JPS6058592B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6058592B2
JPS6058592B2 JP53122596A JP12259678A JPS6058592B2 JP S6058592 B2 JPS6058592 B2 JP S6058592B2 JP 53122596 A JP53122596 A JP 53122596A JP 12259678 A JP12259678 A JP 12259678A JP S6058592 B2 JPS6058592 B2 JP S6058592B2
Authority
JP
Japan
Prior art keywords
polymer
ladder
semiconductor
type
crosslinkable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53122596A
Other languages
Japanese (ja)
Other versions
JPS5550645A (en
Inventor
亮一 須藤
猛志 渡辺
房次 庄子
一成 竹元
中 横野
時男 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53122596A priority Critical patent/JPS6058592B2/en
Publication of JPS5550645A publication Critical patent/JPS5550645A/en
Publication of JPS6058592B2 publication Critical patent/JPS6058592B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は半導体素子の表面安定化に関するものである。[Detailed description of the invention] The present invention relates to surface stabilization of semiconductor devices.

従来、ダイオード、トランジスタ、集積回路など半導体
素子の表面安定化を行なうには、半導体素子を有する半
導体基板上に二酸化シリコン、窒化シリコン、アルミナ
、リンガラス、ポリイミド樹脂などの膜を形成していた
。これらの膜材にはそれぞれ次の問題点があつた。
Conventionally, in order to stabilize the surface of semiconductor elements such as diodes, transistors, and integrated circuits, a film of silicon dioxide, silicon nitride, alumina, phosphorous glass, polyimide resin, or the like has been formed on a semiconductor substrate containing the semiconductor element. Each of these membrane materials had the following problems.

(1)2酸化シリコン、窒化シリコン、アルミナ、リン
ガラスなど無機化合物を気相蒸着する場合、半導体素子
は700〜900℃の高温度にさらされる。
(1) When inorganic compounds such as silicon dioxide, silicon nitride, alumina, and phosphorous glass are vapor-deposited, semiconductor devices are exposed to high temperatures of 700 to 900°C.

このような高温度において半導体素子はキャリヤの再結
合速度および表面準位密度の変 (
ノーの構造を有しており、1、mは整数
、R1はフェニル基、メチル基など比較的に耐熱性の高
い基である。R2は、加熱などの後処理によつてラダー
型オルガノシリコーンポリマー間に架橋結合を形成する
ものなら特に限定はないが、例えば、下記の基がある。
すなわち、R2としては、 \vAIlnvAA 〜■一A υノ
ヒドロキシアルキル基
メルカプトアルキル基
ハロゲン化アルキル基 アミノ
化アルキル基類ル化フェニル基( が低下する。
At such high temperatures, semiconductor devices experience changes in carrier recombination rate and surface state density (
1 and m are integers, and R1 is a relatively heat-resistant group such as a phenyl group or a methyl group. R2 is not particularly limited as long as it forms a crosslink between ladder-type organosilicone polymers by post-treatment such as heating, but examples thereof include the following groups.
That is, as R2, \vAIlnvAA ~■1A υノ
hydroxyalkyl group
mercaptoalkyl group
Halogenated alkyl group, aminated alkyl group, halogenated phenyl group (decreases).

架橋性のラダー型シリコーンポリマーは、ベンゼン、N
−メチルー2−ピロリドン、1.1.1ートリクロロエ
タン、0−ジクロロベンゼン、テトラリン、シクロヘキ
サノン、ベラトロールなどの溶媒に可溶である。
The crosslinkable ladder type silicone polymer contains benzene, N
It is soluble in solvents such as -methyl-2-pyrrolidone, 1.1.1-trichloroethane, 0-dichlorobenzene, tetralin, cyclohexanone, and veratrol.

被膜の形成は、室温近くの温度て半導体基板上に該ラダ
ー型オルガノシリコーンポリマーをスピンナーなどによ
り塗布した後、100〜350℃の温度において溶剤の
乾燥と架橋反応を行なう。
The film is formed by applying the ladder-type organosilicone polymer onto a semiconductor substrate using a spinner or the like at a temperature near room temperature, and then drying the solvent and performing a crosslinking reaction at a temperature of 100 to 350°C.

また、架橋性のラダー型オルガノシリコーンポリマー膜
の加工は、架橋反応を起さない比較的低温度で溶剤乾燥
をした膜について、ホトレジストを使い溶剤エッチング
する方法、および架橋反応を起させた膜材についてホト
レジストを用いてプラズマエッチングする方法などによ
り行なう。
In addition, cross-linkable ladder-type organosilicone polymer membranes can be processed using photoresist and solvent etching methods for membranes that have been solvent-dried at a relatively low temperature that does not cause cross-linking reactions, and membrane materials that have undergone cross-linking reactions. This is done by a method such as plasma etching using photoresist.

該ラダー型オルガノシリコーンポリマーを加熱して得ら
れる架橋結合は、R2の種類によソー定でないが、例え
ば、次のような結合などが推定される。架橋性のラダー
型オルガノシリコーンポリマーは架橋なしでも半導体素
子の表面安定化に使えないわけでないが、半導体素子は
配線の形成工程や、洗浄工程などで多種類の酸、アルカ
リ、有機溶剤に露されるため、これらの薬品類に対する
塗膜の安定性を向上する目的で架橋化が大切である。
The crosslinking bond obtained by heating the ladder-type organosilicone polymer is not determined depending on the type of R2, but the following bonding is presumed, for example. Cross-linkable ladder-type organosilicone polymers can be used to stabilize the surface of semiconductor devices even without cross-linking, but semiconductor devices are exposed to many types of acids, alkalis, and organic solvents during the wiring formation process and cleaning process. Therefore, crosslinking is important in order to improve the stability of the coating film against these chemicals.

架橋化したラダー型オルガノシリコーンポリマーは、例
えば、R1にフェニル基を用いると450〜50(代)
まで分解を生じない程の耐熱性を有し、集積回路などの
製造工程中に加わる熱処理に対して熱的に十分耐え、ま
た、通常行なわれる高温雰囲気(200〜300′C)
における信頼度試験にも耐えることができる。
For example, when a phenyl group is used in R1, the crosslinked ladder type organosilicone polymer has a molecular weight of 450 to 50 (generations).
It has heat resistance that does not cause decomposition, and has sufficient thermal resistance to heat treatment applied during the manufacturing process of integrated circuits, etc., and can be used in high-temperature atmospheres (200 to 300'C) that are normally carried out.
It can also withstand reliability tests.

架橋化したラダー型オルガノシリコーンポリマーは、半
導体素子および金属材料との接着性に優れ、しかも高湿
中に放置してもほとんど低下しない。
Crosslinked ladder-type organosilicone polymers have excellent adhesion to semiconductor elements and metal materials, and hardly deteriorate even when left in high humidity.

架橋化したラダー型オルガノシリコーンポリマーの誘電
率は3以下で、2酸化シリコンの3.8、窒化シリコン
の6.5、アルミナの9.0に比べて低く、しかも高度
の絶縁性を有している。
The dielectric constant of crosslinked ladder-type organosilicone polymer is less than 3, which is lower than 3.8 for silicon dioxide, 6.5 for silicon nitride, and 9.0 for alumina, and it has a high degree of insulation. There is.

そのため、従来の半導体素子より高水準の絶縁特性を有
する素子の製作ができる。以下、本発明を実施例により
説明する。
Therefore, it is possible to manufacture an element having insulation properties of a higher level than that of conventional semiconductor elements. The present invention will be explained below using examples.

実施例1 フェニルトリエトキシシラン98m01%とγ−フェニ
ルアミノプロピルトリエトキシシラン2m01%をジフ
ェニル中KOH触媒により加熱重合せしめ、架橋性のラ
ダー型オルガノシリコーンポリマーを得た。
Example 1 98 m01% of phenyltriethoxysilane and 2 m01% of γ-phenylaminopropyltriethoxysilane were thermally polymerized in diphenyl using a KOH catalyst to obtain a crosslinkable ladder-type organosilicone polymer.

このポリマーの1Wt%ベンゼン溶液とベンゼンとの2
5℃における粘度比は1.7であつた。第1図Aのよう
にコレクタ領域をかねるシリコン基板1に不純物拡散操
作によつてベース領域2とエミッタ領域3を形成した。
A 1 wt% benzene solution of this polymer and 2
The viscosity ratio at 5°C was 1.7. As shown in FIG. 1A, a base region 2 and an emitter region 3 were formed in a silicon substrate 1, which also served as a collector region, by an impurity diffusion operation.

この表面に上記ポリマーのシクロヘキサノン溶液をスピ
ンナによつて塗布し、これを150℃1時間加熱して溶
剤乾燥を行ない、第1図Bのようにポリマー被膜4を得
た。次に、コレクタ領域、ベース領域、エミッタ領域の
電極取出し口の上部に第1図Cのように窓の開いたホト
レジスタ層5を形成する。その後1.!.1−トリクロ
ロエタンにより該ポリマー被膜をエッチングし、第1図
Dのように電極取出し口を形成してホトレジスタ層を除
去し、続いて350℃1時間熱処理を行なつて架橋した
ラダー型オルガノシリコーンポリマー被膜とする。
A cyclohexanone solution of the above polymer was applied to this surface using a spinner, and the solution was heated at 150° C. for 1 hour to dry the solvent, thereby obtaining a polymer film 4 as shown in FIG. 1B. Next, a photoresist layer 5 having windows as shown in FIG. 1C is formed above the electrode extraction openings in the collector region, base region, and emitter region. After that 1. ! .. The polymer film was etched with 1-trichloroethane to form an electrode outlet as shown in Fig. 1D, and the photoresist layer was removed, followed by heat treatment at 350°C for 1 hour to obtain a crosslinked ladder-type organosilicone polymer film. shall be.

さらに、第1図E,Fのようにアルミニウム6の蒸着、
ホトレジスタ7の形成、エッチング、ホトレジスタ除去
を行ない、コレクタ電極8、コレクタ電極9、エミッタ
電極10を形成した。上記のように形成したトランジス
タではリンガラスを用いた同形のトランジスタに比し、
コレクタ・ベース間の逆方向リーク電流が15%減少し
た。実施例2 フェニルトリエトキシシラン95n101%とγ−アミ
ノプロピルトリエトキシシランをジフェニル中でKOH
触媒により加熱重合せしめ、架橋性のラダー型オルガノ
シリコーンポリマーを得た。
Furthermore, as shown in Fig. 1E and F, the vapor deposition of aluminum 6,
A photoresist 7 was formed, etched, and the photoresistor was removed to form a collector electrode 8, a collector electrode 9, and an emitter electrode 10. In the transistor formed as above, compared to the same type transistor using phosphor glass,
Reverse leakage current between collector and base was reduced by 15%. Example 2 Phenyltriethoxysilane 95n101% and γ-aminopropyltriethoxysilane in diphenyl with KOH
Polymerization was carried out by heating using a catalyst to obtain a crosslinkable ladder-type organosilicone polymer.

このポリマーの1%ベンゼン溶液とベンゼンとの25℃
における粘度比は1.5であつた。このポリマーのシク
ロヘキサノン溶液を一般MOS型トランジスタ上にスピ
ンナによつて塗布し、これを350℃1時間加熱して溶
剤乾燥と架橋反応を行ない、膜厚2μの架橋したラダー
型シリコーンポリマー被膜を形成した。
A 1% benzene solution of this polymer and benzene at 25°C.
The viscosity ratio was 1.5. A cyclohexanone solution of this polymer was applied onto a general MOS transistor using a spinner, and heated at 350°C for 1 hour to perform solvent drying and crosslinking reaction, forming a crosslinked ladder-type silicone polymer film with a thickness of 2 μm. .

この被膜は、1.1.1−トリクロロエタン中で5分間
超音波洗浄しても溶解することはなかつた。このように
したMOS型トランジスタは、17(代)で10.00
時間の実装試験を経てもソース・ドレイン電極間のリー
ク電流が安定していた。また、同様の素子を85℃85
%RHの高温高湿中で10.00Vf間の実装試験を経
ても不良率が1%以下であつた。
This coating did not dissolve even after 5 minutes of ultrasonic cleaning in 1.1.1-trichloroethane. The MOS type transistor made in this way is 10.00 in 17 (generations).
Even after hours of mounting tests, the leakage current between the source and drain electrodes remained stable. In addition, a similar element was heated at 85°C.
Even after a mounting test of 10.00 Vf in a high temperature and high humidity environment of %RH, the defective rate remained below 1%.

同様の方法で得たポリイミド樹脂処理のMOSトランジ
スタは17CfC10.0卯時間の実装試験でリーク電
流は安定していたが、80℃85%RHlO.OOO時
間の実装試験で不良率が20%に達した。
A polyimide resin-treated MOS transistor obtained in a similar manner had stable leakage current in a 17CfC 10.0-hour mounting test, but the leakage current was stable at 80°C and 85%RHlO. The defective rate reached 20% in the OOO time mounting test.

実施例3フェニルトリエトキシシラン94m01%とト
リルトリエトキシシラン6n101%をジフェニル中で
KOH触媒により加熱重合せしめ、架橋性のラダー型オ
ルガノシリコーンポリマーを得た。
Example 3 94m01% of phenyltriethoxysilane and 101% of tolyltriethoxysilane 6n were thermally polymerized in diphenyl using a KOH catalyst to obtain a crosslinkable ladder-type organosilicone polymer.

このポリマーの1%ベンゼン溶液とベンゼンとの25℃
における粘度比は2.0であつた。
A 1% benzene solution of this polymer and benzene at 25°C.
The viscosity ratio was 2.0.

第2図A,Bはベース半導体集積回路11を成形樹脂1
2で封止してなる半導体装置である。ボンディングパッ
ト13と外部接続リード14とは細い金属線15で接続
されている。この集積回路11、細い金属線15外部接
続リード14を覆うように該ポリマー溶液を滴下し、3
5C)C3時間の加熱を行ない架橋性したラダー型オル
ガノシリコーン被膜16を形成し、さらにその外側を成
形樹脂で封止した。本装置を85℃85%RHの雰囲気
で”動作試験を試みたところ、ポリイミド樹脂を用いた
場合に比し、約2倍の寿命を示した。実施例4 メチルトリエトキシシラン95m01%とγ−アミノプ
ロピルトリエトキシシラン5m01%をジフェニルエー
テル中でKOH触媒により加熱重合せしめ、架橋性のラ
ダー型オルガノシリコーンポリマーを得た。
Figure 2 A and B show a base semiconductor integrated circuit 11 molded with resin 1.
This is a semiconductor device sealed with 2. The bonding pad 13 and the external connection lead 14 are connected by a thin metal wire 15. The polymer solution was dropped so as to cover the integrated circuit 11, the thin metal wires 15, and the external connection leads 14.
5C) CHeating was performed for 3 hours to form a crosslinkable ladder-type organosilicone film 16, and the outside thereof was further sealed with a molding resin. When this device was subjected to an operation test in an atmosphere of 85°C and 85% RH, it showed a lifespan approximately twice as long as when polyimide resin was used.Example 4 Methyltriethoxysilane 95m01% and γ- 5m01% of aminopropyltriethoxysilane was thermally polymerized in diphenyl ether using a KOH catalyst to obtain a crosslinkable ladder-type organosilicone polymer.

このポリマーの1%ベンゼン溶液とベンゼンとの25℃
における粘度比は1.4であつた。アルミナ基板上に形
成された薄膜回路上に半導・体集積回路を塔載し、半導
体表面ならびに薄膜回路との接続部を覆うように、上記
ポリマーのシクロヘキサン溶液を滴下し、30(代)、
2時間の熱処理をして溶剤乾燥と架橋反応を行なつた。
このポリマー被膜は、回路を半田付け後、1.:.1−
トリクロロエタンによつて回路全体の洗浄を行なつても
安定であつた。この回路に樹脂モールドを施し、加圧浸
水試験を行なつたところ、該ポリマーを使用したものは
ポリイミド樹脂を使用したものより2倍以上の耐久性を
示した。
A 1% benzene solution of this polymer and benzene at 25°C.
The viscosity ratio was 1.4. A semiconductor/integrated circuit is mounted on a thin film circuit formed on an alumina substrate, and a cyclohexane solution of the above polymer is dropped so as to cover the semiconductor surface and the connection part with the thin film circuit.
A heat treatment was performed for 2 hours to perform solvent drying and crosslinking reaction.
This polymer coating is applied after soldering the circuit.1. :. 1-
It remained stable even after cleaning the entire circuit with trichloroethane. When this circuit was molded with a resin and subjected to a pressure water immersion test, the circuit using this polymer showed more than twice the durability as the circuit using polyimide resin.

以上述べたように、本発明によると、耐熱性耐湿性、耐
溶剤性、電気特性、接着性の優れたポリマー被膜によつ
て、半導体表面を容易に安定化することが可能となり、
高信頼性の半導体装置を得ることができる。
As described above, according to the present invention, it is possible to easily stabilize the semiconductor surface with a polymer film that has excellent heat resistance, moisture resistance, solvent resistance, electrical properties, and adhesiveness.
A highly reliable semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Fは、トランジスタを有する半導体基板上に
架橋性のフダー型オルガノシリコーンポリマーによる表
面安定化膜と素子に電極を設ける工程を示したもの、第
2図Aは、半導体集積回路装置の主要断面図、第2図B
は半導体集積回路装置の主要部分を切り開いて示した平
面図である。 1:シリコン基板、2:ベース領域、3:エミッタ領域
、4:ポリマー被膜、5,7:ホトレジスト、6:アル
ミニウム蒸着膜、8,9,10:アルミニウム電極、1
1:半導体集積回路、12:成形樹脂、13:ボンデイ
ングパツド、14:外部接続リード、15:金属線、1
6:ポリマー被膜。
Figures 1A to 1F show the process of providing a surface stabilizing film made of a crosslinkable lidar-type organosilicone polymer on a semiconductor substrate having a transistor and electrodes on the device, and Figure 2A shows a semiconductor integrated circuit device. Main sectional view, Figure 2B
FIG. 2 is a plan view cut away and showing the main parts of the semiconductor integrated circuit device. 1: Silicon substrate, 2: Base region, 3: Emitter region, 4: Polymer film, 5, 7: Photoresist, 6: Aluminum vapor deposited film, 8, 9, 10: Aluminum electrode, 1
1: Semiconductor integrated circuit, 12: Molded resin, 13: Bonding pad, 14: External connection lead, 15: Metal wire, 1
6: Polymer film.

Claims (1)

【特許請求の範囲】 1 半導体表面ならびにその近傍の樹脂を架橋性のラダ
ー型オルガノシリコーンポリマーで構成したことを特徴
とする半導体装置。 2 架橋性のラダー型オルガノポリシリコンポリマーが
、下記一般式で示されるものであることを特徴とする特
許請求の範囲第1項記載の半導体装置。 ▲数式、化学式、表等があります▼ (但し、上式において、l、mは整数、R_1はフェニ
ル基、メチル基、R_2は加熱により架橋結合する基で
ある。
[Scope of Claims] 1. A semiconductor device characterized in that the resin on the semiconductor surface and its vicinity is made of a crosslinkable ladder-type organosilicone polymer. 2. The semiconductor device according to claim 1, wherein the crosslinkable ladder-type organopolysilicon polymer is represented by the following general formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the above formula, l and m are integers, R_1 is a phenyl group or methyl group, and R_2 is a group that crosslinks when heated.
JP53122596A 1978-10-06 1978-10-06 semiconductor equipment Expired JPS6058592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53122596A JPS6058592B2 (en) 1978-10-06 1978-10-06 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53122596A JPS6058592B2 (en) 1978-10-06 1978-10-06 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5550645A JPS5550645A (en) 1980-04-12
JPS6058592B2 true JPS6058592B2 (en) 1985-12-20

Family

ID=14839836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53122596A Expired JPS6058592B2 (en) 1978-10-06 1978-10-06 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS6058592B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914641A (en) * 1982-07-16 1984-01-25 Tokyo Denshi Kagaku Kabushiki Forming method for silicon coating
JPS60117242A (en) * 1983-11-29 1985-06-24 Fujitsu Ltd Micropattern forming material
JPS60119757A (en) * 1983-12-01 1985-06-27 New Japan Radio Co Ltd Manufacture of semiconductor device
JPS60238827A (en) * 1984-05-14 1985-11-27 Nippon Telegr & Teleph Corp <Ntt> Photosensitive resin composition
JPS60254132A (en) * 1984-05-31 1985-12-14 Fujitsu Ltd Pattern forming material
EP0263497B1 (en) * 1986-10-07 1994-05-18 Canon Kabushiki Kaisha Image reading device
JPS63269554A (en) * 1987-04-27 1988-11-07 Mitsubishi Electric Corp Semiconductor device
JP2613128B2 (en) * 1990-10-01 1997-05-21 三菱電機株式会社 Semiconductor device
US5600151A (en) * 1995-02-13 1997-02-04 Mitsubishi Denki Kabushiki Kaisha Semiconductor device comprising a semiconductor substrate, an element formed thereon, and a stress-buffering film made of a silicone ladder resin
US6423772B1 (en) * 1999-07-16 2002-07-23 Institute Of Chemistry, Chinese Academy Of Sciences Organo-bridged ladderlike polysiloxane, tube-like organosilicon polymers, complexes thereof, and the method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017385A (en) * 1959-01-21 1962-01-16 Gen Electric Novel organopolysiloxanes
JPS50110282A (en) * 1974-02-06 1975-08-30
JPS50111198A (en) * 1974-01-28 1975-09-01
JPS5388099A (en) * 1977-01-14 1978-08-03 Japan Synthetic Rubber Co Ltd Methylpolysiloxane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017385A (en) * 1959-01-21 1962-01-16 Gen Electric Novel organopolysiloxanes
JPS50111198A (en) * 1974-01-28 1975-09-01
JPS50110282A (en) * 1974-02-06 1975-08-30
JPS5388099A (en) * 1977-01-14 1978-08-03 Japan Synthetic Rubber Co Ltd Methylpolysiloxane

Also Published As

Publication number Publication date
JPS5550645A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
US4040083A (en) Aluminum oxide layer bonding polymer resin layer to semiconductor device
US4328262A (en) Method of manufacturing semiconductor devices having photoresist film as a permanent layer
EP0043458B1 (en) Process for forming a metallurgy interconnection system
US3673099A (en) Process and composition for stripping cured resins from substrates
JPS6058592B2 (en) semiconductor equipment
US4089704A (en) Removal of RTV silicon rubber encapsulants
US2913358A (en) Method for forming passivation films on semiconductor bodies and articles resulting therefrom
JPS5843453A (en) Etching of polyimide material
US3767490A (en) Process for etching organic coating layers
US4749621A (en) Electronic components comprising polyimide-filled isolation structures
JPS6046826B2 (en) semiconductor equipment
EP0143963B1 (en) Electronic components comprising cured vinyl and/or acetylene terminated copolymers and methods for forming the same
JP3982073B2 (en) Low dielectric constant insulating film forming method
JPS5893240A (en) Semiconductor device and preparation thereof
US3551196A (en) Electrical contact terminations for semiconductors and method of making the same
US4507333A (en) Biphenylene end-capped quinoxaline polymers and their use as insulating coatings for semiconductor devices
JPS62290139A (en) High-temperature resin composition
JPH02100343A (en) Integrated circuit
US3860448A (en) Method of applying silicone passivants to etch moats in mesa device wafers
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
JP2999500B2 (en) Semiconductor device
JPH02103052A (en) Microfabrication process
JPS6348424B2 (en)
JPH01307227A (en) Fine working method
JPS6346576B2 (en)