal protrusions are simply formed by plating on a designated substrate, there is no need to consider the adhesion strength of the plating itself. This is because the metal protrusions are transferred onto the electrodes of the semiconductor element, so it is better for the adhesion strength to be weaker.

したがって、通常のメッキ専門の製造メーカに依託加工
することができる。更にまた、本発明の基板は繰返し再
生ができるからよシ一層実装コストを安価にできる。本
発明の方法を用いれば、このようにフィルムテープ、金
属突起を形成した基板を専門の製造メーカに依託できる
から、従来のフリップチップやテープキャリヤ方式の如
く自社内で設備、技術を有する必要がなく、自社内では
単に加熱、加圧するいわゆるボンダーのみを準備すれば
良い。アセンブリ工場では電極配線の終了した良品の半
導体素子を入手し、前記ボンダーで金属突起を転写し、
そして、半導体素子の電極配線上に接合し、依託加工し
たフィルムテープに接続するか直接回路基板の配線パタ
ーン上に接合するだけで良いから、自由に薄型、小型の
商品設計ができる等の効果を有するものである。
Therefore, processing can be commissioned to a manufacturer specializing in plating. Furthermore, since the substrate of the present invention can be repeatedly recycled, the mounting cost can be further reduced. By using the method of the present invention, it is possible to entrust the production of film tapes and substrates with metal protrusions to specialized manufacturers, which eliminates the need to have in-house equipment and technology, unlike conventional flip-chip and tape carrier methods. Instead, in-house companies only need to prepare a so-called bonder that simply heats and pressurizes the product. At the assembly factory, we obtain a good quality semiconductor element with electrode wiring completed, transfer the metal protrusions using the bonder,
Then, all you have to do is bond it to the electrode wiring of the semiconductor element, connect it to a commissioned film tape, or directly bond it to the wiring pattern of the circuit board, so you can freely design products that are thin and compact. It is something that you have.

以上のように、本発明は半導体素子等の電子部品の組立
、実装に工業的にすぐれた価値を発揮するものである。
As described above, the present invention exhibits excellent industrial value in assembling and mounting electronic components such as semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は従来のノリツブチップやフィル
形成方法を示す工程断面図、第3図は金属突起物を有す
る半導体素子を7リツプチツプ方式で回路(b)は本発
明の金属突起を形成する基板の断面図である。 21・・・・・・基板、22・・・・・・金属突起、2
3・・・・・・電極、24・・・・・・半導体素子、2
5・・・・・・ツール、3゜・・・・・・回路基板、3
1・・・・・・配線パターン、33・・・・・・ポリイ
ミド樹脂、34・・・・・・リード、40・・・・・・
基台。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図 0 第6図 (a) (b)
1(a) to 1(f) are process cross-sectional views showing the conventional Noribut chip and fill forming method, FIG. 3 is a 7-lip chip method for forming a semiconductor element having metal protrusions, and circuit (b) is a circuit using the metal protrusions of the present invention. FIG. 21...Substrate, 22...Metal protrusion, 2
3... Electrode, 24... Semiconductor element, 2
5...Tool, 3゜...Circuit board, 3
1...Wiring pattern, 33...Polyimide resin, 34...Lead, 40...
Base. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5 Figure 0 Figure 6 (a) (b)

Claims (1)

【特許請求の範囲】 (1)基板上に形成された金属突起を前記半導体素子上
の電極取出し領域に圧接し、前記基板上の金属突起を前
記基板上から剥離、転写せしめ、前記半導体素子上の電
極取出し領域に接合することを特徴とする半導体装置の
製造方法。 (2)金属突起を形成するための基板が、前記半導体素
子の電極取出し領域に対応する位置にメツキー用の開孔
パターンを有し、前記開孔パターンに前記金属突起を形
成せしめ、前記半導体素子上の電極取出し領域に転写、
接合せしめた後、前記基板のメッキ用開孔パターンに再
度メッキ処理をし、金属突起を形成することを特徴とす
る特許請求の範囲第1項記載の半導体装置の製造方法。 (3)半導体素子の電極取出し領域に基板上の金属突起
を転写、接合せしめる際、加圧、加熱することを特徴と
する特許請求の範囲第1項轡記載の半導体装置の製造方
法。 (4)半導体素子の電極取出し領域に基板上の金属突起
を転写、接合せしめる際、超音波振動を附加することを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。 (6)基板上に形成された金属突起を前記半導体素子上
の電極取出し領域に圧接し、前記基板上の金属突起を前
記基板上から剥離、転写せしめ、前記半導体素子上の電
極取出し領域に接合する工程と、導体と前記半導体素子
の金属突起を位置合せして接合することを特徴とする半
導体装置の製造方法。 (6)導体が回路配線パターンであることを特徴とする
特許請求の範囲第5項記載の半導体装置の製造方法。 (力 導体が、長尺の絶縁フィルム上に形成した導体リ
ードもしくは長尺の導体フィルムに形成したり−ドよシ
なることを特徴とする特許請求の範囲第6項記載の半導
体装置の製造方法。
Scope of Claims: (1) A metal protrusion formed on a substrate is pressed into contact with an electrode extraction area on the semiconductor element, and the metal protrusion on the substrate is peeled off and transferred from the substrate, and the metal protrusion on the substrate is peeled off and transferred onto the semiconductor element. 1. A method of manufacturing a semiconductor device, the method comprising: bonding to an electrode extraction region of the semiconductor device. (2) A substrate for forming metal protrusions has an opening pattern for a mesh key at a position corresponding to an electrode extraction area of the semiconductor element, and the metal protrusion is formed in the opening pattern, and the semiconductor element Transferred to the upper electrode extraction area,
2. The method of manufacturing a semiconductor device according to claim 1, wherein after the bonding, the plating hole pattern of the substrate is plated again to form metal protrusions. (3) The method for manufacturing a semiconductor device according to claim 1, wherein pressure and heat are applied when transferring and bonding the metal protrusions on the substrate to the electrode extraction area of the semiconductor element. (4) The method for manufacturing a semiconductor device according to claim 1, wherein ultrasonic vibration is applied when transferring and bonding the metal protrusion on the substrate to the electrode extraction area of the semiconductor element. (6) Pressing the metal protrusion formed on the substrate to the electrode extraction area on the semiconductor element, peeling off and transferring the metal protrusion on the substrate from the substrate, and bonding to the electrode extraction area on the semiconductor element. A method for manufacturing a semiconductor device, comprising: aligning and bonding a conductor and a metal protrusion of the semiconductor element. (6) The method for manufacturing a semiconductor device according to claim 5, wherein the conductor is a circuit wiring pattern. (The method for manufacturing a semiconductor device according to claim 6, wherein the force conductor is formed on a conductor lead formed on a long insulating film or on a long conductive film. .
JP58167741A 1983-09-12 1983-09-12 Manufacture of semiconductor device Granted JPS6058645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167741A JPS6058645A (en) 1983-09-12 1983-09-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167741A JPS6058645A (en) 1983-09-12 1983-09-12 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6058645A true JPS6058645A (en) 1985-04-04
JPS644341B2 JPS644341B2 (en) 1989-01-25

Family

ID=15855253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167741A Granted JPS6058645A (en) 1983-09-12 1983-09-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6058645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081520A (en) * 1989-05-16 1992-01-14 Minolta Camera Kabushiki Kaisha Chip mounting substrate having an integral molded projection and conductive pattern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869471A (en) * 1971-12-22 1973-09-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869471A (en) * 1971-12-22 1973-09-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081520A (en) * 1989-05-16 1992-01-14 Minolta Camera Kabushiki Kaisha Chip mounting substrate having an integral molded projection and conductive pattern

Also Published As

Publication number Publication date
JPS644341B2 (en) 1989-01-25

Similar Documents

Publication Publication Date Title
JPS6231819B2 (en)
KR900008665B1 (en) A method for manufacturing semiconductor device
JP2000022044A (en) Semiconductor device and its manufacture
JPH0332914B2 (en)
JPH02246335A (en) Bump structure for reflow bonding of ic device
JPS6058645A (en) Manufacture of semiconductor device
JPH088293A (en) Structure for connecting electronic parts and connection method therefor
JPS636850A (en) Manufacture of electronic component
JPH09252003A (en) Bump forming method and manufacturing method of semiconductor device having bumps
JPS61210649A (en) Manufacture of semiconductor device
JPH09306949A (en) Tape automated bonding to composite bumps
JPS644342B2 (en)
JPH06177315A (en) Multi-layered lead frame
JPS61212034A (en) Manufacture of semiconductor device
JPS5824014B2 (en) Manufacturing method of mounting body
JPH0158863B2 (en)
JP2002289642A (en) Semiconductor device and manufacturing method thereof, bonding tool, circuit substrate and electronic appliance
JPH0316146A (en) Semiconductor device
JP2005045319A (en) Method of manufacturing small-sized electronic component and small-sized electronic component manufactured thereby
JPH0469427B2 (en)
JPS6290939A (en) Semiconductor device
JPH0399448A (en) Inner lead bonding method
JPH10303254A (en) Tape carrier for mounting semiconductor component and semiconductor device using the tape carrier
JPH0685127A (en) Metal foil laminated film
JPH0129061B2 (en)