JP2000317513A - Method for controlling coiling temperature of hot-rolled steel sheet - Google Patents

Method for controlling coiling temperature of hot-rolled steel sheet

Info

Publication number
JP2000317513A
JP2000317513A JP11127742A JP12774299A JP2000317513A JP 2000317513 A JP2000317513 A JP 2000317513A JP 11127742 A JP11127742 A JP 11127742A JP 12774299 A JP12774299 A JP 12774299A JP 2000317513 A JP2000317513 A JP 2000317513A
Authority
JP
Japan
Prior art keywords
water
steel sheet
boiling state
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11127742A
Other languages
Japanese (ja)
Other versions
JP3480366B2 (en
Inventor
Shigemasa Nakagawa
繁政 中川
Yukihiko Yakita
幸彦 焼田
Hisayoshi Tachibana
久好 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12774299A priority Critical patent/JP3480366B2/en
Publication of JP2000317513A publication Critical patent/JP2000317513A/en
Application granted granted Critical
Publication of JP3480366B2 publication Critical patent/JP3480366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a coiling temp. control method of a hot-rolled steel sheet, with which the coiling temp. is controlled so as to match to a target temp. at high accuracy, even in the case the coiling temp. is in the low temp. range, such as 400-500 deg.C, or even in the case a scale thickness on the steel sheet is thick or the steel sheet has the large ratio of heavy component, such as Si, Ni, related to the scale thickness. SOLUTION: The temp. TMHF of min. heat flux point changed from a film boiling state to a transition boiling state, and the temp. TCHF of critical heat flux point changed from the transition boiling state to a nuclear boiling state on the water-cooling surface of the hot-rolled steel sheet with respect to a prescribed sampling point, are estimated, respectively. Further, the boiling state of the water-cooling surface is estimated from the relation of respective temperatures TMHF and TCHF of the min. heat flux point and the critical heat flux point, and the temperature of water-cooling surface of the hot-rolled steel sheet, and the heat transfer coefficient of the water-cooling is calculated from a model formula of the heat transfer coefficient of the water-cooling according to the estimated boiling state. Then this heat transfer coefficient of the water-cooling surface to the prescribed sampling point is calculated by using this heat transfer coefficient of the water-cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延される鋼
板をランアウトテーブル上で所望の巻取温度に冷却する
熱延鋼板の巻取温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a winding temperature of a hot-rolled steel sheet for cooling a steel sheet to be hot-rolled to a desired winding temperature on a run-out table.

【0002】[0002]

【従来の技術】鋼板の熱間圧延工程において仕上圧延後
の鋼板は、仕上圧延機から巻取機までをランアウトテー
ブルによって搬送される間に、ランアウトテーブルの上
下に設けられている水冷装置によって所定温度まで冷却
された後、巻取機に巻き取られている。鋼板の熱間圧延
においては、この仕上圧延後の冷却の様態が鋼板の機械
的特性を決定する重要な因子となっている。
2. Description of the Related Art In a hot rolling process of a steel sheet, a steel sheet after finish rolling is transported from a finish rolling mill to a winder by a run-out table by a water-cooling device provided above and below the run-out table. After being cooled to a temperature, it is wound up by a winder. In hot rolling of a steel sheet, the manner of cooling after the finish rolling is an important factor that determines the mechanical properties of the steel sheet.

【0003】この冷却制御は、仕上圧延機の下流に設置
した多数の水冷装置(冷却バンク)による鋼板表面への
注水をバルブの開閉により入り切り(オン/オフ)した
り、流量調節弁にて注水量を増減することで行ってい
る。たとえば、板厚、板幅、鋼板の搬送速度、仕上出口
温度および巻取温度等の時々刻々の実績値を計算機に入
力するとともに、その演算結果に基づいて、目標巻取温
度が実現できるように冷却バンクのオン/オフを制御し
て行われている。
[0003] In this cooling control, the water injection into the steel sheet surface by a number of water cooling devices (cooling banks) installed downstream of the finishing mill is turned on / off by opening and closing a valve, or injected by a flow control valve. This is done by increasing or decreasing the amount of water. For example, while inputting the instantaneous actual values such as the sheet thickness, the sheet width, the conveying speed of the steel sheet, the finishing outlet temperature, and the winding temperature to the computer, the target winding temperature can be realized based on the calculation result. This is performed by controlling on / off of the cooling bank.

【0004】しかし、熱延ミルにおいては、通常加速圧
延を行うので材料の搬送速度が変化するのに加えて、仕
上出口温度がスキッドマーク等によって常時変動してお
り、また、鋼板の水冷に際しては、表面温度や表面性状
で水冷面の沸騰状態が変動する。従って、これらの外乱
に対して巻取温度を精度良く制御することが、熱延鋼板
の製造にあたって重要な課題である。
[0004] However, in a hot rolling mill, usually, accelerated rolling is performed, so that not only the material conveying speed is changed, but also the finishing outlet temperature is constantly fluctuated due to skid marks and the like. The boiling state of the water-cooled surface fluctuates depending on the surface temperature and surface properties. Therefore, it is an important subject in manufacturing a hot-rolled steel sheet to accurately control the winding temperature with respect to these disturbances.

【0005】上記外乱に対応して巻取温度を制御する方
法としては、例えば特開昭58−221606号公報に
開示されている制御方法がある。この制御方法では、ま
ず仕上圧延機出口で、材料温度および板厚を一定の時間
間隔または一定の距離間隔でサンプリング測定し、この
サンプリング点が巻取温度計に到達するまでサンプリン
グ点をトラッキングする。そして、現時刻までにサンプ
リングした全サンプリング点について以下の計算を行
う。
As a method of controlling the winding temperature in response to the disturbance, there is, for example, a control method disclosed in Japanese Patent Application Laid-Open No. 58-221606. In this control method, first, the material temperature and the sheet thickness are sampled and measured at a fixed time interval or a fixed distance interval at the finishing mill outlet, and the sampling points are tracked until the sampling points reach the winding thermometer. Then, the following calculation is performed for all sampling points sampled up to the current time.

【0006】(1) 材料温度を測定して各サンプリング点
が1サンプリング周期で移動する量を求め、各サンプリ
ング点の位置を現在位置に修正する。 (2) サンプリング点の存在する冷却バンクを求め、実績
注水パターンを入力してこのサンプリング点での材料温
度を求め、各サンプリング点での熱伝達率を各式より計
算し、さらにサンプリング点での材料温度を現在温度に
修正する。 (3) 仕上圧延機の加速率、減速率および加減速タイミン
グの設定値より将来の速度変化を予測してこのサンプリ
ング点が巻取温度計に達するまでの各冷却バンクの通過
予測時間を予測する。
(1) The material temperature is measured to determine the amount by which each sampling point moves in one sampling cycle, and the position of each sampling point is corrected to the current position. (2) Find the cooling bank where the sampling point is located, input the actual water injection pattern, find the material temperature at this sampling point, calculate the heat transfer coefficient at each sampling point from each formula, and further calculate the heat transfer coefficient at each sampling point. Correct the material temperature to the current temperature. (3) Predict future speed changes from the set values of the finishing mill's acceleration rate, deceleration rate, and acceleration / deceleration timing, and predict the predicted passage time of each cooling bank until this sampling point reaches the winding thermometer. .

【0007】(4) 各冷却バンクの実績注水パターンを入
力し、各冷却バンクの通過予測時間を用いて、予測巻取
温度を計算する。 (5) 予測巻取温度が目標温度に一致していなければ、予
め定められた注水バンクの優先順位に従い、目標巻取温
度になるように、このサンプリング点より下流側にある
冷却バンクの予定注水パターンを変更する。このように
して得られた全サンプリング点についての注水パターン
を必要なタイミングで出力することによって巻取温度を
制御する。
(4) An actual water injection pattern of each cooling bank is input, and a predicted winding temperature is calculated using a predicted passage time of each cooling bank. (5) If the predicted winding temperature does not match the target temperature, the scheduled injection of the cooling bank downstream from this sampling point so that the target winding temperature is reached, according to the predetermined priority of the water injection bank. Change the pattern. The winding temperature is controlled by outputting the thus obtained water injection pattern for all sampling points at a necessary timing.

【0008】図1は、上述の巻取温度制御を実行する冷
却設備の概要を示す模式図である。仕上圧延機2から出
た鋼板1は、ランアウトテーブル3上で冷却装置4,5
からの注水により冷却されて巻取機6に巻き取られる。
このとき、冷却前の鋼板温度が温度計7により、また、
冷却後の鋼板温度が温度計8によりそれぞれ測定され
る。巻取温度コントローラ9は基本的にフィードフォワ
ード制御器であって、冷却後の温度(巻取温度)を予測
計算し、その計算値が目標値に一致するように冷却装置
4,5からの注水量を決定する。
FIG. 1 is a schematic diagram showing an outline of a cooling facility for performing the above-described winding temperature control. The steel sheet 1 coming out of the finishing mill 2 is cooled on the run-out table 3 by the cooling devices 4 and 5.
It is cooled by water injection from the chiller and wound up by the winder 6.
At this time, the temperature of the steel sheet before cooling is measured by the thermometer 7,
The temperature of the steel sheet after cooling is measured by the thermometer 8. The take-up temperature controller 9 is basically a feed-forward controller, which predicts and calculates the temperature after cooling (the take-up temperature), and makes a note from the cooling devices 4 and 5 so that the calculated value matches the target value. Determine the amount of water.

【0009】前述のような鋼板の冷却方法では、鋼板の
各サンプリング点の温度をいかに正確に推定できるかが
重要となってくる。この推定を行うための計算には、通
常誤差が発生するが、この誤差の主要因としては、温度
計算に使用する水冷の熱伝達率の見積もり精度が挙げら
れる。
In the above-described method for cooling a steel sheet, it is important how accurately the temperature at each sampling point of the steel sheet can be estimated. An error usually occurs in the calculation for making this estimation. The main factor of this error is the accuracy of estimating the heat transfer coefficient of water cooling used for temperature calculation.

【0010】従来、水冷の熱伝達率に関しては、特開平
9−10822号公報、特開平9−216011号公報
等に開示されているように、鋼板の上面・下面の冷却水
の水量密度Wt 、Wb 〔m3 /m2 min〕、鋼板の搬
送速度V〔m/min〕および冷却水の水温Tw 〔℃〕
から決まる熱流束qwt、qwb〔Kcal/m2 hr〕を
一旦求め、これより計算した熱伝達率hwt、hwb〔Kc
al/m2 hr℃〕が広く利用されてきた。すなわち、
上面・下面の熱流束を表す(1) 式および(2) 式から導か
れる熱伝達率の式、(3) 式および(4) 式が使われてき
た。
Conventionally, with respect to the heat transfer coefficient of water cooling, JP-A 9-10822 discloses, as disclosed in JP-A-9-216011 Patent Publication, water density of the cooling water of the top-bottom surface of the steel sheet W t , W b [m 3 / m 2 min], the conveyance speed V of the steel sheet V [m / min], and the water temperature Tw [° C.] of the cooling water.
From the heat flux q wt , q wb [Kcal / m 2 hr] determined from the above, and the heat transfer coefficients h wt , h wb [Kc
al / m 2 hr ° C.] has been widely used. That is,
Equations (3) and (4) for the heat transfer coefficient derived from Equations (1) and (2), which represent the upper and lower heat fluxes, have been used.

【0011】[0011]

【数1】 (Equation 1)

【0012】但し、Tt ,Tb :鋼板(上面・下面)の
表面温度〔℃〕、Zt ,Zb :調整係数〔−〕、t:上
面を表す添え字、b:下面を表す添え字とする。
Here, T t , T b : surface temperature [° C.] of the steel plate (upper surface / lower surface), Z t , Z b : adjustment coefficient [−], t: suffix representing the upper surface, b: suffix representing the lower surface Characters.

【0013】図2は、(1) 式あるいは(2) 式を、鋼板の
表面温度を横軸に、熱流束を縦軸にとってグラフで表現
したものである。図2から明らかなように、熱流束は、
鋼板の表面温度には依らずに一定であるように取り扱わ
れている。
FIG. 2 is a graph expressing the equation (1) or the equation (2) with the surface temperature of the steel sheet on the horizontal axis and the heat flux on the vertical axis. As is clear from FIG. 2, the heat flux is
It is treated to be constant regardless of the surface temperature of the steel sheet.

【0014】[0014]

【発明が解決しようとする課題】しかし、高張力熱延鋼
板の製造においては、要求される強度に応じて巻取温度
が、400〜500℃と低温に設定される。しかし、こ
のように鋼板温度が低い温度領域では、冷却過程での沸
騰現象が膜沸騰から核沸騰に移行する遷移沸騰の状態に
あることが知られている。
However, in the production of a high-tensile hot-rolled steel sheet, the winding temperature is set as low as 400 to 500 ° C. depending on the required strength. However, it is known that in such a temperature range where the steel sheet temperature is low, the boiling phenomenon in the cooling process is in a transition boiling state in which a transition from film boiling to nucleate boiling occurs.

【0015】図3に、過熱度(=鋼板の表面温度−冷却
水の飽和温度)を横軸に、縦軸に熱流束をとった沸騰曲
線の挙動を示す。冷却過程においては、膜沸騰状態から
遷移沸騰状態へ、さらに、核沸騰状態へと変化していく
が、遷移沸騰状態において熱流束が急激に増加すること
がわかる。なお、膜沸騰状態から遷移沸騰状態へ変わる
点を極小熱流束点(MHF点)と呼び、遷移沸騰状態か
ら核沸騰状態へ変わる点を限界熱流束点(CHF点)と
呼ぶ。
FIG. 3 shows the behavior of a boiling curve in which the degree of superheat (= surface temperature of steel sheet−saturation temperature of cooling water) is plotted on the horizontal axis and the heat flux is plotted on the vertical axis. In the cooling process, the state changes from the film boiling state to the transition boiling state, and further to the nucleate boiling state. It can be seen that the heat flux rapidly increases in the transition boiling state. The point at which the film boiling state changes to the transition boiling state is called a minimum heat flux point (MHF point), and the point at which the transition boiling state changes to the nucleate boiling state is called a critical heat flux point (CHF point).

【0016】従来の熱伝達率式は、巻取温度が比較的高
い温度(概ね≧550℃)、すなわち、膜沸騰状態で求
められた実験式をベースとしたものになっており、前述
の高張力熱延鋼板等の製造で要求される巻取温度400
〜500℃に対しては使用困難である。従って、巻取温
度制御自体も精度が低く、自動制御が困難であった。
The conventional heat transfer coefficient formula is based on an empirical formula obtained at a relatively high winding temperature (approximately ≧ 550 ° C.), that is, a film boiling state. Winding temperature 400 required for production of high tension hot rolled steel sheets, etc.
It is difficult to use for temperatures up to 500 ° C. Therefore, the winding temperature control itself has low accuracy, and automatic control is difficult.

【0017】このような問題に対応するために、特公平
6−248号公報では、冷却水が膜沸騰する高温域では
上下の冷却ヘッダより注水を行い、遷移沸騰領域では鋼
板の下面のみに注水を行うことにより、安定した状態で
鋼板の冷却を行うことが提案されている。
In order to cope with such a problem, Japanese Patent Publication No. Hei 6-248 discloses that water is injected from upper and lower cooling headers in a high temperature region in which cooling water is boiling, and only a lower surface of a steel plate is injected in a transition boiling region. It has been proposed to perform cooling of the steel sheet in a stable state by performing the above.

【0018】また、特開平9−10822号公報では、
図4に示すように、鋼板表面に生成するスケール厚の差
異に関係する元素成分、すなわち、Si重量成分によっ
て冷却曲線の挙動が大幅に異なることに着目し、基本的
に(3) 式、(4) 式の形で与えられる熱伝達率式を冷却バ
ンク毎に補正係数を調節することで対応することを提案
している。
In Japanese Patent Application Laid-Open No. 9-10822,
As shown in FIG. 4, focusing on the fact that the behavior of the cooling curve greatly differs depending on the element components related to the difference in the scale thickness generated on the steel sheet surface, that is, the Si weight component, basically, Equation (3), 4) It is proposed that the heat transfer coefficient equation given in the form of the equation can be handled by adjusting the correction coefficient for each cooling bank.

【0019】これは、高Si鋼では、図5に示すよう
に、サブスケール層(FeO−Fe2SiO4 )が発達
する為、鋼板の表面に形成された酸化スケールが仕上圧
延後も残存し、スケール厚も一般材より厚く、また鋼板
の表面粗さも粗いことに起因する冷却速度の増大に対応
する必要があるからである。
This is because, in the high Si steel, as shown in FIG. 5, the sub-scale layer (FeO—Fe 2 SiO 4 ) develops, so that the oxide scale formed on the surface of the steel sheet remains after the finish rolling. This is because it is necessary to cope with an increase in the cooling rate caused by the scale thickness being larger than that of the general material and the surface roughness of the steel sheet being rough.

【0020】以上のように、鋼板の冷却過程において
は、膜沸騰状態から遷移沸騰状態になる温度、すなわち
極小熱流束点(MHF点)は、冷却水のサブクール度に
応じて変化するが、特開平9−10822号公報にも示
されているように鋼板の表面スケールの厚さや表面粗
さ、すなわち表面性状によっても変化する。
As described above, in the cooling process of the steel sheet, the temperature at which the film boiling state changes to the transition boiling state, that is, the minimum heat flux point (MHF point) changes according to the subcooling degree of the cooling water. As shown in Japanese Unexamined Patent Publication No. 9-10822, the thickness varies depending on the thickness and surface roughness of the steel sheet, that is, the surface properties.

【0021】しかし、特公平6−248号公報に提示さ
れている方法では、具体的に、遷移沸騰状態を推定する
手法がない。また、冷却装置の使用方法を制約している
為に、上下面均一冷却ができない、冷却装置の性能をフ
ルに発揮できない等の不具合がある。
However, in the method disclosed in Japanese Patent Publication No. 6-248, there is no concrete method for estimating the transition boiling state. In addition, since the method of using the cooling device is restricted, there are problems such as the inability to uniformly cool the upper and lower surfaces and the performance of the cooling device cannot be fully exhibited.

【0022】また、特開平9−10822号公報に開示
されている方法では、冷却バンク毎に補正係数を調節す
る必要がある為、例えば、冷却装置の故障等により、使
用できる冷却バンクの注水パターンが変化した場合には
対応が困難である。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 9-10822, it is necessary to adjust the correction coefficient for each cooling bank. It is difficult to cope with a change in.

【0023】本発明は、このような問題点を解決するた
めになされたものであって、その目的とするところは、
ランアウトテーブル上の熱延鋼板への冷却水の注水量を
制御して熱延鋼板の巻取温度を目標温度に一致させるた
めに、ランアウトテーブル上の所定のサンプリング点に
対する熱延鋼板の水冷面の熱伝達率を算出する際、サン
プリング点に対する水冷面の沸騰状態に応じた水冷の熱
伝達率のモデル式を適用してこのサンプリング点に対す
る水冷の熱伝達率を算出することにより、水冷面の沸騰
状態の変化によって急激に変化する水冷面の熱伝達率を
的確に求め、巻取温度が400〜500℃の低い温度領
域であっても、また鋼板のスケール厚が厚い鋼板、又は
スケール厚に関係するSi、Ni等の重量成分が多い鋼
板であっても、目標温度と高精度で一致するように巻取
温度を制御する熱延鋼板の巻取温度制御方法を提供する
ことにある。
The present invention has been made to solve such a problem, and its object is to provide:
In order to control the amount of cooling water injected into the hot-rolled steel sheet on the run-out table and make the winding temperature of the hot-rolled steel sheet coincide with the target temperature, the water-cooled surface of the hot-rolled steel sheet at a predetermined sampling point on the run-out table When calculating the heat transfer coefficient, the boiling point of the water-cooled surface is calculated by applying the model formula of the water-cooled heat transfer coefficient according to the boiling state of the water-cooled surface to the sampling point and calculating the water-cooled heat transfer coefficient to this sampling point. Accurately determine the heat transfer coefficient of the water-cooled surface, which rapidly changes due to the change in the state, even if the winding temperature is in the low temperature range of 400 to 500 ° C, and the scale thickness of the steel plate is related to the thick steel plate or scale thickness. An object of the present invention is to provide a method for controlling a winding temperature of a hot-rolled steel sheet that controls a winding temperature so as to match a target temperature with high accuracy even for a steel sheet having a large weight component such as Si and Ni.

【0024】[0024]

【課題を解決するための手段】第1発明の熱延鋼板の巻
取温度制御方法は、ランアウトテーブルによって巻取機
へ搬送される熱延鋼板を冷却水で水冷する際、ランアウ
トテーブル上の所定のサンプリング点に対する該熱延鋼
板の水冷面の熱伝達率を用いて該熱延鋼板の巻取温度の
予測値を計算し、該予測値が目標値と一致するようにラ
ンアウトテーブル上の該熱延鋼板への注水量を制御する
熱延鋼板の巻取温度制御方法において、前記所定のサン
プリング点に対する熱延鋼板の水冷面の沸騰状態が膜沸
騰状態であるか核沸騰状態であるか遷移沸騰状態である
かを推定する第1のステップと、推定した沸騰状態に応
じた水冷の熱伝達率のモデル式から前記所定のサンプリ
ング点に対する水冷面の熱伝達率を算出する第2のステ
ップとを含むことを特徴とする。
According to a first aspect of the present invention, there is provided a method for controlling a winding temperature of a hot-rolled steel sheet, wherein when a hot-rolled steel sheet conveyed to a winder by a run-out table is water-cooled with cooling water, the predetermined temperature on the run-out table is reduced. Using the heat transfer coefficient of the water-cooled surface of the hot-rolled steel sheet at the sampling point, a predicted value of the winding temperature of the hot-rolled steel sheet is calculated, and the heat value on the run-out table is adjusted so that the predicted value matches the target value. In the method for controlling the winding temperature of a hot-rolled steel sheet for controlling the amount of water injected into the steel sheet, the boiling state of the water-cooled surface of the hot-rolled steel sheet at the predetermined sampling point may be a film boiling state, a nucleate boiling state, or a transition boiling state. A first step of estimating whether the state is a state, and a second step of calculating the heat transfer coefficient of the water cooling surface with respect to the predetermined sampling point from a model equation of the heat transfer coefficient of water cooling according to the estimated boiling state. To include And it features.

【0025】第2発明の熱延鋼板の巻取温度制御方法
は、第1発明の第1のステップは、前記所定のサンプリ
ング点に対する熱延鋼板の水冷面の温度、及び冷却水の
サブクール度をそれぞれ算出するステップと、サブクー
ル度に応じて、膜沸騰状態から遷移沸騰状態へ変わる極
小熱流束点、及び遷移沸騰状態から核沸騰状態へ変わる
限界熱流束点の温度をそれぞれ推定するステップと、極
小熱流束点及び限界熱流束点のそれぞれの温度と熱延鋼
板の水冷面の温度との関係から前記所定のサンプリング
点に対する水冷面の沸騰状態を推定するステップとを含
むことを特徴とする。
According to a second aspect of the present invention, in the first step of the first aspect, the temperature of the water-cooled surface of the hot-rolled steel sheet and the subcooling degree of the cooling water with respect to the predetermined sampling point are determined. Calculating the temperature of the minimum heat flux point at which the film boiling state changes to the transition boiling state, and the temperature of the critical heat flux point at which the transition boiling state changes to the nucleate boiling state, according to the degree of subcooling. Estimating the boiling state of the water-cooled surface at the predetermined sampling point from the relationship between the respective temperatures of the heat flux point and the critical heat flux point and the temperature of the water-cooled surface of the hot-rolled steel sheet.

【0026】第3発明の熱延鋼板の巻取温度制御方法
は、第1発明の第1のステップは、前記所定のサンプリ
ング点に対する熱延鋼板の水冷面の温度、及び冷却水の
サブクール度をそれぞれ算出するステップと、サブクー
ル度及び熱延鋼板のスケール厚に応じて、膜沸騰状態か
ら遷移沸騰状態へ変わる極小熱流束点、及び遷移沸騰状
態から核沸騰状態へ変わる限界熱流束点の温度をそれぞ
れ推定するステップと、極小熱流束点及び限界熱流束点
のそれぞれの温度と熱延鋼板の水冷面の温度との関係か
ら前記所定のサンプリング点に対する水冷面の沸騰状態
を推定するステップとを含むことを特徴とする。
According to a third aspect of the present invention, in the method of the first aspect, the first step is to determine a temperature of a water-cooled surface of the hot-rolled steel sheet and a subcooling degree of the cooling water with respect to the predetermined sampling point. The minimum heat flux point at which the film boiling state changes to the transition boiling state, and the temperature of the critical heat flux point at which the transition boiling state changes to the nucleate boiling state, according to the calculating step and the subcooling degree and the scale thickness of the hot-rolled steel sheet, respectively. Estimating, and estimating the boiling state of the water-cooled surface at the predetermined sampling point from the relationship between the respective temperatures of the minimum heat flux point and the critical heat flux point and the temperature of the water-cooled surface of the hot-rolled steel sheet. It is characterized by the following.

【0027】第4発明の熱延鋼板の巻取温度制御方法
は、第1発明の第1のステップは、前記所定のサンプリ
ング点に対する熱延鋼板の水冷面の温度、及び冷却水の
サブクール度をそれぞれ算出するステップと、サブクー
ル度及び熱延鋼板のスケール厚に関係する元素成分の重
量成分に応じて、膜沸騰状態から遷移沸騰状態へ変わる
極小熱流束点、及び遷移沸騰状態から核沸騰状態へ変わ
る限界熱流束点の温度をそれぞれ推定するステップと、
極小熱流束点及び限界熱流束点のそれぞれの温度と熱延
鋼板の水冷面の温度との関係から前記所定のサンプリン
グ点に対する水冷面の沸騰状態を推定するステップとを
含むことを特徴とする。
According to a fourth aspect of the present invention, in the first step of the first aspect, the temperature of the water-cooled surface of the hot-rolled steel sheet and the subcooling degree of the cooling water with respect to the predetermined sampling point are determined. The minimum heat flux point at which the film boiling state changes to the transition boiling state, and the transition boiling state changes to the nucleate boiling state, according to the calculating step and the subcooling degree and the weight component of the elemental component related to the scale thickness of the hot-rolled steel sheet. Estimating the temperature of the changing critical heat flux point, respectively;
Estimating the boiling state of the water-cooled surface at the predetermined sampling point from the relationship between the temperatures of the minimum heat flux point and the critical heat flux point and the temperature of the water-cooled surface of the hot-rolled steel sheet.

【0028】本発明では、サンプリング点に対する熱延
鋼板の水冷面の沸騰状態を推定し、沸騰状態に応じた水
冷の熱伝達率のモデル式を使用して水冷面の熱伝達率を
算出する。
In the present invention, the boiling state of the water-cooled surface of the hot-rolled steel sheet with respect to the sampling point is estimated, and the heat transfer coefficient of the water-cooled surface is calculated using a model equation of the water-cooled heat transfer coefficient according to the boiling state.

【0029】また本発明では、沸騰状態を推定する際、
冷却水のサブクール度に応じて、又はサブクール度と熱
延鋼板のスケール厚とに応じて、又はサブクール度と熱
延鋼板のスケール厚に関係する元素成分の重量成分とに
応じて、膜沸騰状態から遷移沸騰状態へ変わる極小熱流
束点、遷移沸騰状態から核沸騰状態へ変わる限界熱流束
点のそれぞれの温度を推定し、これらの点の温度と熱延
鋼板の水冷面の温度とから、水冷面の沸騰状態を推定す
る。
In the present invention, when estimating the boiling state,
Depending on the subcooling degree of the cooling water, or according to the subcooling degree and the scale thickness of the hot-rolled steel sheet, or according to the subcooling degree and the weight component of the elemental component related to the scale thickness of the hot-rolled steel sheet, the film boiling state From the minimum heat flux point at which the transition boiling state changes to the transition boiling state, and the critical heat flux point at which the transition boiling state changes to the nucleate boiling state. Estimate the boiling state of the surface.

【0030】これにより、鋼材の水冷面の沸騰状態の変
化に伴って急激に変化する水冷の熱流束を精度良く推定
することで、水冷の熱伝達率を的確に算出して熱延鋼板
の巻取温度の予測を正確に行うことが可能となる。従っ
て、巻取温度が400〜500℃と低い熱延鋼板に対し
ても、巻取温度を高精度に制御することが可能となる。
Thus, by accurately estimating the heat flux of water cooling which rapidly changes with the change of the boiling state of the water-cooled surface of the steel material, the heat transfer coefficient of water cooling is accurately calculated, and the winding of the hot-rolled steel sheet is accurately calculated. It is possible to accurately predict the taking temperature. Therefore, even for a hot-rolled steel sheet having a low winding temperature of 400 to 500 ° C., the winding temperature can be controlled with high accuracy.

【0031】第5発明の熱延鋼板の巻取温度制御方法
は、第2乃至第4発明のいずれかにおいて、前記第2の
ステップは、前記第1のステップにおいて沸騰状態を膜
沸騰状態と推定した場合は、サブクール度、冷却水の水
量密度及び熱延鋼板の搬送速度から前記水冷面の熱伝達
率を算出するステップであり、前記第1のステップにお
いて核沸騰状態と推定した場合は、熱延鋼板の水冷面の
温度、冷却水の水温、冷却水の水量密度及び熱延鋼板の
搬送速度から前記水冷面の熱伝達率を算出するステップ
であり、前記第1のステップにおいて遷移沸騰状態と推
定した場合は、熱延鋼板の表面温度から水冷面の固液接
触面積率を求め、該固液接触面積率に応じて、極小熱流
束点での熱伝達率と限界熱流束点での熱伝達率との間の
値を前記所定のサンプリング点に対する水冷面の熱伝達
率として算出するステップであることを特徴とする。
According to a fifth aspect of the present invention, in the method for controlling the winding temperature of a hot-rolled steel sheet according to any one of the second to fourth aspects, the second step estimates the boiling state in the first step as a film boiling state. If this is the case, the step of calculating the heat transfer coefficient of the water-cooled surface from the degree of subcooling, the water density of the cooling water, and the transport speed of the hot-rolled steel sheet. The step of calculating the heat transfer coefficient of the water-cooled surface from the temperature of the water-cooled surface of the rolled steel sheet, the water temperature of the cooling water, the water density of the cooling water, and the transport speed of the hot-rolled steel sheet. If it is estimated, the solid-liquid contact area ratio of the water-cooled surface is determined from the surface temperature of the hot-rolled steel sheet, and the heat transfer coefficient at the minimum heat flux point and the heat The value between the transmission rate and the Characterized in that it is a step of calculating a heat transfer coefficient of the water-cooled surface for the ring points.

【0032】第6発明の熱延鋼板の巻取温度制御方法
は、第2乃至第4発明のいずれかにおいて、前記第2の
ステップは、前記第1のステップにおいて沸騰状態を膜
沸騰状態と推定した場合は、サブクール度、冷却水の水
量密度及び熱延鋼板の搬送速度から前記水冷面の熱伝達
率を算出するステップであり、前記第1のステップにお
いて核沸騰状態と推定した場合は、熱延鋼板の水冷面の
温度、冷却水の水温、冷却水の水量密度及び熱延鋼板の
搬送速度から前記水冷面の熱伝達率を算出するステップ
であり、前記第1のステップにおいて遷移沸騰状態と推
定した場合は、熱延鋼板の表面温度から水冷面の固液接
触面積率を求め、該固液接触面積率に応じて、極小熱流
束点での熱伝達率と限界熱流束点での熱伝達率との加重
平均値を前記所定のサンプリング点に対する水冷面の熱
伝達率として算出するステップであることを特徴とす
る。
In a sixth aspect of the present invention, in the method for controlling a winding temperature of a hot-rolled steel sheet according to any one of the second to fourth aspects, the second step estimates a boiling state in the first step as a film boiling state. If this is the case, the step of calculating the heat transfer coefficient of the water-cooled surface from the degree of subcooling, the water density of the cooling water, and the transport speed of the hot-rolled steel sheet. The step of calculating the heat transfer coefficient of the water-cooled surface from the temperature of the water-cooled surface of the rolled steel sheet, the water temperature of the cooling water, the water density of the cooling water, and the transport speed of the hot-rolled steel sheet. If it is estimated, the solid-liquid contact area ratio of the water-cooled surface is determined from the surface temperature of the hot-rolled steel sheet, and the heat transfer coefficient at the minimum heat flux point and the heat The weighted average value with the transmission rate is Characterized in that it is a step of calculating a heat transfer coefficient of the water-cooled surface for the sampling point.

【0033】また本発明では、遷移沸騰状態の場合は、
鋼板の表面温度から固液接触面積率を求め、この固液接
触面積率に応じて、極小熱流束点での熱伝達率と限界熱
流束点での熱伝達率との間の値、又は加重平均値を、サ
ンプリング点に対する水冷面の熱伝達率として算出す
る。
In the present invention, in the case of a transition boiling state,
The solid-liquid contact area ratio is determined from the surface temperature of the steel sheet, and the value between the heat transfer coefficient at the minimum heat flux point and the heat transfer coefficient at the critical heat flux point, or weighted, is calculated according to the solid-liquid contact area ratio. The average value is calculated as the heat transfer coefficient of the water-cooled surface with respect to the sampling point.

【0034】これにより、スケール厚が厚いか、又はス
ケール厚に関係するSi、Ni等の重量成分が多いこと
によって冷却の挙動が一般の鋼板と異なる場合でも、鋼
材の水冷面の沸騰状態の変化に伴って急激に変化する水
冷の熱流束を精度良く推定することで、水冷の熱伝達率
を的確に算出して熱延鋼板の巻取温度の予測を正確に行
うことが可能となる。従って、スケール厚が厚い熱延鋼
板、スケール厚に関係するSi、Ni等の重量成分が多
い熱延鋼板に対しても、巻取温度を高精度に制御するこ
とが可能となる。
Thus, even when the cooling behavior is different from that of a general steel sheet due to a large scale thickness or a large weight component such as Si and Ni related to the scale thickness, a change in the boiling state of the water-cooled surface of the steel material is obtained. By accurately estimating the water-cooling heat flux that rapidly changes with the above, it is possible to accurately calculate the water-cooling heat transfer coefficient and accurately predict the winding temperature of the hot-rolled steel sheet. Therefore, even for a hot-rolled steel sheet having a large scale thickness and a hot-rolled steel sheet having a large weight component such as Si and Ni related to the scale thickness, the winding temperature can be controlled with high accuracy.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施例を図6に示
す14個の冷却バンクからなるランアウトテーブル冷却
設備において巻取温度を制御する場合について具体的に
説明する。図6に示すランアウトテーブル冷却設備で
は、仕上圧延機2の出側に設けた温度計7により冷却前
の鋼板温度(圧延仕上温度)が測定され、No. 6バンク
とNo. 7バンクの間に設けられた温度計10により冷却
途中の鋼板温度(中間温度)が測定される。また、巻取
機6の入側に設けた温度計8により冷却後の鋼板温度
(巻取温度)が測定される。コントローラ9は、温度計
7から圧延仕上温度の実績値を取り込み、仕上圧延機2
あるいは巻取機6から鋼板の搬送速度の実績値を取り込
む。これらを含む種々の実績値を用いてコントローラ9
は次の処理を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to a case in which the winding temperature is controlled in a run-out table cooling facility having 14 cooling banks as shown in FIG. In the run-out table cooling system shown in FIG. 6, the temperature of the steel sheet (rolling finish temperature) before cooling is measured by a thermometer 7 provided on the exit side of the finish rolling mill 2, and between the No. 6 bank and the No. 7 bank. The temperature of the steel sheet during cooling (intermediate temperature) is measured by the thermometer 10 provided. Further, the temperature of the steel sheet after cooling (winding temperature) is measured by a thermometer 8 provided on the entrance side of the winding machine 6. The controller 9 takes in the actual value of the rolling finish temperature from the thermometer 7 and
Alternatively, the actual value of the transport speed of the steel sheet is taken in from the winder 6. Using various performance values including these, the controller 9
Performs the following processing.

【0036】まず第1に、鋼板1の現在温度を計算す
る。本実施例の巻取温度制御では、鋼板の予測温度計算
が特に重要である。鋼板温度の計算にあたっては、板厚
方向1次元の熱伝導モデルを用いる。鋼板温度は、(5)
式に示す熱伝導方程式によって与えられる。
First, the current temperature of the steel sheet 1 is calculated. In the winding temperature control of this embodiment, the calculation of the predicted temperature of the steel sheet is particularly important. In calculating the temperature of the steel sheet, a one-dimensional heat conduction model in the thickness direction is used. Steel plate temperature is (5)
It is given by the heat conduction equation shown in the equation.

【0037】[0037]

【数2】 (Equation 2)

【0038】但し、T:鋼板温度〔℃〕、t:時間〔h
r〕、y:鋼板内の板厚方向位置〔m〕、c:比熱〔K
cal/kg℃〕、ρ:密度〔kg/m3 〕、κ:熱伝
導率〔Kcal/mhr℃〕 ここで、鋼板表面の境界条件は、上面は(6) 式、下面は
(7) 式による。
Here, T: steel sheet temperature [° C.], t: time [h]
r], y: position in the thickness direction of the steel sheet [m], c: specific heat [K
cal / kg ° C.], ρ: density [kg / m 3 ], κ: thermal conductivity [Kcal / mhr ° C.] Here, the boundary condition of the steel sheet surface is as follows:
According to equation (7).

【0039】[0039]

【数3】 (Equation 3)

【0040】但し、qt ,qb :上面・下面における熱
流束〔Kcal/m2 hr〕、d:鋼板の板厚〔m〕 ここで、上面、下面の熱流束qt 、qb は、水冷、輻
射、対流の熱伝達率〔Kcal/m2 hr℃〕を用いて
それぞれ次の(8) 式、(9) 式のように表される。
Here, q t , q b : heat flux on the upper and lower surfaces [Kcal / m 2 hr], d: plate thickness of the steel plate [m] Here, the heat fluxes q t , q b on the upper surface and the lower surface are Using the heat transfer coefficients of water cooling, radiation, and convection [Kcal / m 2 hr ° C.], they are expressed by the following equations (8) and (9), respectively.

【0041】[0041]

【数4】 (Equation 4)

【0042】但し、Tw :水温〔℃〕、Ta :雰囲気温
度〔℃〕 ここで、輻射の熱伝達率hrt、hrb、対流の熱伝達率h
at、habは、それぞれ次のように与えられる。
[0042] However, T w: temperature [℃], T a: where ambient temperature [℃], the heat transfer coefficient h rt radiation, h rb, the heat transfer coefficient of convection h
at and hab are respectively given as follows.

【0043】[0043]

【数5】 (Equation 5)

【0044】但し、ρ:Stefan−Boltzma
nnの定数、ε:輻射率〔−〕、βt ,βb :定数
Ρ: Stefan-Boltzma
nn constant, ε: emissivity [-], β t , β b : constant

【0045】水冷の熱伝達率hwt、hwb〔Kcal/m
2 hr℃〕は、鋼板の表面温度に応じて、水冷面の沸騰
状態を判定して決定する。沸騰状態を判定する第1の例
では、冷却水のサブクール度から極小熱流束点(MHF
点)と限界熱流束点(CHF点)とを推定し、鋼板の表
面温度が推定した極小熱流束点以上のときは膜沸騰状態
と判断し、極小熱流束点から限界熱流束点の間にあると
きは遷移沸騰状態と判断する。冷却水のサブクール度Δ
SUB 〔℃〕は、冷却水の飽和温度TSAT 〔℃〕(水の
場合は大気圧下では100 ℃)と冷却水の水温Tw 〔℃〕
とより(14)式で求まる。
Water-cooled heat transfer coefficients h wt , h wb [Kcal / m
2 hr ° C.] is determined by determining the boiling state of the water-cooled surface according to the surface temperature of the steel sheet. In the first example of determining the boiling state, the minimum heat flux point (MHF
Point) and the critical heat flux point (CHF point). When the surface temperature of the steel sheet is equal to or higher than the estimated minimum heat flux point, it is determined that the film is in a boiling state, and between the minimum heat flux point and the critical heat flux point. In some cases, it is determined that the state is a transition boiling state. Cooling water subcooling Δ
T SUB [° C] is the cooling water saturation temperature T SAT [° C] (in the case of water, 100 ° C under atmospheric pressure) and the cooling water temperature Tw [° C].
And from equation (14).

【0046】[0046]

【数6】 (Equation 6)

【0047】極小熱流束点の温度TMHF 〔℃〕、限界熱
流束点の温度TCHF 〔℃〕は、冷却水のサブクール度Δ
SUB より、(15-A)式、(16-A)式で推定する。
The temperature T MHF [° C.] at the minimum heat flux point and the temperature T CHF [° C.] at the critical heat flux point are determined by the subcooling degree Δ of the cooling water.
From T SUB , estimation is performed using the equations (15-A) and (16-A).

【0048】[0048]

【数7】 (Equation 7)

【0049】但し、Tm0,Tc0,KM1,Kc1:定数。Here, T m0 , T c0 , K M1 , K c1 : constants.

【0050】沸騰状態を判定する他の例について以下に
説明する。冷却水のサブクール度とスケール厚又はスケ
ール厚に関係する元素成分の重量成分(Si重量成分あ
るいはNi重量成分等)から極小熱流束点(MHF点)
と限界熱流束点(CHF点)とを推定し、鋼板の表面温
度が推定した極小熱流束点以上のときは膜沸騰状態と判
断し、極小熱流束点から限界熱流束点の間にあるときは
遷移沸騰状態と判断する。
Another example of determining the boiling state will be described below. From the subcooling degree of the cooling water and the weight component (Si weight component or Ni weight component, etc.) of the scale thickness or the element component related to the scale thickness, from the minimum heat flux point (MHF point)
And the critical heat flux point (CHF point). When the surface temperature of the steel sheet is equal to or higher than the estimated minimum heat flux point, it is determined that the film is in a boiling state, and when the temperature is between the minimum heat flux point and the critical heat flux point. Is determined to be a transition boiling state.

【0051】極小熱流束点の温度TMHF 〔℃〕、限界熱
流束点の温度TCHF 〔℃〕を、冷却水のサブクール度Δ
SUB 及びスケール厚δ〔μm〕から推定する場合は、
(15-B)式、(16-B)式で算出する。
The temperature T MHF [° C.] at the minimum heat flux point and the temperature T CHF [° C.] at the critical heat flux point are determined by subcooling Δ
When estimating from T SUB and scale thickness δ [μm],
It is calculated by the formulas (15-B) and (16-B).

【0052】[0052]

【数8】 (Equation 8)

【0053】但し、KM2、Kc2:定数。また、冷却水の
サブクール度ΔTSUB とスケール厚に関係する元素成分
の重量成分、例えば、Si重量成分wSi〔%〕あるいは
Ni重量成分wNi〔%〕とから推定する場合は、(15-C)
式、(16-C)式で算出する。
Where K M2 and K c2 are constants. In addition, when estimating from the subcooling degree ΔT SUB of the cooling water and the weight component of the element component related to the scale thickness, for example, the Si weight component w Si [%] or the Ni weight component w Ni [%], C)
It is calculated by the formula and the formula (16-C).

【0054】[0054]

【数9】 (Equation 9)

【0055】但し、KM3、KM4、Kc3、Kc4:定数。な
お、上記(15-C)式、(16-C)式においては、Si重量成分
(wSi)とNi重量成分(wNi)との両方を使用してい
るが、どちらか一方を使用しても良い。また、元素成分
については、スケール厚に関係するものであれば他の元
素成分でも同様に取り扱うことができる。
Here, K M3 , K M4 , K c3 , K c4 : constants. In the formulas (15-C) and (16-C), both the Si weight component (w Si ) and the Ni weight component (w Ni ) are used, but either one is used. May be. As for the element components, other element components can be similarly handled as long as they relate to the scale thickness.

【0056】また、スケール厚δは、鋼種や製造条件に
て変化するため、例えば、鋼種や製造条件毎に鋼板の表
面スケール厚を測定しておき、集約されたテーブル表か
ら、適切な値をセットするようにする。
Since the scale thickness δ varies depending on the type of steel and the manufacturing conditions, for example, the surface scale thickness of a steel sheet is measured for each type of steel and manufacturing conditions, and an appropriate value is obtained from a consolidated table. Set it.

【0057】以上のようにして沸騰状態を推定した後、
それぞれの沸騰状態に応じて、以下のようにして水冷の
熱伝達率を算出する。
After estimating the boiling state as described above,
The heat transfer coefficient of water cooling is calculated according to each boiling state as follows.

【0058】〔膜沸騰状態〕 上面:Tt ≧TMHF の時、下面:Tb ≧TMHF の時、膜
沸騰状態と推定し、水冷の熱伝達率を(17)式、(18)式か
ら求める。
[Film Boiling State] Upper surface: When T t ≧ T MHF , Lower surface: When T b ≧ T MHF , it is estimated that the film is in a boiling state, and the water-cooled heat transfer coefficients are expressed by equations (17) and (18). Ask from.

【0059】[0059]

【数10】 (Equation 10)

【0060】但し、Wt ,Wb :冷却水の水量密度〔m
3 /m2 min〕、V:鋼板速度〔m/min〕、
t ,Bb ,D:定数。(17)式、(18)式で定まる熱伝達
率は、冷却水の水量密度、鋼板の搬送速度、及びサブク
ール度から決まり、鋼板の表面温度には依存しない。特
に、極小熱流束点(Tt =TMHF 、Tb =TMHF )での
熱流束、すなわち極小熱流束qMHF,t 、qMHF,b は、(1
9)式、(20)式で求まる。
[0060] However, W t, W b: water density of the cooling water [m
3 / m 2 min], V: steel sheet speed [m / min],
B t , B b , D: constants. The heat transfer coefficient determined by the equations (17) and (18) is determined by the water density of the cooling water, the transport speed of the steel sheet, and the degree of subcooling, and does not depend on the surface temperature of the steel sheet. In particular, the heat flux at the minimum heat flux point (T t = T MHF , T b = T MHF ), that is, the minimum heat flux q MHF, t , q MHF, b is (1
It can be obtained by the equations (9) and (20).

【0061】[0061]

【数11】 [Equation 11]

【0062】〔核沸騰状態〕 上面:Tt ≦TCHF の時、下面:Tb ≦TCHF の時、核
沸騰状態と推定し、水冷の熱伝達率を(21)式、(22)式か
ら求める。
[Nucleate boiling state] Upper surface: When T t ≤ T CHF , Lower surface: When T b ≤ T CHF , the nucleate boiling state is estimated, and the water-cooled heat transfer coefficients are expressed by equations (21) and (22). Ask from.

【0063】[0063]

【数12】 (Equation 12)

【0064】但し、At ,Ab :定数。特に、限界熱流
束点(Tt =TCHF 、Tb =TCHF )での熱流束、すな
わち限界熱流束qCHF,t 、qCHF,b は、(23) 式、(24)
式で求まる。
[0064] However, A t, A b: constant. In particular, the heat flux at the critical heat flux points (T t = T CHF , T b = T CHF ), that is, the critical heat fluxes q CHF, t and q CHF, b are given by the following equation (23).
It is obtained by the formula.

【0065】[0065]

【数13】 (Equation 13)

【0066】〔遷移沸騰状態〕 上面:TCHF <Tt <TMHF の時、下面:TCHF <Tb
<TMHF の時、遷移沸騰状態と推定する。遷移沸騰状態
は、膜沸騰状態と核沸騰状態が混在している状態と考
え、核沸騰状態にある水冷面の空間的な割合、すなわ
ち、固液接触による伝熱の空間的な割合(空間平均)を
考える。図7に、固液接触面積率の説明図を示すが、割
合fで固液接触(核沸騰)し、割合(1−f)で蒸気膜
が存在する(膜沸騰)とモデル化する。固液接触面積率
t 、fb 〔−〕は、鋼板の表面温度の関数として、(2
5)式、(26)式のように与える。
[Transition boiling state] Upper surface: When T CHF <T t <T MHF , lower surface: T CHF <T b
When <T MHF , it is estimated to be in a transition boiling state. The transition boiling state is considered to be a state in which the film boiling state and the nucleate boiling state are mixed, and the spatial ratio of the water-cooled surface in the nucleate boiling state, that is, the spatial ratio of heat transfer by solid-liquid contact (spatial average) )think of. FIG. 7 is an explanatory view of the solid-liquid contact area ratio. The solid-liquid contact (nucleate boiling) is performed at a ratio f, and a vapor film is present (film boiling) at a ratio (1-f). The solid-liquid contact area ratios f t and f b [−] are expressed as (2) as a function of the surface temperature of the steel sheet.
Equations 5) and (26) are given.

【0067】[0067]

【数14】 [Equation 14]

【0068】(25)式、(26)式から明らかなように固液接
触面積率は極小熱流束点で0となり、限界熱流束点で1
となる。図8は、Tw =40、TSAT =100 、Tm0=51、
c0=134 、Km1=8.0 、Kc1=2.71とした場合の固液
接触面積率の変化を示したものである。冷却過程におい
て、極小熱流束点以下で固液接触面積率が増加し、限界
熱流束点で1となる。
As is apparent from the equations (25) and (26), the solid-liquid contact area ratio is 0 at the minimum heat flux point and 1 at the critical heat flux point.
Becomes FIG. 8 shows that T w = 40, T SAT = 100, T m0 = 51,
The graph shows changes in the solid-liquid contact area ratio when T c0 = 134, K m1 = 8.0, and K c1 = 2.71. In the cooling process, the solid-liquid contact area ratio increases below the minimum heat flux point and becomes 1 at the critical heat flux point.

【0069】また図9は、Tw =40、TSAT =100 、T
m0=46、Tc0=129 、Km1=8.0 、Kc1=2.71、KM3
c3=130 、KM4=Kc4=0とした場合の低Si鋼であ
る鋼種A(wSi=0.04%)および高Si鋼である鋼種B
(wSi=0.81%)の固液接触面積率の変化を示したもの
である。鋼種Aの表面スケール厚は約5〜10μm、鋼種
Bの表面スケール厚は約20μmである。冷却過程におい
て、極小熱流束点以下で固液接触面積率が増加し、限界
熱流束点で1となる。また、スケール厚の厚い鋼種Bで
は、極小熱流束点、限界熱流束点が鋼種Aに比較して約
100 ℃高温側に移動している。
FIG. 9 shows that T w = 40, T SAT = 100, T
m0 = 46, Tc0 = 129, Km1 = 8.0, Kc1 = 2.71, KM3 =
Steel type A ( wSi = 0.04%) as a low Si steel and steel type B as a high Si steel when K c3 = 130 and K M4 = K c4 = 0.
(W Si = 0.81%) shows the change in the solid-liquid contact area ratio. The surface scale thickness of steel type A is about 5 to 10 μm, and the surface scale thickness of steel type B is about 20 μm. In the cooling process, the solid-liquid contact area ratio increases below the minimum heat flux point and becomes 1 at the critical heat flux point. Further, in the case of steel type B having a large scale thickness, the minimum heat flux point and the critical heat flux point are about
It has moved to the high temperature side of 100 ° C.

【0070】遷移沸騰状態での熱流束qtrans,t 、q
trans,b は、固液接触面積率ft 、f b を用いて以下の
式で与える。
Heat flux q in transition boiling statetrans, t, Q
trans, bIs the solid-liquid contact area ratio ft, F bUsing the following
Give by expression.

【0071】[0071]

【数15】 (Equation 15)

【0072】図10に、遷移沸騰状態での熱流束の変化
を示す。冷却過程の遷移沸騰領域で、熱流束が極小熱流
束から限界熱流束へと固液接触面積率の変化に従って線
形に変化すると取り扱う。上記の熱流束より、水冷の熱
伝達率は(29)式、(30)式で求まる。
FIG. 10 shows the change of the heat flux in the transition boiling state. In the transition boiling region of the cooling process, the heat flux changes linearly from the minimum heat flux to the critical heat flux according to the change in the solid-liquid contact area ratio. From the above heat flux, the heat transfer coefficient of water cooling can be obtained by the equations (29) and (30).

【0073】[0073]

【数16】 (Equation 16)

【0074】上記の式に基づいて有限差分法、または、
解析解の近似式を用いて、鋼板温度を計算する。
Based on the above formula, the finite difference method, or
Calculate the steel sheet temperature using the approximate expression of the analytical solution.

【0075】図11は、板厚4.04mm、板幅149
5mmの熱延鋼板を、熱伝達式(3)(4)を使用した従来方
法によって巻取温度制御を行った例である。従来の熱伝
達式(3)(4)は、巻取温度が比較的高い温度域、すなわち
膜沸騰域(概ね≧550℃)での実験式をベースにした
ものなので、この例のように巻取温度が440℃と遷移
沸騰領域に入っている場合には使用困難であり、巻取温
度の計算値と実績値の乖離が激しい。この場合、巻取温
度の自動制御を行うと、巻取温度計算値は、目標巻取温
度を狙っているが、巻取温度計算値と巻取温度実績値が
大幅に異なるため、結果的に巻取温度制御精度は悪く、
全長温度外れになっている。
FIG. 11 shows a sheet thickness of 4.04 mm and a sheet width of 149.
This is an example in which winding temperature control is performed on a 5-mm hot-rolled steel sheet by a conventional method using heat transfer equations (3) and (4). The conventional heat transfer formulas (3) and (4) are based on an empirical formula in a temperature range where the winding temperature is relatively high, that is, in a film boiling range (generally ≧ 550 ° C.). When the take-up temperature is in the transition boiling range of 440 ° C., it is difficult to use, and the difference between the calculated value of the take-up temperature and the actual value is severe. In this case, when automatic control of the winding temperature is performed, the calculated winding temperature is aimed at the target winding temperature, but since the calculated winding temperature and the actual winding temperature are significantly different, as a result, Winding temperature control accuracy is poor,
It is out of temperature for the entire length.

【0076】図12は、高Si鋼である鋼種B(板厚:
2.6〜2.9mm)に対して、熱伝達式(3)(4)を使用
した従来方法による計算温度と実績温度の相関を示した
ものである。図より明らかなように計算温度が実績温度
と100 ℃以上外れており、自動制御ができない状況にあ
る。従って、このような場合、手動にて注水制御を行わ
ざるを得ない。
FIG. 12 shows a steel type B (thickness:
(2.6 to 2.9 mm) shows the correlation between the calculated temperature and the actual temperature by the conventional method using the heat transfer equations (3) and (4). As is clear from the figure, the calculated temperature deviates from the actual temperature by 100 ° C or more, and automatic control cannot be performed. Therefore, in such a case, the water injection control must be performed manually.

【0077】従来の熱伝達式(3)(4)は、巻取温度が比較
的高い温度域、すなわち膜沸騰域(概ね≧550℃)で
の実験式をベースにしたものなので、この例のように巻
取温度が450℃と遷移沸騰領域に入っている場合には
使用困難である。また更に、高Si鋼である鋼種Bで
は、一般材(低Si鋼)に比較して極小熱流束点が高温
側に移動し膜沸騰状態から遷移沸騰状態への変化が早く
おこるので、巻取温度の計算値と実績値の乖離もさらに
拡大する。
The conventional heat transfer equations (3) and (4) are based on an empirical equation in a temperature range where the winding temperature is relatively high, that is, in a film boiling range (generally ≧ 550 ° C.). As described above, when the winding temperature is in the transition boiling range of 450 ° C., it is difficult to use. Further, in the case of steel type B, which is a high Si steel, the minimum heat flux point moves to the high temperature side and the change from the film boiling state to the transition boiling state occurs faster than that of a general material (low Si steel). The divergence between the calculated value of the temperature and the actual value is further increased.

【0078】図13に本発明による巻取温度制御例1
を、図14に本発明による巻取温度制御例2を示す。制
御例1は、板厚さ3.52mm、板幅1140mmの熱
延鋼板を目標温度450℃に巻取温度制御したものであ
り、制御例2は、板厚2.65mm、板幅722mmの
熱延鋼板を目標温度420℃に巻取温度制御したもので
ある。
FIG. 13 shows a winding temperature control example 1 according to the present invention.
FIG. 14 shows a winding temperature control example 2 according to the present invention. In control example 1, a hot-rolled steel sheet having a thickness of 3.52 mm and a width of 1140 mm was controlled to a target temperature of 450 ° C., and control example 2 was a heat-rolled steel sheet having a thickness of 2.65 mm and a width of 722 mm. This is a rolled steel sheet whose winding temperature is controlled to a target temperature of 420 ° C.

【0079】制御例1のミドル部での温度誤差は4℃で
あり、制御例2のミドル部での温度偏差は−5℃と計算
精度は良好である。従って、巻取温度も全長に渡って±
20℃の精度で制御されており、本発明が、極めて有効
であることが分かる。なお、上記の実施にあたっては、
t =1.4×106 、Ab =0.8×106 、Bt
1.167×103 、Bb =0.667×103 、D=
1.667×10-3、Ta =25なる値を使用してい
る。
The temperature error in the middle part of the control example 1 is 4 ° C., and the temperature deviation in the middle part of the control example 2 is −5 ° C., and the calculation accuracy is good. Therefore, the winding temperature is ±
It is controlled with an accuracy of 20 ° C., which indicates that the present invention is extremely effective. Please note that in implementing the above,
A t = 1.4 × 10 6, A b = 0.8 × 10 6, B t =
1.167 × 10 3 , B b = 0.667 × 10 3 , D =
1.667 × 10 -3, using T a = 25 becomes the value.

【0080】図15に本発明による巻取温度の計算値と
実績値の相関を示す。巻取温度が400〜450℃とい
う温度領域で、低Si鋼である鋼種Aに対しても、高S
i鋼である鋼種Bに対しても±20℃の計算精度があ
り、巻取温度制御を自動制御を行うにあたって充分な精
度を有することが分かる。
FIG. 15 shows the correlation between the calculated value of the winding temperature and the actual value according to the present invention. In the temperature range where the winding temperature is 400 to 450 ° C., even for steel type A which is a low Si steel, high S
It can be seen that there is also a calculation accuracy of ± 20 ° C. for steel type B, which is i-steel, and that it has sufficient accuracy for automatically controlling the winding temperature control.

【0081】図16に本発明による鋼種Aの巻取温度制
御例を、図17に本発明による鋼種Bの巻取温度制御例
を示す。鋼種Aの制御例は、板厚2.96mm、板幅7
98mmの熱延鋼板を目標温度420℃に巻取温度制御
したものであり、鋼種Bの制御例は、板厚2.94m
m、板幅1008mmの熱延鋼板を目標温度430℃に
巻取温度制御したものである。
FIG. 16 shows an example of controlling the winding temperature of steel type A according to the present invention, and FIG. 17 shows an example of controlling the winding temperature of steel type B according to the present invention. The control example of steel type A is as follows: sheet thickness 2.96 mm, sheet width 7
The winding temperature of a 98 mm hot-rolled steel sheet is controlled to a target temperature of 420 ° C., and the control example of steel type B is a sheet thickness of 2.94 m.
The winding temperature of a hot-rolled steel sheet having a width of 1008 mm and a target temperature of 430 ° C. was controlled.

【0082】両方の制御例ともミドル部での計算温度の
偏差は小さく、本発明による方法の計算精度は良好であ
り、従って、巻取温度も全長に渡って±20℃の温度で
制御されており、本発明が高Si鋼のように表面スケー
ルの厚い熱延鋼板の巻取温度制御に極めて有効であるこ
とが分かる。なお、上記の実施にあたっては、At
1.4×106 、Ab =0.8×106 、Bt =1.1
67×103 、Bb =0.667×103 、D=1.6
67×10-3、Ta =25なる値を使用している。
In both control examples, the deviation of the calculated temperature in the middle part is small, and the calculation accuracy of the method according to the present invention is good. Therefore, the winding temperature is controlled at a temperature of ± 20 ° C. over the entire length. This indicates that the present invention is extremely effective in controlling the winding temperature of a hot-rolled steel sheet having a large surface scale such as a high Si steel. Incidentally, when the above implementations, A t =
1.4 × 10 6 , Ab = 0.8 × 10 6 , Bt = 1.1
67 × 10 3 , B b = 0.667 × 10 3 , D = 1.6
67 × 10 −3 and a value of Ta = 25 are used.

【0083】上記実施例では、鋼板温度を予測計算する
際に、上面・下面ともに遷移沸騰領域での熱伝達式を使
用したが、鋼板下面では、吹き付けられた冷却水は、鋼
板の表面に到達した後、重力によって流下し鋼板表面に
滞留することはない、或いは、非常に少ないので、上面
のみ遷移沸騰領域での熱伝達式を使用するようにしても
良い。上面のみ遷移沸騰領域での熱伝達式を使用する場
合も、鋼板温度の計算精度向上に有効であり、本発明に
含まれるものである。
In the above embodiment, when predicting and calculating the temperature of the steel sheet, the heat transfer equation in the transition boiling region was used for both the upper and lower surfaces, but on the lower surface of the steel sheet, the sprayed cooling water reaches the surface of the steel sheet. After that, since it does not flow down due to gravity and does not stay on the surface of the steel sheet, or it is very little, a heat transfer type in the transition boiling region only on the upper surface may be used. Use of the heat transfer equation in the transition boiling region only on the upper surface is also effective in improving the accuracy of calculating the temperature of the steel sheet, and is included in the present invention.

【0084】また、上記の実施例においては、膜沸騰領
域において、熱伝達率一定の取り扱いを行っているが、
このような方法以外に、膜沸騰領域において、熱流束一
定の取り扱いを行っても同様の効果が得られ、本発明に
含まれるものである。更に、上記の実施例においては、
核沸騰領域において、熱流束一定の取り扱いを行ってい
るが、限界熱流束点以下で、熱流束が低下するような取
り扱いを行ってもよい。
In the above embodiment, the heat transfer coefficient is fixed in the film boiling region.
Other than such a method, the same effect can be obtained even when the heat flux is handled at a constant value in the film boiling region, which is included in the present invention. Further, in the above embodiment,
In the nucleate boiling region, the heat flux is handled so as to be constant, but the heat flux may be reduced so as to be lower than the critical heat flux point.

【0085】また、遷移沸騰領域での熱伝達式を使用す
る効果は、熱延鋼板の一種である厚板鋼板の冷却設備に
おける冷却制御においても同様の効果を有し、本発明に
含まれるものである。
The effect of using the heat transfer equation in the transition boiling region has a similar effect in cooling control in a cooling system for a thick steel plate, which is a kind of hot-rolled steel plate, and is included in the present invention. It is.

【0086】上記の実施例の説明では高Si鋼を取り上
げたが、Ni含有鋼においてもNi含有量(Ni重量成
分)の増加にともない極小熱流束点が高温側に移動して
冷却速度が増大することが知られており、このような鋼
種に対しても本発明は有効である。
In the description of the above embodiment, high Si steel is taken up. However, even in Ni-containing steel, as the Ni content (Ni weight component) increases, the minimum heat flux point moves to the high temperature side and the cooling rate increases. The present invention is also effective for such steel types.

【0087】[0087]

【発明の効果】以上のように、本発明の熱延鋼板の巻取
温度制御方法は、ランアウトテーブル上の熱延鋼板への
冷却水の注水量を制御して熱延鋼板の巻取温度を目標温
度に一致させるために、ランアウトテーブル上の所定の
サンプリング点に対する熱延鋼板の水冷面の熱伝達率を
算出する際、サンプリング点に対する水冷面の沸騰状態
に応じた水冷の熱伝達率のモデル式を適用してこのサン
プリング点に対する熱延鋼板の水冷面の熱伝達率を算出
するので、水冷面の沸騰状態の変化によって急激に変化
する水冷面の熱伝達率を的確に算出し、巻取温度が40
0〜500℃の低い温度領域であっても、また鋼板のス
ケール厚が厚い鋼板、又はスケール厚に関係するSi、
Ni等の重量成分が多い鋼板であっても、目標温度と高
精度で一致するように巻取温度を制御し、所望の機械特
性を有する鋼板を製造することが可能となるという優れ
た効果を奏する。
As described above, the method for controlling the winding temperature of a hot-rolled steel sheet according to the present invention controls the amount of cooling water injected into the hot-rolled steel sheet on the run-out table to reduce the winding temperature of the hot-rolled steel sheet. In order to match the target temperature, when calculating the heat transfer coefficient of the water-cooled surface of the hot-rolled steel sheet at a predetermined sampling point on the run-out table, a model of the heat transfer coefficient of water cooling according to the boiling state of the water-cooled surface at the sampling point Since the heat transfer coefficient of the water-cooled surface of the hot-rolled steel sheet at this sampling point is calculated by applying the formula, the heat transfer coefficient of the water-cooled surface, which rapidly changes due to the change in the boiling state of the water-cooled surface, is accurately calculated and taken up. Temperature 40
Even in a low temperature range of 0 to 500 ° C., a steel sheet having a large steel sheet scale thickness, or Si related to the scale thickness,
Even with a steel sheet having a large weight component such as Ni, the excellent effect that the winding temperature is controlled so as to match the target temperature with high accuracy, and a steel sheet having desired mechanical properties can be manufactured. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ランアウトテーブル上での巻取温度制御を実行
する冷却設備の概要を示す模式図である。
FIG. 1 is a schematic diagram showing an outline of a cooling facility that executes winding temperature control on a run-out table.

【図2】従来技術における鋼板表面温度と熱流束との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a steel sheet surface temperature and a heat flux in the conventional art.

【図3】沸騰曲線を示す図である。FIG. 3 is a diagram showing a boiling curve.

【図4】低Si鋼と高Si鋼との冷却曲線を示す図であ
る。
FIG. 4 is a diagram showing cooling curves of a low Si steel and a high Si steel.

【図5】高Si鋼における残スケールの説明図である。FIG. 5 is an explanatory diagram of a residual scale in a high Si steel.

【図6】本発明の巻取温度制御を実行するランアウトテ
ーブル冷却設備の概要を示す模式図である。
FIG. 6 is a schematic diagram showing an outline of a run-out table cooling system that executes winding temperature control according to the present invention.

【図7】固液接触面積率の説明図である。FIG. 7 is an explanatory diagram of a solid-liquid contact area ratio.

【図8】固液接触面積率の変化を示す説明図である。FIG. 8 is an explanatory diagram showing a change in a solid-liquid contact area ratio.

【図9】スケール厚の異なる鋼種Aおよび鋼種Bの固液
接触面積率の変化の説明図である。
FIG. 9 is an explanatory diagram of a change in the solid-liquid contact area ratio of steel type A and steel type B having different scale thicknesses.

【図10】本発明の巻取温度制御方法に用いるモデル化
した熱流束変化の説明図である。
FIG. 10 is an explanatory diagram of a modeled heat flux change used in the winding temperature control method of the present invention.

【図11】従来の巻取温度制御による制御結果の説明図
である。
FIG. 11 is an explanatory diagram of a control result by a conventional winding temperature control.

【図12】従来方法による高Si鋼(鋼種B)の巻取温
度の計算値と実績値との相関を示す図である。
FIG. 12 is a view showing a correlation between a calculated value of a winding temperature of a high Si steel (steel type B) and an actual value by a conventional method.

【図13】本発明方法による巻取温度制御例1の制御結
果の説明図である。
FIG. 13 is an explanatory diagram of a control result of a winding temperature control example 1 according to the method of the present invention.

【図14】本発明方法による巻取温度制御例2の制御結
果の説明図である。
FIG. 14 is an explanatory diagram of a control result of winding temperature control example 2 according to the method of the present invention.

【図15】本発明方法による低Si鋼(鋼種A)及び高
Si鋼(鋼種B)の巻取温度の計算値と実績値との相関
を示す図である。
FIG. 15 is a diagram showing a correlation between calculated values and actual values of the winding temperature of low Si steel (steel type A) and high Si steel (steel type B) according to the method of the present invention.

【図16】本発明方法による鋼種Aの巻取温度制御例の
制御結果の説明図である。
FIG. 16 is an explanatory diagram of a control result of a winding temperature control example of steel type A according to the method of the present invention.

【図17】本発明方法による鋼種Bの巻取温度制御例の
制御結果の説明図である。
FIG. 17 is an explanatory diagram of a control result of a winding temperature control example of steel type B according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1 鋼板 2 仕上圧延機 3 ランアウトテーブル 4、5 冷却装置 6 巻取機 7 温度計 8 温度計 9 (巻取温度)コントローラ 10 温度計 DESCRIPTION OF SYMBOLS 1 Steel plate 2 Finish rolling mill 3 Run-out table 4, 5 Cooling device 6 Winding machine 7 Thermometer 8 Thermometer 9 (winding temperature) controller 10 Thermometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橘 久好 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4E024 BB07 FF01 GG10 4K043 AA01 BA05 CB01 EA07 FA03 FA13 GA10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hisashi Tachibana 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka F-term in Sumitomo Metal Industries, Ltd. (reference) 4E024 BB07 FF01 GG10 4K043 AA01 BA05 CB01 EA07 FA03 FA13 GA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ランアウトテーブルによって巻取機へ搬
送される熱延鋼板を冷却水で水冷する際、ランアウトテ
ーブル上の所定のサンプリング点に対する該熱延鋼板の
水冷面の熱伝達率を用いて該熱延鋼板の巻取温度の予測
値を計算し、該予測値が目標値と一致するようにランア
ウトテーブル上の該熱延鋼板への注水量を制御する熱延
鋼板の巻取温度制御方法において、前記所定のサンプリ
ング点に対する熱延鋼板の水冷面の沸騰状態が膜沸騰状
態であるか核沸騰状態であるか遷移沸騰状態であるかを
推定する第1のステップと、推定した沸騰状態に応じた
水冷の熱伝達率のモデル式から前記所定のサンプリング
点に対する水冷面の熱伝達率を算出する第2のステップ
とを含むことを特徴とする熱延鋼板の巻取温度制御方
法。
When a hot-rolled steel sheet conveyed to a winder by a run-out table is water-cooled with cooling water, a heat transfer coefficient of a water-cooled surface of the hot-rolled steel sheet with respect to a predetermined sampling point on the run-out table is used. A method for controlling a winding temperature of a hot-rolled steel sheet in which a predicted value of a winding temperature of a hot-rolled steel sheet is calculated and the amount of water injected into the hot-rolled steel sheet on a run-out table is controlled so that the predicted value matches a target value. A first step of estimating whether the boiling state of the water-cooled surface of the hot-rolled steel sheet at the predetermined sampling point is a film boiling state, a nucleate boiling state, or a transition boiling state, and according to the estimated boiling state. A second step of calculating a heat transfer coefficient of the water-cooled surface with respect to the predetermined sampling point from a model equation of the heat transfer coefficient of the water-cooled sheet.
【請求項2】 前記第1のステップは、前記所定のサン
プリング点に対する熱延鋼板の水冷面の温度、及び冷却
水のサブクール度をそれぞれ算出するステップと、サブ
クール度に応じて、膜沸騰状態から遷移沸騰状態へ変わ
る極小熱流束点、及び遷移沸騰状態から核沸騰状態へ変
わる限界熱流束点の温度をそれぞれ推定するステップ
と、極小熱流束点及び限界熱流束点のそれぞれの温度と
熱延鋼板の水冷面の温度との関係から前記所定のサンプ
リング点に対する水冷面の沸騰状態を推定するステップ
とを含むことを特徴とする請求項1記載の熱延鋼板の巻
取温度制御方法。
2. The method according to claim 1, wherein the first step includes calculating a temperature of a water-cooled surface of the hot-rolled steel sheet with respect to the predetermined sampling point and a subcooling degree of the cooling water. Estimating the minimum heat flux point at which the transition boiling state is reached, and the temperature of the critical heat flux point at which the transition boiling state is shifted to the nucleate boiling state, respectively, the temperature of the minimum heat flux point and the critical heat flux point, and the hot rolled steel sheet Estimating a boiling state of the water-cooled surface at the predetermined sampling point from a relationship with the temperature of the water-cooled surface of the hot-rolled steel sheet.
【請求項3】 前記第1のステップは、前記所定のサン
プリング点に対する熱延鋼板の水冷面の温度、及び冷却
水のサブクール度をそれぞれ算出するステップと、サブ
クール度及び熱延鋼板のスケール厚に応じて、膜沸騰状
態から遷移沸騰状態へ変わる極小熱流束点、及び遷移沸
騰状態から核沸騰状態へ変わる限界熱流束点の温度をそ
れぞれ推定するステップと、極小熱流束点及び限界熱流
束点のそれぞれの温度と熱延鋼板の水冷面の温度との関
係から前記所定のサンプリング点に対する水冷面の沸騰
状態を推定するステップとを含むことを特徴とする請求
項1記載の熱延鋼板の巻取温度制御方法。
3. The first step includes calculating a temperature of a water-cooled surface of the hot-rolled steel sheet and a sub-cooling degree of the cooling water with respect to the predetermined sampling point, and calculating the sub-cooling degree and the scale thickness of the hot-rolled steel sheet. Accordingly, estimating the temperature of the minimum heat flux point at which the film boiling state changes to the transition boiling state, and the temperature of the critical heat flux point at which the transition boiling state changes to the nucleate boiling state, respectively, and calculating the minimum heat flux point and the critical heat flux point. Estimating the boiling state of the water-cooled surface at the predetermined sampling point from the relationship between the respective temperatures and the temperature of the water-cooled surface of the hot-rolled steel plate. Temperature control method.
【請求項4】 前記第1のステップは、前記所定のサン
プリング点に対する熱延鋼板の水冷面の温度、及び冷却
水のサブクール度をそれぞれ算出するステップと、サブ
クール度及び熱延鋼板のスケール厚に関係する元素成分
の重量成分に応じて、膜沸騰状態から遷移沸騰状態へ変
わる極小熱流束点、及び遷移沸騰状態から核沸騰状態へ
変わる限界熱流束点の温度をそれぞれ推定するステップ
と、極小熱流束点及び限界熱流束点のそれぞれの温度と
熱延鋼板の水冷面の温度との関係から前記所定のサンプ
リング点に対する水冷面の沸騰状態を推定するステップ
とを含むことを特徴とする請求項1記載の熱延鋼板の巻
取温度制御方法。
4. The method according to claim 1, wherein the first step includes calculating a temperature of a water-cooled surface of the hot-rolled steel sheet and the sub-cooling degree of the cooling water with respect to the predetermined sampling point, and calculating the sub-cooling degree and the scale thickness of the hot-rolled steel sheet. Estimating the minimum heat flux point at which the film boiling state changes to the transition boiling state and the temperature of the critical heat flux point at which the transition boiling state changes to the nucleate boiling state, respectively, according to the weight component of the relevant elemental component; Estimating a boiling state of the water-cooled surface with respect to the predetermined sampling point from a relationship between respective temperatures of the flux point and the critical heat flux point and the temperature of the water-cooled surface of the hot-rolled steel sheet. The method for controlling a winding temperature of a hot-rolled steel sheet according to the above.
【請求項5】 前記第2のステップは、前記第1のステ
ップにおいて沸騰状態を膜沸騰状態と推定した場合は、
サブクール度、冷却水の水量密度及び熱延鋼板の搬送速
度から前記水冷面の熱伝達率を算出するステップであ
り、前記第1のステップにおいて核沸騰状態と推定した
場合は、熱延鋼板の水冷面の温度、冷却水の水温、冷却
水の水量密度及び熱延鋼板の搬送速度から前記水冷面の
熱伝達率を算出するステップであり、前記第1のステッ
プにおいて遷移沸騰状態と推定した場合は、熱延鋼板の
表面温度から水冷面の固液接触面積率を求め、該固液接
触面積率に応じて、極小熱流束点での熱伝達率と限界熱
流束点での熱伝達率との間の値を前記所定のサンプリン
グ点に対する水冷面の熱伝達率として算出するステップ
であることを特徴とする請求項2乃至4のいずれかに記
載の熱延鋼板の巻取温度制御方法。
5. The method according to claim 1, wherein the second step includes the step of: estimating a boiling state as a film boiling state in the first step;
Calculating the heat transfer coefficient of the water-cooled surface from the degree of subcooling, the water density of the cooling water, and the conveying speed of the hot-rolled steel sheet. If the nucleate boiling state is estimated in the first step, the water-cooling Surface temperature, cooling water temperature, cooling water volume density and the heat transfer rate of the hot-rolled steel sheet is a step of calculating the heat transfer coefficient of the water-cooled surface, when the transition boiling state is estimated in the first step, The solid-liquid contact area ratio of the water-cooled surface is determined from the surface temperature of the hot-rolled steel sheet, and according to the solid-liquid contact area ratio, the heat transfer coefficient at the minimum heat flux point and the heat transfer coefficient at the critical heat flux point The method for controlling the winding temperature of a hot-rolled steel sheet according to any one of claims 2 to 4, wherein the step of calculating a value between the two values as a heat transfer coefficient of the water-cooled surface with respect to the predetermined sampling point.
【請求項6】 前記第2のステップは、前記第1のステ
ップにおいて沸騰状態を膜沸騰状態と推定した場合は、
サブクール度、冷却水の水量密度及び熱延鋼板の搬送速
度から前記水冷面の熱伝達率を算出するステップであ
り、前記第1のステップにおいて核沸騰状態と推定した
場合は、熱延鋼板の水冷面の温度、冷却水の水温、冷却
水の水量密度及び熱延鋼板の搬送速度から前記水冷面の
熱伝達率を算出するステップであり、前記第1のステッ
プにおいて遷移沸騰状態と推定した場合は、熱延鋼板の
表面温度から水冷面の固液接触面積率を求め、該固液接
触面積率に応じて、極小熱流束点での熱伝達率と限界熱
流束点での熱伝達率との加重平均値を前記所定のサンプ
リング点に対する水冷面の熱伝達率として算出するステ
ップであることを特徴とする請求項2乃至4のいずれか
に記載の熱延鋼板の巻取温度制御方法。
6. The method according to claim 1, wherein in the first step, when the boiling state is estimated to be a film boiling state in the first step,
Calculating the heat transfer coefficient of the water-cooled surface from the subcooling degree, the water volume density of the cooling water, and the conveying speed of the hot-rolled steel sheet. If the nucleate boiling state is estimated in the first step, the water cooling of the hot-rolled steel sheet is performed. Surface temperature, cooling water temperature, cooling water volume density and the heat transfer rate of the hot-rolled steel sheet is a step of calculating the heat transfer coefficient of the water-cooled surface, when the transition boiling state is estimated in the first step, The solid-liquid contact area ratio of the water-cooled surface is determined from the surface temperature of the hot-rolled steel sheet, and according to the solid-liquid contact area ratio, the heat transfer coefficient at the minimum heat flux point and the heat transfer coefficient at the critical heat flux point are determined. 5. The method according to claim 2, further comprising calculating a weighted average value as a heat transfer coefficient of the water-cooled surface with respect to the predetermined sampling point.
JP12774299A 1999-05-07 1999-05-07 Control method of winding temperature of hot rolled steel sheet Expired - Fee Related JP3480366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12774299A JP3480366B2 (en) 1999-05-07 1999-05-07 Control method of winding temperature of hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12774299A JP3480366B2 (en) 1999-05-07 1999-05-07 Control method of winding temperature of hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2000317513A true JP2000317513A (en) 2000-11-21
JP3480366B2 JP3480366B2 (en) 2003-12-15

Family

ID=14967571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12774299A Expired - Fee Related JP3480366B2 (en) 1999-05-07 1999-05-07 Control method of winding temperature of hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3480366B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028515A1 (en) * 2007-08-24 2009-03-05 Jfe Steel Corporation Process for manufacturing high-strength hot-rolled steel sheet
EP2290112A1 (en) 2005-01-11 2011-03-02 Nippon Steel Corporation Method for controlling cooling of steel sheet
JP2013076593A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Method for predicting temperature distribution in metal plate and method of manufacturing metal plate
CN103987470A (en) * 2012-12-06 2014-08-13 新日铁住金株式会社 Method for cooling hot-rolled steel sheet
US9186710B2 (en) 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9211574B2 (en) 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
WO2016157762A1 (en) * 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for manufacturing water-atomized metal powder
JP2016209898A (en) * 2015-05-07 2016-12-15 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling control apparatus, manufacturing method, and manufacturing apparatus
JP2017001086A (en) * 2015-06-16 2017-01-05 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling controller, manufacturing method, and manufacturing apparatus
JP2017001085A (en) * 2015-06-16 2017-01-05 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling controller, manufacturing method, and manufacturing apparatus
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet
JP2020525302A (en) * 2017-06-26 2020-08-27 アルセロールミタル METHOD AND ELECTRONIC DEVICE FOR DETERMINING TEMPERATURE OF METAL STRIP, RELATED CONTROL METHOD, COMPUTER PROGRAM, CONTROL DEVICE, AND HOT ROLLING EQUIPMENT
JP2020192578A (en) * 2019-05-28 2020-12-03 Jfeスチール株式会社 Method for estimating temperature of billet extracted from heating furnace and device for estimating temperature of billet extracted from heating furnace
EP2376662B1 (en) * 2009-01-09 2021-04-28 Fives Stein Method and section for cooling a moving metal belt by spraying liquid

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290112A1 (en) 2005-01-11 2011-03-02 Nippon Steel Corporation Method for controlling cooling of steel sheet
US7938917B2 (en) 2005-01-11 2011-05-10 Nippon Steel Corporation Method for controlling cooling of steel sheet
JP2009052065A (en) * 2007-08-24 2009-03-12 Jfe Steel Kk Method for producing high strength hot rolled steel sheet
US8646301B2 (en) 2007-08-24 2014-02-11 Jfe Steel Corporation Method for manufacturing high strength hot rolled steel sheet
WO2009028515A1 (en) * 2007-08-24 2009-03-05 Jfe Steel Corporation Process for manufacturing high-strength hot-rolled steel sheet
EP2376662B1 (en) * 2009-01-09 2021-04-28 Fives Stein Method and section for cooling a moving metal belt by spraying liquid
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet
US9186710B2 (en) 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9211574B2 (en) 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
JP2013076593A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Method for predicting temperature distribution in metal plate and method of manufacturing metal plate
CN103987470A (en) * 2012-12-06 2014-08-13 新日铁住金株式会社 Method for cooling hot-rolled steel sheet
US10589356B2 (en) 2015-03-30 2020-03-17 Jfe Steel Corporation Method for producing water-atomized metal powder
JPWO2016157762A1 (en) * 2015-03-30 2017-04-27 Jfeスチール株式会社 Method for producing water atomized metal powder
WO2016157762A1 (en) * 2015-03-30 2016-10-06 Jfeスチール株式会社 Method for manufacturing water-atomized metal powder
JP2016209898A (en) * 2015-05-07 2016-12-15 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling control apparatus, manufacturing method, and manufacturing apparatus
JP2017001085A (en) * 2015-06-16 2017-01-05 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling controller, manufacturing method, and manufacturing apparatus
JP2017001086A (en) * 2015-06-16 2017-01-05 新日鐵住金株式会社 Cooling control method for thick steel plate, cooling controller, manufacturing method, and manufacturing apparatus
JP2020525302A (en) * 2017-06-26 2020-08-27 アルセロールミタル METHOD AND ELECTRONIC DEVICE FOR DETERMINING TEMPERATURE OF METAL STRIP, RELATED CONTROL METHOD, COMPUTER PROGRAM, CONTROL DEVICE, AND HOT ROLLING EQUIPMENT
JP2020192578A (en) * 2019-05-28 2020-12-03 Jfeスチール株式会社 Method for estimating temperature of billet extracted from heating furnace and device for estimating temperature of billet extracted from heating furnace
JP7040497B2 (en) 2019-05-28 2022-03-23 Jfeスチール株式会社 Heating furnace extraction temperature prediction method for steel pieces and heating furnace extraction temperature prediction device

Also Published As

Publication number Publication date
JP3480366B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
JP2000317513A (en) Method for controlling coiling temperature of hot-rolled steel sheet
US8359894B2 (en) Method for cooling hot-rolled steel strip
US10710133B2 (en) Temperature calculation method, temperature calculation apparatus, heating control method, and heating control apparatus
JP2009148809A (en) Device and method for controlling winding temperature
JP3170375B2 (en) Temperature prediction method for hot rolled steel sheet
CN104841701B (en) Method for controlling sheet coiling temperature during large-deceleration rolling of hot-rolled strip steel
JP6668280B2 (en) Winding cooling control device and winding cooling control method
JP3423500B2 (en) Hot rolled steel sheet winding temperature control apparatus and method
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
KR20020096401A (en) Cooling control method for compensating set-up temperature by recalculating amount of cooling water
JPH01162508A (en) Cooling control method for steel material
JP2861871B2 (en) Control method of winding temperature of hot rolled steel sheet
JP2988330B2 (en) Control method of winding temperature of hot rolled steel sheet
JPH03277721A (en) Method for controlling cooling of hot rolled steel strip
JP4701677B2 (en) Metal plate cooling control device and cooling control method
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP3817153B2 (en) Hot-rolled steel sheet cooling equipment
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP3068289B2 (en) Inlet temperature control method for hot continuous finishing mill
KR101424648B1 (en) Control method of edge masking device for thick plate of compensation surface form
JP2017177172A (en) Cooling control method and cooling apparatus
JPH11309507A (en) Method for estimating thermal flux in cooling of steel and cooling control method using the same
JP2004009076A (en) Method and device for cooling hot-rolled sheet steel
JPS5831370B2 (en) Ondo Seigiyohou

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees