JPS6058399B2 - Stirring device for reverberatory furnace - Google Patents

Stirring device for reverberatory furnace

Info

Publication number
JPS6058399B2
JPS6058399B2 JP18898381A JP18898381A JPS6058399B2 JP S6058399 B2 JPS6058399 B2 JP S6058399B2 JP 18898381 A JP18898381 A JP 18898381A JP 18898381 A JP18898381 A JP 18898381A JP S6058399 B2 JPS6058399 B2 JP S6058399B2
Authority
JP
Japan
Prior art keywords
pump
molten metal
refractory
reverberatory furnace
refractory tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18898381A
Other languages
Japanese (ja)
Other versions
JPS5892792A (en
Inventor
重之 鴫原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP18898381A priority Critical patent/JPS6058399B2/en
Publication of JPS5892792A publication Critical patent/JPS5892792A/en
Publication of JPS6058399B2 publication Critical patent/JPS6058399B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、反射炉内の溶湯を攪拌させる装置に関する
ものである。 反射炉内の溶湯を攪拌させる手段として移動磁界を利用
した攪拌装置は公知てある。 第1図〜第3図はアルミニウム及びその合金を対象とし
た反射炉の内部の溶湯を移動磁界を利用して攪拌させる
攪拌装置の一例を示すもので、反射炉1の内部の溶湯を
外部流路樋2によつて反射炉1の外部に導き、そしてこ
の外部流路樋2内の溶湯を、外部流路樋2の途中に介在
し、かつ移動磁界を発生して溶湯に推力を与える電磁ポ
ンプ3によつて流動させて反射炉1内の溶湯の攪拌を行
なうようにしている。 前記電磁ポンプ3について詳述すると、この電磁ポンプ
3は、耐火材料によつて断面が矩形の管状に形成される
とともに両端が前記外部流路樋2に連通されて溶湯の流
路となるポンプ耐火管4と、このポンプ耐火管4の対向
する管壁に沿つてポンプ耐火管4の外側に対向して配さ
れ、かつ、移動磁界を発生してポンプ耐火管4内の溶湯
に推力を与える一対の誘導子5とを備えている。 前記誘導子5としてこの例では、枠体5a内に収納され
た鉄心5bに三相の誘導コイル5cが巻き付けられ(な
お、第4図においては、誘導コイルの鉄心5bに直接巻
き付けられている部分は表わされておらず、図示された
誘導コイル5cは鉄心5bへの誘導コイル巻付けに伴う
はみ出し部でノある。)、かつ、枠体5a内に耐火物5
dが充填されて構成され、誘導コイル5cに三相交流電
流を流したとき、耐火管4による流路に沿つて進行する
移動磁界を発生してポンプ耐火管4内の溶湯を流動させ
るものを示している。7 このような誘導子5から発生
されてポンプ耐火管4内の溶湯に推力を与える正弦波交
番磁束は、溶湯(導電体)を通過中に溶湯に生じる渦電
流によつて発生する磁束に打ち消されるために、溶湯の
内部に向かうに従つて減衰される。 ここで、溶湯の比抵抗をρ〔μΩ・d〕、同じく比透磁
率をμ、溶湯を貫通する磁束の周波数をFCHz〕、誘
導子5から発生された磁束が溶湯中に浸透して溶湯に推
力を与えることができる浸透深さをδ
The present invention relates to a device for stirring molten metal in a reverberatory furnace. 2. Description of the Related Art A stirring device that uses a moving magnetic field as a means for stirring molten metal in a reverberatory furnace is known. Figures 1 to 3 show an example of a stirring device that uses a moving magnetic field to stir the molten metal inside a reverberatory furnace for aluminum and its alloys. The molten metal is guided to the outside of the reverberatory furnace 1 through the channel trough 2, and the molten metal in the external channel trough 2 is guided to the outside of the reverberatory furnace 1. The molten metal in the reverberatory furnace 1 is stirred by being made to flow by the pump 3. To explain the electromagnetic pump 3 in detail, the electromagnetic pump 3 is made of a refractory material and is formed into a tubular shape with a rectangular cross section, and both ends are connected to the external flow path gutter 2 to serve as a flow path for the molten metal. Pipe 4 and a pair of pump refractory tubes 4 that are disposed facing each other on the outside of the pump refractory tube 4 along opposing tube walls and that generate a moving magnetic field to apply thrust to the molten metal within the pump refractory tube 4. It is equipped with an inductor 5. In this example, as the inductor 5, a three-phase induction coil 5c is wound around an iron core 5b housed in a frame 5a (in FIG. 4, the part of the induction coil that is directly wound around the iron core 5b) is not shown, and the illustrated induction coil 5c is a protruding portion due to winding of the induction coil around the iron core 5b).
d, and when a three-phase alternating current is passed through the induction coil 5c, it generates a moving magnetic field that advances along the flow path of the refractory tube 4, causing the molten metal in the pump refractory tube 4 to flow. It shows. 7 The sinusoidal alternating magnetic flux generated from such an inductor 5 and giving thrust to the molten metal in the pump refractory tube 4 is canceled by the magnetic flux generated by eddy currents generated in the molten metal while passing through the molten metal (electrical conductor). Therefore, it is attenuated towards the inside of the molten metal. Here, the specific resistance of the molten metal is ρ [μΩ・d], the relative magnetic permeability is also μ, the frequency of the magnetic flux penetrating the molten metal is FCHz], and the magnetic flux generated from the inductor 5 penetrates into the molten metal and becomes the molten metal. The penetration depth that can provide thrust is δ

〔0〕とすると、
δは、 δ=5.04/I!f ・・
・・・(1)と表わされる。 なお前記fとしては、厳密には耐火管4内を流れている
溶湯(アルミニウム)と誘導子5による進行磁界の進行
速度との相対速度差が問題となるが、アルミ溶湯の耐火
管4内での流速はいま問題としている装置においては、
磁束の進行速度と比較して著しく遅いために、一般には
誘導子に与える電源周波数を用いてよい。ところで、従
来は、前述のような装置に使用される電磁ポンプ3に、
その全揚程を数10c7tとした高圧力低流量仕様のも
のを使用して、耐火管4すなわち外部流路樋2内の溶湯
を高速で循環させることが当業者間で常識化されていた
。 そしてこのように高圧力低流量仕様のの電磁ポンプ3を
使用した場合には、耐火管4の誘導子対向方向の内寸法
Dを D≦2δ、できることならDをδに等しいか、そ
れ以下の値に選択することが当然とされていた。 なぜならば、比較的高い圧力を発生する従来の高圧低流
量仕様の電磁ポンプでは、例えばD=3δのように選択
すると、ポンプ耐火管4の内周面付近に生じる高い圧力
のために、溶湯をポンプ耐火管4の内周面付近から耐火
管4の中心付近の推−力のほとんどない部分に向かつて
流す溶湯流が発生して、耐火管4内の流れが乱れるため
に、耐火管出口での圧力が減少し、したがつて必要な流
量が得られなくなり、反射炉1内の溶湯を十分に攪拌さ
せることができなくなるという不具合が生じ.るからで
ある。 ところがD≦δのよう選択した場合には、攪拌は十分に
行なえるが、その一方で他の問題が生じる。 というのは、今、具体例として容量が20トンの・アル
ミニウム用の反射炉を用いて説明すると、このような容
量の反射炉では、反射炉内の溶湯の温度分布の均一化お
よびアルミニウム溶湯中の添加合金の均一混合等の目的
を満足させるための攪拌に必要な適性流量Qは1000
e/Min.程度であり、またアルミ溶湯中に含まれて
いる酸化アルミニウム、酸化マグネシウム、窒化アルミ
ニウム等の付着によるポンプ耐火管の閉塞に対する問題
(流速が大きくなるほど付着しやすくなる)からポンプ
耐火管の流速vは100cm/Sec.以下が好ましい
ことが知られており、ポンプ耐火管4の流路断面積をS
CC7lf〕とすれば、s=ト167d・・・・(2)
となる。 一方、溶湯がアルミニウムである場合、前記(1)式に
おいてρ=20μΩ・Cflt,μ=1、とし、さらに
商用周波数を利用するものとしてf=60Hzを代人す
れば、となる。 そして、D=δ=2.9c!nに選択すると、(2)式
のS=167cF1fより、ポンプ耐火管4の幅方向(
第4図で左右方向)の内寸法Cが、c=?=yワ≠57
.泗となつて、 D2−q ポンプ耐火管4の横断面形状が2.9C7?!×57.
5dという極度に偏平な形状になるために、ポンプ耐火
管4内に付着した溶湯中の酸化物等の機械的手段による
除去作業が困難になる。 さらにこのポンプ耐火管4の幅に合わせて誘導子5も幅
方向(第3図左右方向)の寸法が大きなものを製作する
必要が生じ、誘導子5の製作費が高くなるなどの問題が
生じる。このような問題に対して、従来は、誘導子5に
供給する電源周波数を下げて、δの寸法、すなわち、D
の寸法を大きくすることによつて、その分Cの寸法を小
さくするというのが当業者の解決策であつた。しかしな
がら、周波数を商用周波数(50Hz,60Hz)から
下げると、誘導子に電流を供給するために周波数変換装
置を設ける必要が生じて、余計な費用がかかるなどの新
たな問題が生じる。本発明は前記事情を考慮してなされ
たもので、電磁ポンプを低圧力大流量仕様のものにする
とともに、誘導子に商用周波数の電流を供給しかつ耐火
管のD寸法をδの2倍〜5倍に設定することによつて、
耐火管の内面に付着する溶湯中の酸化物等の付着物の機
械的手段による除去作業を容易にするとともに、周波数
変換装置等を設ける必要をなくし、さらに、溶湯中の温
度分布を均一にすることや、アルミニウム溶湯中の添加
合金を均一に混合させること等の溶湯を攪拌させる目的
をも十分満足しうるようにした反射炉用攪拌装置を提供
することを目的とする。 以下、この発明を第4図〜第8図に示す一実施例に基づ
いて説明するが、これらの図中第1図〜第3図に示した
ものと同様な機能を有する部分については、第1図〜第
3図に付した符号に″(ダツシユ)を付けて説明を簡略
化する。 この発明の装置は、耐火材料によつて横断面が矩形の管
状に形成されるとともに反射炉1″の外部に配さ0たポ
ンプ耐火管4″とこのポンプ耐火管4″の対向する管壁
に沿いかつポンプ耐火管4″を挾んで対向して配されか
つポンプ耐火管4″の流路に沿つて進行する移動磁界を
発生してポンプ耐火管4″内に導かれた溶湯6を流動さ
せる一対の誘導子5″とからなる電磁ポンプ3″と、前
記ポンプ耐火管4″の両端をそれぞれ反射炉1″の水平
方向両端側から反射炉1″の内部に連通させて反射炉「
内で加熱用バーナ7によつて溶解された溶湯6をポンプ
耐火管4″内に導く外部流路樋2″とを備えた装置であ
ることは、従来のものと同様であるが、これらの他に、
以下に示す新規な構成を有している。 反射炉1″内の溶湯6を小さな圧力で圧送できるように
、外部流路樋2″による溶湯6の循環路が水平に形成さ
れるとともに、電磁ポンプ3″に、溶湯が循環路を循環
する際に消費される圧力損失よりも若干大きな揚程(1
.5トン〜50トンの容量のアルミニウム用反射路にお
いては約4aTt〜10cmぐらいである)を有する低
圧力大流量仕様のものが使用され、さらに電磁ポンプ3
″のポンプ耐火管4″においては、その誘導子5″が対
向する方向の内寸法Dが、誘導子5″による磁界の浸透
深さδの2倍〜5倍(一実施例においては2.9倍)に
選択されている。 このような構成は、電磁ポンプ3″の誘導子5″から発
生される正弦波交番磁束によつてポンプ耐火管4″内の
溶湯に与える圧力を小さくした場合に、ポンプ耐火管4
″の誘導子5″が対向する方向の内寸法Dを正弦波交番
磁束の浸透深さδの2倍から5倍にすると、ポンプ耐火
管4″内の誘導子5″が対向する方向の溶湯の推力分布
は、第8図に示すようにポンプ耐火管4″の内面側が大
きくかつ中心側が小さい放物線状になるにも拘らず、ポ
ンプ耐火管4″内の溶湯の乱流現象による効果によつて
、誘導子5″による磁界により推力が発生される範囲(
Aゾーン)から推力が発生しない範囲(Bゾーン)に向
う溶湯流の発生が実用上問題にならないくらい小さくな
り、流量が減少するようなことが生じないので反射炉1
″にの溶湯を攪拌させるという目的を十分に満足させる
ことができるという実験上の発見に根拠したものである
。 以下、このように構成された装置を、前述と同様に容量
が20トンのアルミニウム反射炉でかつポンプ耐火管の
流路断面積Sが167cT1であるものを具体例に取つ
て説明する。 前記(1)式において、fに商用周波数60Hzを使用
したとすると、δ=2.9(Cm)であるから、ポンプ
耐火管4″の内寸法D=2.9δ=8.4cm1したが
つて c=A″.19.9cmとなり、 耐火管4″の流路断面形状は、8.4cm×19.9c
mとなり、商用周波数60Hzを使用したにも拘ず、ポ
ンプ耐火管4″内に付着した溶湯の酸化物等の付着物を
機械的手段によつて除去する作業が、従来の偏平なもの
(2.9crn×57.5cm)に比べて著しく容易に
なる。 なお、前述の一実施例においては、D=2.9δ”とし
たが、先に述べたように2δ≦D≦5δの範囲ならば、
どのような値を選択しても、攪拌の目的を十分に満足さ
せることができる。 以上説明したように、本発明の装置は、反射炉内の溶湯
が導かれるポンプ耐火管と、この外部に一対向して配さ
れかつ移動磁界によつて溶湯に推力を与える一対の誘導
子とからなる電磁ポンプにおいて、ポンプ耐火管の誘導
子対向方向の内寸法Dを、前記誘導子から発生される磁
界の浸透深さδの2倍〜5倍に選択しているから、誘導
子から発j生される磁界によつて溶湯に生ずる圧力が低
圧になるような誘導子を使用してポンプ耐火管内の溶湯
を円滑に流すことによつて、攪拌の目的を十分満足させ
ることができる効果とともに、誘導子に商用周波数の電
源を供給する場合であつても、従来の高圧力低流量の仕
様の電磁ポンプが使用された攪拌装置に比べて、ポンプ
耐火管の誘導子対向方向の寸法Dを大きくかつ幅方向の
寸法Cを小さくして流路の横断面形状を改善できるので
、ポンプ耐火管内に付着した付着物の機械的手段による
除去作業が容易になるという効果が得られる。 さらにポンプ耐火管の幅方向の寸法に合わせて、誘導子
も幅の小さいものを使用すればよいから、誘導子の製作
が容易になるとともに、周波数変換装置を使用しなくて
済む分だけ、装置の製造コストを安価にてきる。
If it is [0],
δ is δ=5.04/I! f...
...It is expressed as (1). Strictly speaking, f is the relative speed difference between the molten metal (aluminum) flowing inside the refractory tube 4 and the advancing speed of the advancing magnetic field generated by the inductor 5, but if the molten aluminum flows inside the refractory tube 4, In the device in question, the flow velocity of
Generally, the power supply frequency applied to the inductor may be used because it is significantly slower than the traveling speed of the magnetic flux. By the way, conventionally, the electromagnetic pump 3 used in the above-mentioned device includes:
It has been common knowledge among those skilled in the art to circulate the molten metal in the refractory pipe 4, that is, the external channel trough 2, at high speed by using a high-pressure, low-flow type pipe with a total lift of several tens of cubic tons. When using the electromagnetic pump 3 with high pressure and low flow rate specifications, the inner dimension D of the refractory tube 4 in the direction facing the inductor should be D≦2δ, preferably D equal to or less than δ. It was taken for granted that it should be selected as a value. This is because in conventional electromagnetic pumps with high pressure and low flow specifications that generate relatively high pressure, if D = 3δ, for example, the high pressure generated near the inner peripheral surface of the pump refractory tube 4 causes the molten metal to A flow of molten metal flows from the inner circumferential surface of the pump refractory tube 4 toward the center of the refractory tube 4, where there is almost no thrust, and the flow within the refractory tube 4 is turbulent. The pressure of the reverberant furnace 1 decreases, resulting in the inability to obtain the necessary flow rate and the inability to stir the molten metal in the reverberatory furnace 1 sufficiently. This is because that. However, if D≦δ, stirring can be performed sufficiently, but on the other hand, other problems arise. This is because, to explain this using a reverberatory furnace for aluminum with a capacity of 20 tons as a specific example, in a reverberatory furnace with such a capacity, it is necessary to make the temperature distribution of the molten metal in the reverberatory furnace uniform and to reduce the temperature inside the molten aluminum. The appropriate flow rate Q required for stirring to satisfy the purpose of uniformly mixing the added alloy is 1000.
e/Min. The flow velocity v of the pump refractory pipe is 100cm/Sec. It is known that the following is preferable, and the flow passage cross-sectional area of the pump refractory pipe 4 is S
CC7lf], then s=t167d...(2)
becomes. On the other hand, when the molten metal is aluminum, in equation (1) above, ρ=20 μΩ·Cflt, μ=1, and assuming that a commercial frequency is used, f=60 Hz is substituted. And D=δ=2.9c! If n is selected, from S=167cF1f in equation (2), the width direction of the pump fireproof tube 4 (
The inner dimension C in the horizontal direction (in Fig. 4) is c=? =ywa≠57
.. By the way, the cross-sectional shape of D2-q pump fireproof pipe 4 is 2.9C7? ! ×57.
5d, which makes it difficult to remove oxides in the molten metal adhering to the inside of the pump refractory tube 4 by mechanical means. Furthermore, it becomes necessary to manufacture an inductor 5 with a large dimension in the width direction (horizontal direction in Fig. 3) to match the width of the pump fireproof tube 4, which causes problems such as an increase in the manufacturing cost of the inductor 5. . To solve this problem, the conventional method is to lower the power frequency supplied to the inductor 5 to reduce the dimension of δ, that is, D
The solution for those skilled in the art was to increase the size of C and thereby reduce the size of C accordingly. However, when the frequency is lowered from the commercial frequency (50 Hz, 60 Hz), it becomes necessary to provide a frequency conversion device to supply current to the inductor, which causes new problems such as extra cost. The present invention has been made in consideration of the above circumstances, and includes an electromagnetic pump with low pressure and large flow specifications, a commercial frequency current supplied to the inductor, and a D dimension of the fireproof tube that is twice as large as δ. By setting it to 5 times,
This makes it easier to mechanically remove deposits such as oxides in the molten metal that adhere to the inner surface of refractory pipes, eliminates the need for a frequency converter, etc., and makes the temperature distribution in the molten metal uniform. Another object of the present invention is to provide a stirring device for a reverberatory furnace that can fully satisfy the purpose of stirring the molten aluminum, such as uniformly mixing additive alloys in the molten aluminum. Hereinafter, this invention will be explained based on an embodiment shown in FIGS. 4 to 8. In these figures, parts having the same functions as those shown in FIGS. 1 to 3 will be explained as follows. 1 to 3 to simplify the explanation. The apparatus of the present invention is formed of a refractory material into a tubular shape with a rectangular cross section, and a reverberatory furnace 1". A pump refractory tube 4'' disposed outside of the pump refractory tube 4'' and a pump refractory tube 4'' disposed opposite to each other along the opposing pipe wall of the pump refractory tube 4'' with the pump refractory tube 4'' in between and in the flow path of the pump refractory tube 4''. An electromagnetic pump 3'' consists of a pair of inductors 5'' that generate a moving magnetic field to flow the molten metal 6 guided into the pump refractory tube 4'', and both ends of the pump refractory tube 4'' are connected to each other. The reverberatory furnace "
The device is similar to the conventional ones in that it is equipped with an external flow path gutter 2'' that guides the molten metal 6 melted by the heating burner 7 inside the pump refractory tube 4'', but these other,
It has the following new configuration. In order to be able to pump the molten metal 6 inside the reverberatory furnace 1'' under low pressure, a circulation path for the molten metal 6 is formed horizontally by an external channel gutter 2'', and the molten metal is circulated through the circulation path by the electromagnetic pump 3''. The head (1
.. For aluminum reflection paths with a capacity of 5 tons to 50 tons, a low-pressure, large-flow type with a pressure of approximately 4aTt to 10cm is used, and an electromagnetic pump 3 is used.
In the pump refractory tube 4'', the inner dimension D in the direction in which the inductor 5'' faces is 2 to 5 times the penetration depth δ of the magnetic field due to the inductor 5'' (in one embodiment, 2. 9 times). With such a configuration, when the pressure applied to the molten metal in the pump refractory tube 4'' is reduced by the sinusoidal alternating magnetic flux generated from the inductor 5'' of the electromagnetic pump 3'', the pump refractory tube 4''
When the inner dimension D in the direction in which the inductor 5'' of the pump refractory pipe 4'' faces is made 2 to 5 times the penetration depth δ of the sinusoidal alternating magnetic flux, the molten metal in the direction in which the inductor 5'' in the pump refractory tube 4'' faces As shown in Figure 8, although the thrust distribution of the pump refractory tube 4'' is large on the inner surface side and small on the center side, it is a parabolic shape due to the effect of turbulent flow of the molten metal inside the pump refractory tube 4''. Therefore, the range (
The generation of molten metal flow from zone A) to zone B, where no thrust is generated, is so small that it does not pose a practical problem, and the flow rate does not decrease, so reverberatory furnace 1
This is based on the experimental discovery that it can fully satisfy the purpose of stirring molten metal.Hereinafter, the apparatus constructed in this way will be constructed using an aluminum tube with a capacity of 20 tons as described above. A specific example will be explained using a reverberatory furnace in which the flow passage cross-sectional area S of the pump refractory tube is 167 cT1. In the above equation (1), if f is a commercial frequency of 60 Hz, δ = 2.9. (Cm), the inner dimension of the pump refractory tube 4'' D = 2.9 δ = 8.4 cm1 Therefore, c = A''.19.9 cm, and the cross-sectional shape of the flow path of the refractory tube 4'' is 8. 4cm x 19.9c
m, and although a commercial frequency of 60 Hz was used, the work of removing deposits such as molten metal oxides adhering to the inside of the pump refractory pipe 4'' by mechanical means was different from that of the conventional flat pipe (2 .9 crn x 57.5 cm). In the above-mentioned embodiment, D = 2.9 δ", but as stated earlier, if 2 δ≦D≦5 δ, ,
No matter what value is selected, the purpose of stirring can be fully satisfied. As explained above, the device of the present invention includes a pump refractory tube through which molten metal in a reverberatory furnace is guided, and a pair of inductors arranged facing each other outside of the pump tube and applying thrust to the molten metal by a moving magnetic field. In this electromagnetic pump, the internal dimension D of the pump refractory tube in the direction facing the inductor is selected to be 2 to 5 times the penetration depth δ of the magnetic field generated from the inductor. j By using an inductor that lowers the pressure generated in the molten metal by the generated magnetic field, the molten metal in the pump refractory tube flows smoothly, and the purpose of stirring can be fully satisfied. , even when supplying commercial frequency power to the inductor, the dimension D of the pump refractory tube in the direction facing the inductor is Since the cross-sectional shape of the flow path can be improved by making the dimension C larger and smaller in the width direction, it is possible to obtain the effect that it becomes easier to remove deposits deposited inside the pump refractory pipe by mechanical means. Furthermore, it is sufficient to use a narrow inductor to match the width dimension of the pump refractory pipe, making it easier to manufacture the inductor. The manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、従来の攪拌装置を示すものて第1図
は概略平面図、第2図は第1図の■−■線に沿う断面図
、第3図は第2図の■一■線に沿う断面図、第4図〜第
8図は、この発明の一実施例を示すもので、第4図は概
略平面図、第5図は第4図の■−■線に沿う断面図、第
6図は第4図の■−■線に沿う断面図、第7図は第5図
の■一■線に沿う断面図、第8図は耐火管内の誘導子が
対向する側の管壁間の推力分布を示すグラフてある。 1″・・・・・・反射炉、2″・・・・・外部流路樋、
3″・・電磁ポンプ、4″・・・・・・ポンプ耐火管、
5″・・・・・誘導子、5a″・・・・・・枠体、5b
″・・・・・・鉄心、5C″・・・・・・誘導コイル、
5d″・・・・・・耐火物。
Figures 1 to 3 show a conventional stirring device. Figure 1 is a schematic plan view, Figure 2 is a sectional view taken along the line ■-■ in Figure 1, and Figure 3 is a cross-sectional view of Figure 2. ■A sectional view taken along the line 1-■, and FIGS. 4 to 8 show an embodiment of the present invention. FIG. 4 is a schematic plan view, and FIG. Figure 6 is a cross-sectional view taken along line ■-■ in Figure 4, Figure 7 is a cross-sectional view taken along line ■--■ in Figure 5, and Figure 8 is a cross-sectional view taken along line ■-■ in Figure 5. There is a graph showing the thrust force distribution between the side tube walls. 1″・・・Reverberatory furnace, 2″・・・External channel gutter,
3″・・・Electromagnetic pump, 4″・・・Pump fireproof pipe,
5''...Inductor, 5a''...Frame, 5b
″・・・Iron core, 5C″・・・Induction coil,
5d″・・・Refractory.

Claims (1)

【特許請求の範囲】 1 耐火材料によつて横断面が矩形の管状に形成される
とともに反射炉1′の外部に配されたポンプ耐火管4′
とこのポンプ耐火管の対向する管壁に沿いかつポンプ耐
火管を挾んで対向して配されかつポンプ耐火管の流路に
沿つて移動磁界を発生してポンプ耐火管内に導かれた溶
湯を流動させる一対の誘導子5′とからなる電磁ポンプ
3′と、前記ポンプ耐火管の両端をそれぞれ反射炉1′
の水平方向両端側から反射炉内部に連通させて反射炉内
の溶湯をポンプ耐火管内に導く外部流路樋2′とを備え
た反射炉用攪拌装置において、前記ポンプ耐火管の誘導
子対向方向の寸法を、溶湯の比抵抗ρ〔μΩ・cm〕、
同じく比透磁率μ、ポンプ耐火管内の溶湯を通過する磁
束の周波数f〔Hz〕、によつて、δ=5.04√(ρ
/μ・f)で表わされる浸透深さδの2倍〜5倍に選択
したことを特徴とする反射炉用攪拌装置。
[Scope of Claims] 1. A pump refractory pipe 4' formed of a refractory material into a tubular shape with a rectangular cross section and arranged outside the reverberatory furnace 1'.
The molten metal guided into the pump refractory tube is caused to flow by generating a magnetic field that moves along the opposing walls of the pump refractory tube and facing each other with the pump refractory tube in between, and along the flow path of the pump refractory tube. an electromagnetic pump 3' consisting of a pair of inductors 5' that
In the stirring device for a reverberatory furnace, the stirring device for a reverberatory furnace is provided with an external flow path gutter 2' that communicates with the inside of the reverberatory furnace from both horizontal ends of the refractory furnace and guides the molten metal in the reverberatory furnace into the pump refractory tube. The dimensions are the specific resistance of the molten metal ρ [μΩ・cm],
Similarly, δ=5.04√(ρ
A stirring device for a reverberatory furnace, characterized in that the stirring device is selected to have a penetration depth of 2 to 5 times the penetration depth δ expressed by /μ·f).
JP18898381A 1981-11-25 1981-11-25 Stirring device for reverberatory furnace Expired JPS6058399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18898381A JPS6058399B2 (en) 1981-11-25 1981-11-25 Stirring device for reverberatory furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18898381A JPS6058399B2 (en) 1981-11-25 1981-11-25 Stirring device for reverberatory furnace

Publications (2)

Publication Number Publication Date
JPS5892792A JPS5892792A (en) 1983-06-02
JPS6058399B2 true JPS6058399B2 (en) 1985-12-19

Family

ID=16233330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18898381A Expired JPS6058399B2 (en) 1981-11-25 1981-11-25 Stirring device for reverberatory furnace

Country Status (1)

Country Link
JP (1) JPS6058399B2 (en)

Also Published As

Publication number Publication date
JPS5892792A (en) 1983-06-02

Similar Documents

Publication Publication Date Title
US20090229783A1 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
US2363582A (en) Method of and means for stirring or circulating molten or liquid materials or mediums
JPS58135755A (en) Continuous steel casting apparatus
JPH11217659A (en) Hot dip plating device and method using plug of cooled plating metal
EP2304067B1 (en) Electromagnetic device for coating flat metal products by means of continuous hot dipping, and coating process thereof
US4273800A (en) Coating mass control using magnetic field
CN206768218U (en) Remove the laser cladding apparatus of laser cladding layer stomata/field trash
US5662969A (en) Hot coating by induction levitation
JPS6058399B2 (en) Stirring device for reverberatory furnace
JP2002043042A (en) Single-turn induction heating coil
US3887721A (en) Metallic coating method
US6240120B1 (en) Inductive melting of fine metallic particles
JPH0627645Y2 (en) Hot-dip galvanizing line starting from hot rolled coil
US4106546A (en) Method for inductively stirring molten steel in a continuously cast steel strand
US1811644A (en) Edwin fitch northrup
JPS6354778B2 (en)
JP3706473B2 (en) High-frequency electromagnet for levitation of molten metal and air pot equipped with this high-frequency electromagnet
JP2633363B2 (en) Method and apparatus for melting and brightening steel strip with electric tin
JP2555768B2 (en) Continuous metal casting apparatus and casting method
AU685907B2 (en) Hot coating by induction levitation
JPH11216552A (en) Electromagnetic meniscus control device of continuous casting and control method therefor
JPS6052567A (en) Galvanizing furnace
US3813470A (en) Horizontal coreless induction furnaces
JP3110281B2 (en) Holding container for molten metal induction heating device
SU754708A1 (en) Induction channel furnace