JPS6058574A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS6058574A
JPS6058574A JP58166500A JP16650083A JPS6058574A JP S6058574 A JPS6058574 A JP S6058574A JP 58166500 A JP58166500 A JP 58166500A JP 16650083 A JP16650083 A JP 16650083A JP S6058574 A JPS6058574 A JP S6058574A
Authority
JP
Japan
Prior art keywords
photodiode
parts
obscure
scintillator
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58166500A
Other languages
Japanese (ja)
Other versions
JPH0319511B2 (en
Inventor
Masao Jinbo
神保 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58166500A priority Critical patent/JPS6058574A/en
Publication of JPS6058574A publication Critical patent/JPS6058574A/en
Publication of JPH0319511B2 publication Critical patent/JPH0319511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20183Arrangements for preventing or correcting crosstalk, e.g. optical or electrical arrangements for correcting crosstalk

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To attain to enhance the image quality of a tomographic image by preventing the lowering in the shunt resistance of a photodiode and reducing light crosstalk, by interposing a transparent sheet, to which at least one or more of obscure strip is formed between a scintillator and the photodiode so as to allow the same to position at the insensitive part of the photodiode. CONSTITUTION:Transparent parts 2A and obscure parts 3 are alternately formed to a transparent sheet 2 and the sensitive parts of a photodiode PN are positioned under the transparent part 2A while the insensitive parts thereof are positioned under the obscure parts 3. This obscure part 3 is formed of at least one or more of a strip. By adhereing the sheet between the photodiodes PN1-PNn and scintillators S1-Sn in a state interposed therebetween so that the obscure parts 3 are positioned at the insensitive parts of the photodiodes, the light emission of the scintillator element Sn can reduce the crosstalk of light invading into the other photodiodes adjacent to the photodiode PNn corresponding to said elements Sn.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、放射線断層撮影装置の技術分野に属し、放
射線断層撮影装置に装備される放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention belongs to the technical field of radiation tomography apparatuses, and relates to a radiation detector equipped in a radiation tomography apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

放射線断層撮影装置たとえばX線CT装置は、被検体の
体軸な中心にして被検体の周囲を回動するX線管と、被
検体が配置された空間を挾んでX線管と対向配置される
と共に、X線管より曝射されて被検体を透過するX線を
検出する検出器とを少なくとも具備し、被検体の体軸を
中心としてたとえば0.6′)fつX線管を回動しつつ
X線を被検体に曝射し、被検体を透過−1−るX線を検
出した検出器から出力さね、る0、6°ごとの多数のグ
ロジエクションデータを基に画像再構成処理を行ない、
表示装置に再構成した断層像を表示することのできるよ
うに構成されている。そして、たとえば医師宿はX線C
T装置により得られた断層像を基に、被検体たとえば患
者の健康状態、病変部の確認等の医学的判断を下すので
ある。したがって、正確な医学的判断を可能にするため
に、X線CT装竹により得られる断層像圧はきわめて高
い品質を有することが要求される。断層像の品質を左右
する要因の−として、検出器の性能が挙げられる。
A radiation tomography device, for example, an X-ray CT device consists of an X-ray tube that rotates around the subject around the subject's body axis, and an X-ray tube that is placed opposite the X-ray tube across a space in which the subject is placed. and a detector for detecting the X-rays emitted from the X-ray tube and transmitted through the subject, and the X-ray tube is rotated, for example, by 0.6' X-rays are irradiated to the subject while moving, and the detector that detects the X-rays that pass through the subject outputs an image. Perform the reconstruction process,
The configuration is such that the reconstructed tomographic image can be displayed on the display device. For example, the doctor's accommodation is X-ray C.
Based on the tomographic images obtained by the T device, medical judgments are made regarding the health condition of the subject, such as the patient, and the presence of lesions. Therefore, in order to enable accurate medical judgment, the tomographic image pressure obtained by X-ray CT equipment is required to have extremely high quality. One of the factors that influences the quality of tomographic images is the performance of the detector.

従来、X線CT装置における検出器は、たとえば次のよ
うにして構成されている。す斤わち、第1図に示すよう
に、検出器は螢光物質を、長さlが281nx、幅Wが
0.9x、高さtが2 rnxである直方体に成型して
なるシンチレータ素子S□〜Snト、たとえば二酸化チ
タン(TiO2)を主成分とする光反射層R□〜Rnと
、光電変換素子PNI−PNnと、長方形板状の支持部
材1とを具備し、各シンチレータ素子Snの底面を除く
他のすべての面にたとえば二酸化チタンを含有する光反
射剤をコーティングすることにより光反射層Rnを形成
し、次いで、支持部材1の上面に、その長手方向に泊っ
てシンチレータ素子Snの底面とほぼ同じ面を有する光
電変換素子PNnの多数をできるだけ小さ々所定ピンチ
をもって、平行に配列し、支持部材1の上面に配列、固
着した光電変換素子と前記シンチレータ素子Snの底面
とをたとえばレンズ用透明接着剤で固着することにより
、支持部材1上に多数のシンチレータ素子S工〜Snを
配列するように構成されている。そして、第1図に示す
ように、図示しないX線管より曝射されたX線束Xがシ
ンチレータ素子Snの上面に入射すると、シンチレータ
素子SnはX線を光に変換し、シンチレータ素子Snに
よる発光は光電変換素子PNnで検知、光電変換され、
光電変換素子PNnより入射X線量に比例する電気信号
が出力するように構成されている。
Conventionally, a detector in an X-ray CT apparatus is configured as follows, for example. In other words, as shown in FIG. 1, the detector is a scintillator element formed by molding a fluorescent material into a rectangular parallelepiped with a length l of 281nx, a width W of 0.9x, and a height t of 2rnx. Each scintillator element Sn includes a light reflecting layer R□ to Rn mainly composed of, for example, titanium dioxide (TiO2), photoelectric conversion elements PNI-PNn, and a rectangular plate-shaped support member 1. A light reflecting layer Rn is formed by coating all surfaces other than the bottom surface with a light reflecting agent containing titanium dioxide, for example, and then the scintillator element Sn is coated on the upper surface of the support member 1 in the longitudinal direction thereof. A large number of photoelectric conversion elements PNn having a surface substantially the same as the bottom surface of the scintillator element Sn are arranged in parallel with a predetermined pinch as small as possible, and the photoelectric conversion elements arranged and fixed on the upper surface of the support member 1 are connected to the bottom surface of the scintillator element Sn, for example. A large number of scintillator elements S to Sn are arranged on the support member 1 by fixing them with a transparent lens adhesive. As shown in FIG. 1, when the X-ray flux X emitted from the X-ray tube (not shown) is incident on the upper surface of the scintillator element Sn, the scintillator element Sn converts the X-rays into light, and the scintillator element Sn emits light. is detected and photoelectrically converted by the photoelectric conversion element PNn,
The photoelectric conversion element PNn is configured to output an electric signal proportional to the amount of incident X-rays.

この従来のシンチレータ素子S工〜Snを光電変換素子
PN1〜PNnであるフォトダイオード表面に直接透明
接着剤で接着する方法においては、フォトダイオードの
重要彦電気的因子の一つであるシャント抵抗の低下す々
わちフォトダイオードの特性の劣化が現われる。
In this conventional method of bonding the scintillator elements S~Sn directly to the surface of the photodiode, which is the photoelectric conversion elements PN1~PNn, with a transparent adhesive, the shunt resistance, which is one of the important electrical factors of the photodiode, is reduced. In other words, the characteristics of the photodiode begin to deteriorate.

これを防止する方法として、第1図に示すようにフォト
ダイオード表面に光学的に透明なシート2(例えばマイ
ラシート)を介在させる方法が採用されておシ、前記フ
ォトダイオードの特性の劣化を防止することができる。
As a method to prevent this, a method has been adopted in which an optically transparent sheet 2 (for example, a Mylar sheet) is interposed on the surface of the photodiode, as shown in FIG. 1, to prevent deterioration of the characteristics of the photodiode. can do.

しかし力から、断層像の画質を左右する装置の−に、−
個のシンチレータ素子Snの発光がそれに対応する光電
変換素子PNnに入射される以外に他の隣接する光電変
換素子への光の侵入(以下光クロストークと云う)とい
う現象が生じている。これは、光学的に透明なシートを
使用しているため、この透明シートと接着剤との光屈折
率の違いにより、シート自身が光ガイド役となって光を
乱射させるため生じ全現象である。このため、対応する
光電変換素子にすべての光を集光できず、断層像の画質
の低下を生じている。
However, due to the force, the - of the device that affects the image quality of the tomographic image, -
In addition to the light emitted from each scintillator element Sn being incident on the corresponding photoelectric conversion element PNn, a phenomenon occurs in which light enters other adjacent photoelectric conversion elements (hereinafter referred to as optical crosstalk). This is a phenomenon that occurs because an optically transparent sheet is used, and due to the difference in the optical refractive index between the transparent sheet and the adhesive, the sheet itself acts as a light guide and scatters the light. . For this reason, all the light cannot be focused on the corresponding photoelectric conversion element, resulting in a deterioration in the image quality of the tomographic image.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたものであり、フォト
ダイオードの特性の劣化(特にシャント抵抗の低下)を
防止し、かつ光クロメータを減少させ、断層像の画質の
向上を図れる放射線検出器を提供することを目的とする
The present invention has been made in view of the above circumstances, and provides a radiation detector that can prevent deterioration of photodiode characteristics (particularly a decrease in shunt resistance), reduce optical chroma, and improve the image quality of tomographic images. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

前記目的を達成するために、本発明はシンチレータとフ
ォトダイオードとを組合せた固体放射線検出器において
、前記シンチレータとフォトダイオードの間に、フォト
ダイオードの不感部分に位置するように少々くとも一本
以上の不透明なストライプを形成した透明なシートを介
在させたことを特徴とする。
In order to achieve the above object, the present invention provides a solid-state radiation detector that combines a scintillator and a photodiode, in which at least one or more detectors are provided between the scintillator and the photodiode so as to be located in an insensitive part of the photodiode. It is characterized by interposing a transparent sheet with opaque stripes formed thereon.

〔発明の実施例〕[Embodiments of the invention]

以下第2図及び第6図を参照して本発明を具体的に説明
する。
The present invention will be specifically described below with reference to FIGS. 2 and 6.

第2図は本発明の一実施例たる放射線検出器の構成図で
あり、図中、第1図の従来装置と同一機能を有するもの
は同一符号を付し詳細な説明を省略する。従来例と異な
る点は透明なシート2に帯状の不透明なストライプ6を
設けた点である。この不透明なストライプ6は光電変換
素子である各フォトダイオードPN□〜PNn間のスペ
ースである不感部分に設けられている。すなわち第6図
に示すように透明なシート2に透明部2人と不透明部6
が交互に形成されており、透明部2人の下方にフォトダ
イオードPNの窓部分が位置さ力7、不透明部乙の下方
にフォトダイオード間の不感部分が位置される。この不
透明部3は少々くとも1本以上のストライプで形成され
ており、又不透明部60幅SWはシンチレータ素子間の
スペース(通称dead 5pace ) 幅又はフォ
トダイオード間の不感部分の幅よりも狭いことが望まし
い。すなわち、不透明部6の幅がこれらの幅よりも広け
ればシンチレータ素子の発光が不透明部6に反射されす
べての光がフォトダイオードに入射されることがない。
FIG. 2 is a block diagram of a radiation detector according to an embodiment of the present invention. In the figure, parts having the same functions as those of the conventional device shown in FIG. The difference from the conventional example is that a transparent sheet 2 is provided with band-shaped opaque stripes 6. This opaque stripe 6 is provided in an insensitive portion, which is a space between each of the photodiodes PN□ to PNn, which are photoelectric conversion elements. That is, as shown in FIG. 6, a transparent sheet 2 has two transparent parts and an opaque part 6.
are formed alternately, the window portion of the photodiode PN is located below the two transparent portions 7, and the insensitive portion between the photodiodes is located below the opaque portion B. This opaque section 3 is formed of at least one stripe, and the width SW of the opaque section 60 is narrower than the width of the space between scintillator elements (commonly known as dead 5 pace) or the width of the dead section between photodiodes. is desirable. That is, if the width of the opaque portion 6 is wider than these widths, the light emitted from the scintillator element will be reflected by the opaque portion 6, and all of the light will not be incident on the photodiode.

さらに、不透明部6は透明なシート20表面から裏面に
達するよう形成されている。
Furthermore, the opaque portion 6 is formed to reach from the front surface of the transparent sheet 20 to the back surface.

この不透明部6がフォトダイオードの不感部分に位置す
るようにシート2をフォトダイオードPN□〜PNnと
シンチレータ素子81〜Snの間に介在させ接着するこ
とにより、シンチレータ素子Snの発光がそれに対応す
るフォトダイオードPNnに隣接する他のフォトダイオ
ードに侵入する光クロストークを減少させることができ
る。
By interposing and bonding the sheet 2 between the photodiodes PN□ to PNn and the scintillator elements 81 to Sn so that the opaque part 6 is located in the insensitive part of the photodiode, the light emitted from the scintillator element Sn is transferred to the corresponding photodiode. Optical crosstalk penetrating other photodiodes adjacent to diode PNn can be reduced.

尚、この不透明なストライプ入りのシートは透明なシー
トと不透明なシートを積層して所望の厚さく例えば0.
1 ma )に裁断することで容易に得られるが他に、
透明なシート2である分析性発泡剤にレーザを照射する
ことにより、照射された部分が不活性ガスを発生し発泡
して不透明な部分が容易に得られることによっても形成
される。
The opaque striped sheet is made by laminating a transparent sheet and an opaque sheet to a desired thickness, for example 0.
It can be easily obtained by cutting it to 1 ma), but in addition,
It is also formed by irradiating the analytical foaming agent, which is the transparent sheet 2, with a laser, so that the irradiated area generates inert gas and foams to easily obtain an opaque area.

本発明者は分解性発泡剤としてミクロパール(商品名)
を上記方法によりレーザを照射して不透明部分を得た。
The present inventor has developed Micropearl (trade name) as a degradable foaming agent.
was irradiated with a laser using the method described above to obtain an opaque area.

尚、ミクロバール以外にも下表に示す分解性発泡剤が使
用できる。
In addition to Microvar, the decomposable blowing agents shown in the table below can be used.

(以下余白) 表 分解性発泡剤 〔発明の効果〕 以上本発明によれば、シンチレータ素子とフォトダイオ
ードの間に透明々シートを介在させたことによりフォト
ダイオードのシャント抵抗の低下を防止でき、かつ、こ
の透明々シートに不透明な部分を設はフォトダイオード
の不感部分に位イヘさせたことにより光クロストークを
減少できるため、断層像の画質の向上を図れる放射線検
出器を提供できる。
(Leaving space below) Table Degradable foaming agent [Effects of the invention] As described above, according to the present invention, by interposing a transparent sheet between the scintillator element and the photodiode, a decrease in the shunt resistance of the photodiode can be prevented, and Since optical crosstalk can be reduced by providing an opaque part in this transparent sheet and placing it in the insensitive part of the photodiode, it is possible to provide a radiation detector that can improve the image quality of tomographic images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放射線検出器の斜視図、第21ゾIは本
発明の一実施例である放射線検出器の斜視図、第6図は
不透明部を形成したシートの斜視図である。 2・・・シート、6・・・不透明部、Sn・・・シンチ
レータ素子、PNn・・・光電変換素子(フォトダイオ
ード)。 代理人 弁理士 則 近 憲 佑(ほか1名)第2図 第3図
FIG. 1 is a perspective view of a conventional radiation detector, No. 21 I is a perspective view of a radiation detector according to an embodiment of the present invention, and FIG. 6 is a perspective view of a sheet with an opaque portion formed thereon. 2... sheet, 6... opaque portion, Sn... scintillator element, PNn... photoelectric conversion element (photodiode). Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1) シンチレータとフォトダイオードとを組合せた
固体放射線検出器において、前記シンチレータとフォト
ダイオードの間に、フォトダイオードの不感部分に位置
するように少なくとも一本以上の不透明なストライプを
形成した透明なシートを、介在させたことを特徴とする
放射線検出器。
(1) In a solid-state radiation detector that combines a scintillator and a photodiode, a transparent sheet with at least one opaque stripe formed between the scintillator and the photodiode so as to be located in the insensitive area of the photodiode. A radiation detector characterized by intervening.
(2)前記不透明なストライプの幅が前記シンチレータ
・ピース間の幅よりも狭いことを特徴とする特許請求の
範囲第1項記載の放射線検出器。
(2) The radiation detector according to claim 1, wherein the width of the opaque stripe is narrower than the width between the scintillator pieces.
(3)前記不透明なストライプの幅が前記フォトダイオ
ードの不感部分の幅よりも狭いことを特徴とする特許請
求の範囲第1項記載の放射線検出器。
(3) The radiation detector according to claim 1, wherein the width of the opaque stripe is narrower than the width of the insensitive portion of the photodiode.
JP58166500A 1983-09-12 1983-09-12 Radiation detector Granted JPS6058574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166500A JPS6058574A (en) 1983-09-12 1983-09-12 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166500A JPS6058574A (en) 1983-09-12 1983-09-12 Radiation detector

Publications (2)

Publication Number Publication Date
JPS6058574A true JPS6058574A (en) 1985-04-04
JPH0319511B2 JPH0319511B2 (en) 1991-03-15

Family

ID=15832511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166500A Granted JPS6058574A (en) 1983-09-12 1983-09-12 Radiation detector

Country Status (1)

Country Link
JP (1) JPS6058574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628562A1 (en) * 1988-03-11 1989-09-15 Thomson Csf IMAGING DEVICE WITH MATRIX STRUCTURE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628562A1 (en) * 1988-03-11 1989-09-15 Thomson Csf IMAGING DEVICE WITH MATRIX STRUCTURE
EP0337826A1 (en) * 1988-03-11 1989-10-18 Thomson-Csf Radiation detector in matrix form
US4948978A (en) * 1988-03-11 1990-08-14 Thomson-Csf Imaging device with matrix structure

Also Published As

Publication number Publication date
JPH0319511B2 (en) 1991-03-15

Similar Documents

Publication Publication Date Title
US7968853B2 (en) Double decker detector for spectral CT
EP1132754B1 (en) Scintillator for X-ray detector
US4187427A (en) Structure for collimated scintillation detectors useful in tomography
US7573035B2 (en) GOS ceramic scintillating fiber optics x-ray imaging plate for use in medical DF and RF imaging and in CT
RU2589252C2 (en) Vertical radiation sensitive detectors of one or multiple energies
US8391439B2 (en) Detector array for spectral CT
US6087665A (en) Multi-layered scintillators for computed tomograph systems
US7620143B2 (en) Detector array and system
US6479824B1 (en) Scintillator arrays for CT imaging and other applications
JPS61110079A (en) Radiation detector
JPH04290983A (en) Scintillator block for radiation sensor
US20050258369A1 (en) Radiation detector
JPH0425513B2 (en)
JPH10151129A (en) Detector for tomograph
JPS6058574A (en) Radiation detector
JPH1184013A (en) Radiation detector
JPS58118977A (en) Detector of radiant ray
EP3428691A1 (en) X-ray detector and method of manufacturing such a detector
JPH0619461B2 (en) X-ray CT detector
JPS58216974A (en) Preparation of radiation detector block
JPH0424675B2 (en)
JPH04144174A (en) Radiation detector
JPS58106482A (en) Radiation detector
JPH0310188A (en) Radiation detector
JPH03179288A (en) Detector for x-ray ct