JPS6058302B2 - Method for predicting molten metal solidification position in continuous molten plating - Google Patents

Method for predicting molten metal solidification position in continuous molten plating

Info

Publication number
JPS6058302B2
JPS6058302B2 JP19185982A JP19185982A JPS6058302B2 JP S6058302 B2 JPS6058302 B2 JP S6058302B2 JP 19185982 A JP19185982 A JP 19185982A JP 19185982 A JP19185982 A JP 19185982A JP S6058302 B2 JPS6058302 B2 JP S6058302B2
Authority
JP
Japan
Prior art keywords
steel strip
temperature
molten metal
plating
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19185982A
Other languages
Japanese (ja)
Other versions
JPS5983754A (en
Inventor
一雄 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19185982A priority Critical patent/JPS6058302B2/en
Publication of JPS5983754A publication Critical patent/JPS5983754A/en
Publication of JPS6058302B2 publication Critical patent/JPS6058302B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は鋼帯の連続溶融メッキにおいてメッキ後の鋼
帯表面の溶融金属の凝固位置を予測する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for predicting the solidification position of molten metal on the surface of a steel strip after plating in continuous hot-dip plating of a steel strip.

たとえば連続溶融亜鉛メッキ設備で亜鉛メッキ鋼板を
製造する方法は、連続焼鈍炉を出た鋼帯を溶融亜鉛浴(
以下メッキ浴という)内を通過させた後、鋼帯に付着し
た亜鉛が溶融状態にある間に気体噴射ノズルにて亜鉛付
着量を調整し、その後冷却装置で冷却する方法によつて
行われる。
For example, in the method of manufacturing galvanized steel sheets using continuous hot-dip galvanizing equipment, the steel strip leaving the continuous annealing furnace is heated in a hot-dip zinc bath.
After passing through a plating bath (hereinafter referred to as a plating bath), while the zinc adhering to the steel strip is in a molten state, the amount of zinc adhering is adjusted using a gas injection nozzle, and then cooling is performed using a cooling device.

この製造法においてミニマム・スパングル(ゼロスパ
ングルともいう)の亜鉛メッキ鋼板を製造する場合は、
前記亜鉛付着量の調整の後で鋼帯表面の溶融亜鉛が凝固
する直前に鋼帯をミニマム・スパングル装置(水に薬品
を添加した液を吹付ける装置)を通過させる。 ここで
、スパングルのある通常の亜鉛メッキ鋼板を製造する場
合に、気体噴射ノズルによる亜鉛付着量調整後の鋼帯表
面の溶融亜鉛の凝固位置(鋼帯進行方向にみた位置)が
冷却装置以後になるようであれば冷却装置のロールに亜
鉛が付着するという問題が生じる。
When manufacturing minimum spangle (also called zero spangle) galvanized steel sheets using this manufacturing method,
After adjusting the amount of zinc deposited, and just before the molten zinc on the surface of the steel strip solidifies, the steel strip is passed through a minimum spangle device (a device that sprays water with a chemical added thereto). When manufacturing ordinary galvanized steel sheets with spangles, the solidification position of molten zinc on the surface of the steel strip (position viewed in the direction of steel strip progress) after adjusting the amount of zinc coating using a gas injection nozzle is determined after the cooling device. If this happens, there will be a problem that zinc will adhere to the rolls of the cooling device.

またミニマム・スパングルの亜鉛メッキ鋼板を製造する
場合には、鋼帯表面の溶融亜鉛の凝固位置が鋼帯進行方
向に移動可能になつているミニマム・スパングル装置の
移動調節範囲内にないときは所望のミニマム・スパング
ル製品を製造することができない。すなわちミニマム・
スパングル装置内を通過する間の鋼帯表面の亜鉛が未凝
固のときは付着亜鉛の表面がビット状の肌荒れ外観を呈
し、ミニマム・スパングル装置に入る前に鋼帯表面の亜
鉛がすでに凝固しているときはスパングルが発生する。
これらのことから、気体噴射ノズルによる亜鉛付着量調
整後の鋼帯表面の溶融亜鉛の凝固位置は冷却装置よりも
前方であり、かつミニ・スパングル製品製造のときはミ
ニマム、スパングル装置内を通過する鋼帯表面上の亜鉛
の凝固進行状態が適正であることが要求される。 気体
噴射ノズルによる亜鉛付着量調整後の鋼帯表面の溶融亜
鉛の凝固位置は亜鉛付着量、鋼帯の寸法(厚さ、幅)、
鋼帯の速度、焼鈍炉出側(メツキ浴入側)の鋼帯の温度
、メッキ浴の温度などによつて変化し、また気体噴射ノ
ズルの噴射気体の圧力および温度、大気の温度などによ
つても変化する。
In addition, when manufacturing minimum spangle galvanized steel sheets, if the solidification position of molten zinc on the surface of the steel strip is not within the movement adjustment range of the minimum spangle device that can move in the direction of steel strip movement, it is necessary to cannot produce minimum spangle products. In other words, the minimum
If the zinc on the surface of the steel strip is not solidified while passing through the spangle device, the surface of the deposited zinc will have a bit-like rough appearance, and the zinc on the surface of the steel strip will have already solidified before entering the minimum spangle device. When there is a spangle will occur.
For these reasons, the solidification position of the molten zinc on the steel strip surface after adjusting the amount of zinc deposited by the gas injection nozzle is in front of the cooling device, and when manufacturing mini-spangle products, it passes through the spangle device at a minimum. It is required that the state of solidification of zinc on the surface of the steel strip be appropriate. The solidification position of molten zinc on the surface of the steel strip after adjusting the amount of zinc deposited using a gas injection nozzle is determined by the amount of zinc deposited, the dimensions of the steel strip (thickness, width),
It varies depending on the speed of the steel strip, the temperature of the steel strip on the exit side of the annealing furnace (on the plating bath side), the temperature of the plating bath, etc. It also depends on the pressure and temperature of the gas injected from the gas injection nozzle, the temperature of the atmosphere, etc. It always changes.

被メッキ材は寸法、材質の異なるものも含めてコイルを
捲戻した鋼帯を順次溶接し連続して通板するので鋼帯の
寸法、速度、温度はコイル単位で変化し、亜鉛付着量は
コイル単位で或いは同一コイル内で数回程度変化し、気
体噴射ノズルの噴射気体の圧力は亜鉛付着量に合わせて
変更される。またメッキ浴の温度、気体噴射ノズルの噴
射気体の温度、大気の温度なども変動する。このように
して鋼帯表面の溶融亜鉛の凝固位置は頻繁にしかも複雑
に変化するのであるが従来は溶融亜鉛の凝固位置を予測
する適当な方法がなかつたために作業者が目視によつて
凝固位置を観測し、該凝固位置が適正な範囲内にくるよ
う経験的に鋼帯の速度を調整したり、またミニマム・ス
パングル装置が適正な位置になるように該装置を移動調
節したりしていた。しかしながら、このような作業者に
よる調整方法は頻繁に変化する凝固位置を常時観測する
ことは作業者の負荷が大きく、また複雑に変化する凝固
位置を正確に予測したり速度調整をしたりすることは困
難であり、メッキ製品の外観不良や冷却装置のロールに
亜鉛が付着する等の問題が発生していた。本発明は上記
のような従米法における問題点を解決するための凝固位
置の予測方法を提供するものであり、その要旨は連続焼
鈍炉、溶融金属浴槽、気体噴射によるメッキ付着量調整
装置等を備えた溶融金属メッキ設備による鋼帯の連続溶
融メッキにおいて、焼鈍炉出側の鋼帯温度と溶融金属浴
の温度と鋼帯の厚さとを用いて溶融金属浴出側の鋼帯の
温度を算出し、該鋼帯が気体噴射によつて奪われる熱量
と該鋼帯の保有顕熱と溶融金属の凝固潜熱とを用いて熱
量計算により鋼帯表面の溶.融金属の凝固する位置を溶
融金属浴面からの鋼帯進行方向の距離として算出するこ
とを特徴とする連続溶融メッキにおける溶融金属の凝固
位置の予測方法である。
The steel strips to be plated, including those of different dimensions and materials, are rolled up into coils and then welded one after the other and are passed through the steel strip continuously, so the dimensions, speed, and temperature of the steel strip vary from coil to coil, and the amount of zinc deposited varies from coil to coil. The pressure changes for each coil or several times within the same coil, and the pressure of the gas injected from the gas injection nozzle is changed in accordance with the amount of zinc deposited. Furthermore, the temperature of the plating bath, the temperature of the gas injected from the gas injection nozzle, the temperature of the atmosphere, etc. also vary. In this way, the solidification position of the molten zinc on the surface of the steel strip changes frequently and in a complicated manner, but in the past, there was no suitable method for predicting the solidification position of the molten zinc, so workers had to visually check the solidification position. They observed this and empirically adjusted the speed of the steel strip so that the solidification position was within the appropriate range, and also adjusted the movement of the minimum spangle device so that it was in the appropriate position. . However, this adjustment method by the operator requires a heavy burden on the operator to constantly observe the coagulation position, which changes frequently, and it is difficult to accurately predict the coagulation position, which changes in a complicated manner, or to adjust the speed. However, problems such as poor appearance of plated products and adhesion of zinc to the rolls of cooling equipment have occurred. The present invention provides a method for predicting the solidification position in order to solve the problems in the conventional method as described above. In continuous hot-dip plating of steel strip using the equipped molten metal plating equipment, the temperature of the steel strip on the exit side of the molten metal bath is calculated using the temperature of the steel strip on the exit side of the annealing furnace, the temperature of the molten metal bath, and the thickness of the steel strip. The melting on the surface of the steel strip is calculated using the amount of heat removed from the steel strip by the gas injection, the sensible heat retained by the steel strip, and the latent heat of solidification of the molten metal. This is a method for predicting the solidification position of molten metal in continuous hot-dip plating, which is characterized by calculating the solidification position of molten metal as the distance from the molten metal bath surface in the steel strip traveling direction.

゛以下、本発明を連続溶融亜鉛メッキに適用した,実施
例に基づき詳細に説明する。
゛Hereinafter, the present invention will be explained in detail based on an example in which the present invention is applied to continuous hot-dip galvanizing.

第1図は亜鉛メッキ設備の要部構成と本発明方法の実施
に必要な各種測定機器の配置例を示す図である。第1図
において鋼帯2は焼鈍炉1で焼鈍され焼鈍炉出側に設け
た温度計3にてその温度が測定される。4はメッキ浴槽
でメッキ浴5の温度は温度計6にて測定される。
FIG. 1 is a diagram showing the configuration of main parts of galvanizing equipment and an example of the arrangement of various measuring instruments necessary for carrying out the method of the present invention. In FIG. 1, a steel strip 2 is annealed in an annealing furnace 1, and its temperature is measured with a thermometer 3 provided on the exit side of the annealing furnace. 4 is a plating bath, and the temperature of the plating bath 5 is measured with a thermometer 6.

メッキ浴5内を通過した鋼帯2は気体噴射ノズル7にて
亜鉛付着量が調整される。10は噴射気体の圧力調節計
、9は圧力計、11は調節弁、8は噴射気体の温度を測
定するための温度計である。
The amount of zinc deposited on the steel strip 2 that has passed through the plating bath 5 is adjusted by a gas injection nozzle 7. 10 is a pressure regulator for the injected gas, 9 is a pressure gauge, 11 is a control valve, and 8 is a thermometer for measuring the temperature of the injected gas.

亜鉛付着量が調整された鋼帯2はミニマム・スパングル
装置12を通過する。ミニマム・スパングル装置12は
移動装置13によつてノ鋼帯進行方向(上下方向)およ
び鋼帯幅方向に移動可能で装置内のノズルを鋼帯2に対
して挾むように装入される。その後、自然空冷された鋼
帯2は冷却装置15によつて冷却される。16は鋼帯2
の速度を測定するための速度計、17は亜鉛付、着量測
定器である。
The steel strip 2 whose zinc coating amount has been adjusted passes through a minimum spangle device 12. The minimum spangle device 12 is movable in the steel strip traveling direction (vertical direction) and the steel strip width direction by a moving device 13, and is inserted so as to sandwich the nozzle in the device against the steel strip 2. Thereafter, the naturally air-cooled steel strip 2 is cooled by the cooling device 15. 16 is steel strip 2
17 is a zinc-coated coating amount measuring device.

第2図は第1図の設備内の各装置を通過する鋼帯の温度
降下状況を示す。
FIG. 2 shows the temperature drop of the steel strip passing through each device in the facility shown in FIG.

Tsfは焼鈍炉出側の温度、Tspiはメッキ浴入側の
温度である。ただし、焼鈍炉出側からメッキ浴入側まで
の間はシー゛ルされていて温度降下は殆んどないのでT
spiとTsfは等しいと考えて差支えない。次にメッ
キ浴内で対流熱伝達により鋼帯の熱が奪われ、鋼帯の温
度は入側温度Tspiから出側温度TspOに降下する
。このときの温度TspOは入側温度Tspi(Tsf
)とメッキ浴温度と鋼帯速度と板厚などによつて変わる
。メッキ浴面から亜鉛付着量調整のための気体噴射ノズ
ルまでの距離は通常200Tm程度なので、この間での
温度降下は小さく鋼帯の温度はメッキ浴出側の温度Ts
pOのまま気体噴射ノズルまで到達するものと考えて差
支えない。次に鋼帯は気体噴射ノズルから噴射された気
体により短時間に熱を奪われて鋼帯の温度はTsnに降
下する。このときの温度降下量は鋼帯の温度TspOと
噴射気体の温度、重量などによつて変化する。気体噴射
ノズルからミニマム●スパングル装置の入口までの間、
鋼帯の温度は輻射によりTseに降下する。ミニマム・
スパングル装置内では鋼帯はミニマム・スパングル液の
吹付けにより短時間に熱を奪われ鋼帯の温度は降下して
溶融亜鉛の凝固点となる。スパングルのある通常の亜鉛
メッキ鋼板製造の場合は第1図のミニマム・スパングル
装置は鋼帯通板経路から退避され、鋼帯は冷却装置1・
5にいたるまで自然冷却される(第2図で点線で示す)
Tsf is the temperature on the exit side of the annealing furnace, and Tspi is the temperature on the plating bath entry side. However, the area from the annealing furnace exit side to the plating bath side is sealed and there is almost no temperature drop, so T
It is safe to assume that spi and Tsf are equal. Next, heat is removed from the steel strip by convection heat transfer within the plating bath, and the temperature of the steel strip drops from the inlet temperature Tspi to the outlet temperature TspO. The temperature TspO at this time is the inlet temperature Tspi(Tsf
) and varies depending on the plating bath temperature, steel strip speed, plate thickness, etc. The distance from the plating bath surface to the gas injection nozzle for adjusting the amount of zinc deposited is usually about 200 Tm, so the temperature drop during this distance is small and the temperature of the steel strip is equal to the temperature Ts at the exit side of the plating bath.
It is safe to assume that the gas reaches the gas injection nozzle while remaining at pO. Next, heat is removed from the steel strip in a short time by the gas injected from the gas injection nozzle, and the temperature of the steel strip drops to Tsn. The amount of temperature drop at this time varies depending on the temperature TspO of the steel strip, the temperature and weight of the injected gas, and the like. From the gas injection nozzle to the entrance of the minimum ● spangle device,
The temperature of the steel strip drops to Tse due to radiation. minimum·
In the spangle device, the steel strip is sprayed with minimum spangle liquid to remove heat in a short period of time, and the temperature of the steel strip drops to the freezing point of molten zinc. In the case of normal galvanized steel sheet production with spangles, the minimum spangle device shown in Figure 1 is evacuated from the steel strip threading path, and the steel strip is placed in the cooling device 1.
It is naturally cooled down to 5 (indicated by the dotted line in Figure 2).
.

さて、このような亜鉛メッキラインにおいて気体噴射ノ
ズルによる亜鉛付着量調整後の鋼帯表面の溶融亜鉛の凝
固位置を各種測定結果を用いて演算により求める方法に
ついて説明する。溶融亜鉛の凝固位置の算出は以下に述
べる(1)〜(5)の手順に従つて行う。(1)メッキ
浴から出た時の鋼帯の温度TspOの計算ここでCs:
鋼帯の比熱(定数) ρs:鋼帯の密度(定数) t:鋼帯の厚さ(変数・・・公称値) ■:鋼帯の速度(変数・・・実測値) Hp:メツキ浴内の溶融亜鉛と鋼帯間の対流熱 伝達係
数(定数)1:メツキ浴内の鋼帯の長さ(定数) Tzp:メツキ浴の温度(変数・・・実測値)Tsf:
焼鈍炉出側の鋼帯の温度(変数・・・実測 値)(2)
気体噴射ノズルから気体により奪われる熱量Qnの計算
ここで G:噴射気体の重量流量 P:噴射気体の圧力(変数・・・実測値)g:重力の加
速度(定数) ρ:噴射気体の密度(定数) Tg:噴射気体の温度(変数・・・実測値)PO:大気
の圧力(定数)SO:気体噴射ノズルの開口面積(定数
)ここで Wn:気体噴射ノズルの幅(定数) Cg:噴射気体の比熱(定数) W:鋼帯の幅(変数・・・公称値) (3)鋼帯の顕熱QSの計算 −ー 一ここでW
:鋼帯の幅(変数・・・公称値) TsO:溶融亜鉛が凝固した時の鋼帯の温度(定 数
・・・?融亜鉛の凝因温度TOと同じ)(4)溶融亜鉛
の凝固により発生する熱量Qmの計算ここで Qm:亜鉛の凝固熱(定数) M:亜鉛付着量(変数・・・実測値または目標値)(5
) ミニマム・スパングル液の吹付により奪われる熱量
Qeの計算ここで h:ミニマム●スパングル液と鋼帯との間の熱 伝達係
数(定数)L:ミニマム●スパングル吹付液有効吹付長
(定数)Tw:ミニマム●スパングル液吹付スプレー
温 度(定数)(6)鋼帯表面の溶融亜鉛の凝固位置X
の計算メッキ浴出側からミニマム●スパングル装置まで
の間での鋼帯の輻射による損失熱量Qrはミニマム・ス
パングル装置直前の鋼帯の温度をTseとすると、ここ
で、 σ:ステフアン●ボルツマン定数 ここで、 Ta:大気の温度(変数・・・実測値) 第3図は以上の計算手順を図に示したものである。
Now, a method of calculating the solidification position of molten zinc on the surface of the steel strip after adjusting the amount of zinc deposited by the gas injection nozzle in such a galvanizing line will be described using various measurement results. Calculation of the solidification position of molten zinc is performed according to procedures (1) to (5) described below. (1) Calculation of the temperature TspO of the steel strip when it comes out of the plating bath, where Cs:
Specific heat of the steel strip (constant) ρs: Density of the steel strip (constant) t: Thickness of the steel strip (variable...nominal value) ■: Speed of the steel strip (variable...actual value) Hp: Inside the plating bath Convection heat transfer coefficient (constant) between molten zinc and steel strip 1: Length of steel strip in plating bath (constant) Tzp: Temperature of plating bath (variable...actual value) Tsf:
Temperature of the steel strip on the exit side of the annealing furnace (variable...actually measured value) (2)
Calculation of the amount of heat Qn taken away by the gas from the gas injection nozzle where G: Weight flow rate of the injection gas P: Pressure of the injection gas (variable...actual value) g: Acceleration of gravity (constant) ρ: Density of the injection gas ( (constant) Tg: Temperature of the injected gas (variable... actually measured value) PO: Atmospheric pressure (constant) SO: Opening area of the gas injection nozzle (constant) where Wn: Width of the gas injection nozzle (constant) Cg: Injection Specific heat of gas (constant) W: Width of steel strip (variable...nominal value) (3) Calculation of sensible heat QS of steel strip --- Here, W
: Width of steel strip (variable...nominal value) TsO: Temperature of steel strip when molten zinc solidifies (constant...? Same as coagulation temperature TO of molten zinc) (4) Solidification of molten zinc Calculation of the amount of heat generated by
) Calculation of the amount of heat Qe removed by spraying the minimum spangle liquid, where h: Minimum Heat transfer coefficient (constant) between the spangle liquid and the steel strip L: Minimum Effective spraying length of the spangle liquid (constant) Tw: Minimum Spangle liquid spraying temperature (constant) (6) Solidification position of molten zinc on the steel strip surface
Calculation The amount of heat loss Qr due to radiation in the steel strip from the outlet side of the plating bath to the minimum spangle device is given by Tse, the temperature of the steel strip immediately before the minimum spangle device, where: σ: Stephann Boltzmann constant here where, Ta: atmospheric temperature (variable: actually measured value) Figure 3 shows the above calculation procedure in a diagram.

以上の手順によつて気体噴射による亜鉛付着量調整後の
鋼帯表面の溶融亜鉛の凝固位置(メッキ浴面からみた鋼
帯進行方向距離x)を適当な周期で求める。
By the above procedure, the solidification position of molten zinc on the surface of the steel strip (distance x in the steel strip traveling direction as seen from the plating bath surface) after adjusting the amount of zinc deposited by gas injection is determined at appropriate intervals.

そして、このようにして求めた凝固位置(距離x)がス
パングルのある通常の亜鉛メッキ鋼板を製造する場合は
冷却装置まての距離を超えていないかをチェックし、ま
たミニマムスパングルの亜鉛メッキ鋼板を製造する場合
にはミニマムスパングル装置の移動調節範囲内を超えて
いないかチェックし超えていない場合は鋼帯の速度はそ
のままとし超えている場合は以下の計算式により凝固位
置が所定の位置(これを知とする)を超えないような鋼
帯の速度Vpを求めて速度修正を行う。ただし、Qr=
Qs+Qm−Qn−Qe 以上の一連の計算はコンピューターを用いて行うのが適
当でありまた速度修正は自動制御装置により自動化する
ことができる。
When producing a normal galvanized steel sheet with spangles, check whether the solidification position (distance When manufacturing, it is checked whether the movement adjustment range of the minimum spangle device is exceeded. If it is not exceeded, the speed of the steel strip remains as it is, and if it is exceeded, the solidification position is set to a predetermined position ( The speed is corrected by finding the speed Vp of the steel strip such that it does not exceed the speed Vp. However, Qr=
Qs+Qm-Qn-Qe It is appropriate to perform the above series of calculations using a computer, and the speed correction can be automated by an automatic controller.

以上、述べたごとく本発明によりメッキ浴を出た後の鋼
帯表面の溶融亜鉛の凝固位置を予測し、必要により鋼帯
の速度修正を行うことによりメッキ製品の外観の良好化
および冷却装置のロールへのメッキ金属の付着を防止す
ることができる。なお以上は連続溶融亜鉛メッキを例に
とつて説明したが、本発明は亜鉛メッキに限定されるも
のではなく、錫メッキ、アルミメッキなど他の溶融金属
メッキにも適用できることはもちろんである。
As described above, according to the present invention, the solidification position of molten zinc on the surface of the steel strip after leaving the plating bath is predicted, and the speed of the steel strip is corrected as necessary, thereby improving the appearance of the plated product and improving the cooling system. It is possible to prevent plating metal from adhering to the roll. Although the above description has been made using continuous hot-dip galvanizing as an example, the present invention is not limited to galvanizing, and can of course be applied to other hot-dip metal plating such as tin plating and aluminum plating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は亜鉛メッキ設備の要部構成と本発明の実施に必
要な各種測機器の配置例を示す図、第2図は第1図の設
備内の各装置を通過する鋼帯の温度降下状況を示す図、
第3図は本発明の実施例における計算手順を示す図であ
る。 1・・・・・・焼鈍炉、2・・・・・・鋼帯、3・・・
・・・温度計、4・・・・メッキ浴槽、5・・・・・・
メッキ浴、6・・・・・・温度計、7・・・・・・気体
噴射ノズル、8・・・・・・温度計、9・・・・・・圧
力計、10・・・・・・圧力調節計、11・・・・・・
調節弁、12・・・・ミニマム・スパングル装置、13
・・・・・移動装置、14・・・・・・ロール、15・
・・・・冷却装置、16・・・・・速度計、17・・・
・・・亜鉛付着量測定器。
Figure 1 is a diagram showing the configuration of the main parts of galvanizing equipment and an example of the arrangement of various measuring instruments necessary for implementing the present invention, and Figure 2 is a diagram showing the temperature drop of the steel strip passing through each device in the equipment shown in Figure 1. A diagram showing the situation,
FIG. 3 is a diagram showing a calculation procedure in an embodiment of the present invention. 1... Annealing furnace, 2... Steel strip, 3...
...Thermometer, 4...Plated bathtub, 5...
Plating bath, 6...Thermometer, 7...Gas injection nozzle, 8...Thermometer, 9...Pressure gauge, 10...・Pressure regulator, 11...
Control valve, 12... Minimum spangle device, 13
...Movement device, 14...Roll, 15.
...Cooling device, 16...Speedometer, 17...
...Zinc adhesion measuring device.

Claims (1)

【特許請求の範囲】 1 連続焼鈍炉、溶融金属浴槽、気体噴射によるメッキ
付着量調整装置等を備えた溶融金属メッキ設備による鋼
帯の連続溶融メッキにおいて、焼鈍炉出側の鋼帯温度と
溶融金属浴の温度と鋼帯の厚さと速度とを用いて溶融金
属浴出側の鋼帯の温度を算出し、該鋼帯が気体噴射によ
つて奪われる熱量と該鋼帯の保有顕熱と溶融金属の凝固
潜熱とを用いて熱量計算により鋼帯表面の溶融金属の凝
固する位置を溶融金属浴面からの鋼帯進行方向の距離と
して算出することを特徴とする連続溶融メッキにおける
溶融金属の凝固位置の予測方法。 2 前記連続溶融メッキが溶融亜鉛メッキである特許請
求の範囲第1項記載の連続溶融メッキにおける溶融金属
の凝固位置の予測方法。
[Claims] 1. In continuous hot-dip plating of a steel strip using a hot-dip metal plating equipment equipped with a continuous annealing furnace, a molten metal bath, a plating coating amount adjustment device using gas injection, etc., the temperature and melting of the steel strip on the exit side of the annealing furnace The temperature of the steel strip on the outlet side of the molten metal bath is calculated using the temperature of the metal bath, the thickness and speed of the steel strip, and the amount of heat taken away from the steel strip by the gas injection and the sensible heat possessed by the steel strip are calculated. The solidification position of the molten metal on the surface of the steel strip is calculated as the distance in the steel strip traveling direction from the molten metal bath surface by calorific value calculation using the latent heat of solidification of the molten metal. Method for predicting coagulation location. 2. The method for predicting the solidification position of molten metal in continuous hot-dip plating according to claim 1, wherein the continuous hot-dip plating is hot-dip galvanizing.
JP19185982A 1982-11-02 1982-11-02 Method for predicting molten metal solidification position in continuous molten plating Expired JPS6058302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19185982A JPS6058302B2 (en) 1982-11-02 1982-11-02 Method for predicting molten metal solidification position in continuous molten plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19185982A JPS6058302B2 (en) 1982-11-02 1982-11-02 Method for predicting molten metal solidification position in continuous molten plating

Publications (2)

Publication Number Publication Date
JPS5983754A JPS5983754A (en) 1984-05-15
JPS6058302B2 true JPS6058302B2 (en) 1985-12-19

Family

ID=16281685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19185982A Expired JPS6058302B2 (en) 1982-11-02 1982-11-02 Method for predicting molten metal solidification position in continuous molten plating

Country Status (1)

Country Link
JP (1) JPS6058302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752508A (en) * 1987-02-27 1988-06-21 Rasmet Ky Method for controlling the thickness of an intermetallic (Fe-Zn phase) layer on a steel strip in a continuous hot-dip galvanizing process

Also Published As

Publication number Publication date
JPS5983754A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
JP6778258B2 (en) Hot-dip galvanized layer thickness control systems and methods for continuously varying thickness strip materials
CA1102186A (en) Process of hot-dip galvanizing and alloying
CN106536088A (en) Secondary cooling control method for continuous casting machine and secondary cooling control device
KR101879084B1 (en) Forwarded cooling apparatus coating facility including the same
JPS6058302B2 (en) Method for predicting molten metal solidification position in continuous molten plating
WO1980000977A1 (en) Process of producing one-side alloyed galvanized steel strip
JPH0770727A (en) Process and apparatus for producing zero spangle galvanized steel sheet
JP4990448B2 (en) Continuous annealing furnace cooling zone in IF steel combined with continuous annealing and hot dipping.
JPH06322504A (en) Deposition controller for hot dip coated steel sheet
JPS63235055A (en) Method for controlling surface temperature of continuously cast slab
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
JPH05156419A (en) Alloying control method for galvannealed steel sheet
JP2617667B2 (en) Method of controlling winding temperature of hot-rolled steel strip
JPH0533112A (en) Method and apparatus for producing galvannealed steel sheet
JP3194447B2 (en) Rolled material cooling control method
JP5824826B2 (en) Temperature distribution estimation device in plating bath, temperature distribution estimation method, and operation method of continuous molten metal plating process
JPH05171396A (en) Production of galvannealed steel sheet
JP2000192214A (en) Coating weight measuring device
JPH08276258A (en) Method for estimating solidified shell thickness of continuously cast slab
JPS6024742B2 (en) Secondary cooling water control method in continuous casting
JPH0625818A (en) Apparatus for production of bright steel sheet
Ranjan et al. Artificial Intelligence-Based Descriptive, Predictive, and Prescriptive Coating Weight Control Model for Continuous Galvanizing Line
Felix et al. Reduction of dross in galvanized sheets through automatic control of snout positioning in continuous operation
JP2003049257A (en) Method and apparatus for cooling hot-dip metal coated steel sheet
JPS6349589B2 (en)