JPS6058215B2 - Manufacturing method of monochloroacetic acid - Google Patents

Manufacturing method of monochloroacetic acid

Info

Publication number
JPS6058215B2
JPS6058215B2 JP3015980A JP3015980A JPS6058215B2 JP S6058215 B2 JPS6058215 B2 JP S6058215B2 JP 3015980 A JP3015980 A JP 3015980A JP 3015980 A JP3015980 A JP 3015980A JP S6058215 B2 JPS6058215 B2 JP S6058215B2
Authority
JP
Japan
Prior art keywords
reaction
acetyl chloride
liquid
tower
chlorine gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3015980A
Other languages
Japanese (ja)
Other versions
JPS56127329A (en
Inventor
昌彬 市野
武 堀河
正穂 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP3015980A priority Critical patent/JPS6058215B2/en
Publication of JPS56127329A publication Critical patent/JPS56127329A/en
Publication of JPS6058215B2 publication Critical patent/JPS6058215B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は酢酸を液相塩素化してモノクロル酢酸を製造す
る改良方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved process for producing monochloroacetic acid by liquid phase chlorination of acetic acid.

更に詳しくは、触媒の存在下酢酸と塩素を反応せしめて
モノクロル酢酸を製造するに際し、実質上塩素化反応を
完了した反応液に原料塩素ガスの一部(又は全部)を、
液滞留時間が約0.3〜5分で且つ液/ガス重量比が約
2〜10になる様に調節して吹込んで反応液から塩化ア
セチルを放散させ、排出させる塩化アセチルを含む塩素
ガスを反応塔への原料ガスとして使用することを特徴と
するモノクロル酢酸の製造方法に関する。従来酢酸の塩
素化によりモノクロル酢酸を得る方法は数多く提案され
ている(例えは米国特許第2539238号、米国特許
第2688634号等参照)。
More specifically, when producing monochloroacetic acid by reacting acetic acid and chlorine in the presence of a catalyst, some (or all) of the raw material chlorine gas is added to the reaction liquid that has substantially completed the chlorination reaction.
Chlorine gas containing acetyl chloride is blown into the reaction solution by adjusting the residence time of the solution to about 0.3 to 5 minutes and the liquid/gas weight ratio to about 2 to 10 to diffuse and discharge acetyl chloride from the reaction solution. The present invention relates to a method for producing monochloroacetic acid, which is characterized in that it is used as a raw material gas to a reaction tower. Many methods have been proposed to obtain monochloroacetic acid by chlorination of acetic acid (for example, see US Pat. No. 2,539,238 and US Pat. No. 2,688,634).

用い−られる触媒としては塩化アセチル、無水酢酸、硫
黄、燐等があり、硫黄、燐等の場合にも反応中塩化アセ
チル、無水酢酸が生成し、これが真の触媒として働くこ
とが知られている。而して、反応の過程は次の様に、塩
化アセチル、無水酢酸を中心に進むと考えられている。
C+Cl2→ ClCH2COOH+CHaCOCl/
CH3C0Cl+CH3C00H−C+HCl従つて当
該上記反応から得られる実質上塩素化反応を終了した反
応液は、モノクロル酢酸、酢酸及び塩化アセチルからな
り、次工程の蒸留塔で塔頂から酢酸及び塩化アセチル、
塔底からモノクロル酢酸に分離される。
Catalysts used include acetyl chloride, acetic anhydride, sulfur, and phosphorus. Even in the case of sulfur, phosphorus, etc., acetyl chloride and acetic anhydride are produced during the reaction, and it is known that these act as true catalysts. . Therefore, the reaction process is thought to proceed mainly with acetyl chloride and acetic anhydride as follows.
C+Cl2→ ClCH2COOH+CHaCOCl/
CH3C0Cl+CH3C00H-C+HCl Therefore, the reaction liquid obtained from the above reaction, which has substantially completed the chlorination reaction, consists of monochloroacetic acid, acetic acid and acetyl chloride, and in the next step distillation column, acetic acid, acetyl chloride,
Monochloroacetic acid is separated from the bottom of the column.

この際、塩化アセチルは極めて蒸気圧が高く(蒸気圧l
50TmHg/ 10℃)、減圧蒸留下では経済的な凝
縮回収は大半不可能てある。しかし乍ら、これ等従来法
には、反応液から塩化アセチルを回収し、触媒の低減を
計る試みは殆んど報告されていない。本発明者らは鋭意
検討を重ねた結果、原料である塩素ガスを吹込んで反応
液中の塩化アセチルを放散し、これを塩素ガスに同伴さ
せて反応塔へリサイクルさせ、次工程の蒸留塔に持ち込
む塩化アセチルの量を大巾に減少させることにより前記
課題を解消することを見い出し、本発明を完了させるに
至つた。
At this time, acetyl chloride has an extremely high vapor pressure (vapor pressure l
50TmHg/10°C), economical condensation recovery is almost impossible under reduced pressure distillation. However, in these conventional methods, there have been almost no reports of attempts to recover acetyl chloride from the reaction solution and reduce the amount of catalyst. As a result of extensive research, the inventors of the present invention discovered that acetyl chloride in the reaction solution is diffused by blowing in chlorine gas, which is a raw material, and is recycled to the reaction tower along with the chlorine gas, and then sent to the distillation tower for the next step. It has been discovered that the above-mentioned problem can be solved by drastically reducing the amount of acetyl chloride introduced, and the present invention has been completed.

本発明の利点及び効果は次の通りである。The advantages and effects of the present invention are as follows.

即ち、(1)塩化アセチルの回収率が向上するので、触
媒てある無水酢酸の使用率が低減できる。(2)放散用
のキャリア−ガスが原料の塩素ガスであるので、余分な
エネルギーが一切不要である。(3)塩化アセチルのみ
ならず酢酸も放散して反応塔にリセイクルする(同時に
未反応酢酸の塩素化反応も若干進む)ので、次工程の蒸
留塔でのエネルギーコストが小さくなる。(4)蒸留塔
での反応性に富む塩化アセチルの共存による無用な副反
応が回避される。(5)未回収の塩化アセチルによる公
害法規に基づく排水処理費用が減少できる等。従つて上
記の如き本発明によるモノクロル酢酸の製造方法は工業
上極めて優れたものてある。所で、従来反応液を塩化水
素ガスと向流に流すことにより液中の塩化アセチルをス
トリツピングさせて回収することは公知である(特公昭
33−875吋)。
That is, (1) since the recovery rate of acetyl chloride is improved, the usage rate of acetic anhydride as a catalyst can be reduced. (2) Since the carrier gas for dispersion is the raw material chlorine gas, no extra energy is required. (3) Since not only acetyl chloride but also acetic acid is dissipated and recycled to the reaction column (at the same time, the chlorination reaction of unreacted acetic acid also progresses slightly), the energy cost in the distillation column in the next step is reduced. (4) Unnecessary side reactions due to the coexistence of highly reactive acetyl chloride in the distillation column are avoided. (5) Wastewater treatment costs based on pollution laws and regulations due to unrecovered acetyl chloride can be reduced. Therefore, the method for producing monochloroacetic acid according to the present invention as described above is industrially extremely excellent. By the way, it is conventionally known to strip and recover acetyl chloride in a reaction solution by flowing it countercurrently with hydrogen chloride gas (Japanese Patent Publication No. 33-875).

しかし、この開示されている方法は使用した塩化水素と
捕集された塩化アセチルとを再び分離し、回収しなけれ
ばならず、そのままでは直接反応塔へリサイクルするこ
とは出来ない。又塩素ガスに対し、塩化水素ガスではそ
の放散液中への溶解性が大きいので、次工程へ及ぼす影
響が大きい等の欠点があり、本発明の方法と比べて効果
上も劣る方法である。本発明の方法が適用され得る対象
液としては、実質上モノクロル酢酸製造のための塩素化
反応を完了した反応液が好適に使用される。
However, in this disclosed method, the used hydrogen chloride and the collected acetyl chloride must be separated and recovered again, and cannot be directly recycled to the reaction column. In addition, since hydrogen chloride gas has a higher solubility in the dispersion liquid than chlorine gas, it has disadvantages such as having a large influence on the next process, and is a method inferior in effectiveness compared to the method of the present invention. As the target liquid to which the method of the present invention can be applied, a reaction liquid that has substantially completed the chlorination reaction for producing monochloroacetic acid is suitably used.

元来、塩化アセチル(触媒)の存在下塩素化反応を行な
うことと反応液から塩化アセチルを放散(回収)するこ
ととは相反する目的を持つており、モノクロル酢酸の製
造における副反応の併起という大きな命題の解決にはこ
の両者を確実に満足させることが必要てあるが、本発明
はこれを達成したものである。本発明の方法に於て反応
液への塩素ガスの吹込みを行なつた反応液から塩化アセ
チルを放散させる工程に用いられる放散塔の温度は約8
0〜140℃が好適である。
Originally, carrying out the chlorination reaction in the presence of acetyl chloride (catalyst) and dissipating (recovering) acetyl chloride from the reaction solution have contradictory purposes, and side reactions occur simultaneously in the production of monochloroacetic acid. In order to solve this big problem, it is necessary to ensure that both of these requirements are satisfied, and the present invention has achieved this. In the method of the present invention, the temperature of the stripping tower used in the step of dissipating acetyl chloride from the reaction solution after blowing chlorine gas into the reaction solution is approximately 8.
A temperature of 0 to 140°C is suitable.

この温度管理は放散塔に送入される反応液が約90〜1
20℃に保持されているので、一方の吹込み塩素ガスの
温度を調節することにより上記範囲に制御される。この
温度が約80℃より低い場合には放散がスムーズに行な
われず、且つ放散後の放散液(反応液)中に塩素ガスが
溶解し、ロスとなる。逆に約140℃より高い場合には
、副反応が併起され、放散液が着色し純度を下げること
になるので好ましくない。放散のため吹込まれる塩素ガ
スの反応液中の滞留時間は通常約0.3〜9分及び反応
液/塩素ガスの割合(重量比)は通常約2〜10から選
ばれる。
This temperature control ensures that the reaction liquid sent to the stripping tower is approximately 90 to 1
Since the temperature is maintained at 20° C., the temperature can be controlled within the above range by adjusting the temperature of one of the chlorine gases. If this temperature is lower than about 80° C., diffusion will not be carried out smoothly and chlorine gas will dissolve in the diffusion liquid (reaction liquid) after diffusion, resulting in loss. On the other hand, if the temperature is higher than about 140° C., side reactions may occur, resulting in coloring of the emitted liquid and lowering the purity, which is not preferable. The residence time of the chlorine gas blown into the reaction solution for dispersion is usually about 0.3 to 9 minutes, and the reaction solution/chlorine gas ratio (weight ratio) is usually selected from about 2 to 10.

両者は密接な相関性を有し、更には放散塔の型式、仕様
及び反応液の組成により、或いは塩化アセチルの回収を
どの程度まで行なうか等によつて実験上から上記範囲内
で適宜決定される。尚、吹込み塩素ガスとしては原料塩
素ガスの一部(又は全部)が供せられるが、温度の場合
と同様に過酷な条件は副反応が併起され好ましくない。
言い換えれば、塩化アセチルを放散させることのみに適
つた穏かな条件を選ぶことが肝要であり、上記液滞留時
間及び反応液/塩素ガスの割合の範囲はこの目的に適う
ものである。放散塔の型式としては充填塔、液薄膜流下
型のもの等の、従来普通に放散単位工程で用いられる型
のものならどれでも用いることができる。
The two have a close correlation, and can be appropriately determined within the above range based on experiments, depending on the type and specifications of the stripping tower, the composition of the reaction solution, or the extent to which acetyl chloride is to be recovered. Ru. Incidentally, part (or all) of the raw material chlorine gas is provided as the blown chlorine gas, but as in the case of temperature, harsh conditions are not preferable because side reactions may occur.
In other words, it is important to choose mild conditions suitable only for dissipating acetyl chloride, and the above-mentioned liquid residence time and reaction liquid/chlorine gas ratio ranges are suitable for this purpose. As for the type of the stripping tower, any type conventionally used in the stripping unit process can be used, such as a packed column or a falling liquid film type.

本発明の方法を実施するに当つての其の他の条件はモノ
クロル酢酸での工業的製法で従来普通に用いられる範囲
から選ばれ、例えば次の通りである。即ち、反応塔段階
では反応温度約80〜120℃(圧力は約0〜2.5k
gIcT1G)の下で、酢酸及び無水酢酸を約10:2
〜4の割合(重量比)及び塩素ガスを酢酸10に対し約
10〜12の割合(重量比)で仕込んで、連続反応を行
なうと反応液(組成:モノクロル酢酸及びジクロル酢酸
約75〜85%、酢酸約15〜25%及び塩化アセチル
約3〜5%)が得られる。次いで、反応液は放散塔を経
て塩化アセチルが放散され、製品化段階では塩化アセチ
ルの放散された放散液は蒸留により未反応酢酸を回収し
た後、晶析槽において結晶化され、精モノクロル酢酸を
得る。次に本発明の方法の連続式実施態様の一例を第1
図に基づいて説明する。
Other conditions for carrying out the method of the present invention are selected from the range conventionally used in industrial production methods using monochloroacetic acid, and are, for example, as follows. That is, in the reaction column stage, the reaction temperature is about 80-120°C (pressure is about 0-2.5k).
acetic acid and acetic anhydride at a ratio of about 10:2 under gIcT1G)
When continuous reactions are carried out by charging 10 to 12 parts (by weight) of chlorine gas to 10 parts of acetic acid, a reaction solution (composition: about 75 to 85% of monochloroacetic acid and dichloroacetic acid) is produced. , about 15-25% of acetic acid and about 3-5% of acetyl chloride). Next, the reaction solution passes through a stripping tower to diffuse acetyl chloride, and in the product production stage, the stripped liquid of acetyl chloride is distilled to recover unreacted acetic acid, and then crystallized in a crystallization tank to produce purified monochloroacetic acid. obtain. Next, a first example of a continuous embodiment of the method of the present invention will be described.
This will be explained based on the diagram.

即ち反応塔3に導管1,2を介して原料の酢酸及び無水
酢酸を夫夫仕込み、反応塔3の下部から導管4,5を介
して原料塩素ガスを吹込む。反応排ガスは導管10を介
して抜取られ、冷却器11を経て系外へ除去される。冷
却器て凝縮された酢酸、塩化アセチル等は捕集され、導
管12を介して反応塔へリサイクルされる。反応塔3の
中部から抜取られた反応液は導管13を介し、ポンプ1
4を経て、放散塔8の上部に送られる。
That is, raw material acetic acid and acetic anhydride are charged into the reaction tower 3 through conduits 1 and 2, and raw chlorine gas is blown into the reaction tower 3 from the lower part through conduits 4 and 5. The reaction exhaust gas is extracted through a conduit 10, passed through a cooler 11, and removed to the outside of the system. Acetic acid, acetyl chloride, etc. condensed in the condenser are collected and recycled to the reaction column via conduit 12. The reaction liquid extracted from the middle of the reaction tower 3 is passed through the conduit 13 to the pump 1.
4 and is sent to the upper part of the diffusion tower 8.

同時に原料塩素ガスの一部又は全部は導管4,6を介し
、予熱器7を経て、放散塔8の下部へ入り上部からの反
応液と向流させる。放散塔8の下部から揮発性物質を除
かれた放散液は導管15を介して抜取られ、これは次工
程(蒸留)へ送られ、そこで目的とするモノクロル酢酸
の製品が得られる。一方塩化アセチル等を同伴した塩素
ガスは導管9を介して放散塔8の上部から抜取られ、こ
のパージガスは直接反応塔へ反応原料の一部又は全部と
して吹込まれる。次に比較例及び実施例を挙げて、本発
明を具体的に説明する。
At the same time, part or all of the raw material chlorine gas passes through the conduits 4 and 6, passes through the preheater 7, enters the lower part of the stripping tower 8, and flows countercurrently with the reaction liquid from the upper part. The stripping liquid from which volatile substances have been removed from the lower part of the stripping tower 8 is extracted through the conduit 15 and sent to the next step (distillation), where the desired product of monochloroacetic acid is obtained. On the other hand, chlorine gas accompanied by acetyl chloride and the like is extracted from the upper part of the stripping tower 8 through a conduit 9, and this purge gas is directly blown into the reaction tower as part or all of the reaction raw material. Next, the present invention will be specifically explained with reference to comparative examples and examples.

比較例 反応塔(ガラス製、12′、CSTR型)を用いて、下
記データで塩素化反応を行なつた。
Comparative Example A chlorination reaction was carried out using a reaction tower (made of glass, 12', CSTR type) according to the following data.

即ち、反応塔に酢酸を1161yIH及び無水酢酸を3
32y1Hで仕込み、これに塩素ガスを1540y1H
て吹込み、100〜105℃て7.5時間反応させた。
That is, 1161yIH of acetic acid and 33% of acetic anhydride were placed in a reaction column.
Prepare at 32y1H and add chlorine gas to this at 1540y1H.
The mixture was blown in and reacted at 100 to 105°C for 7.5 hours.

この際排ガス1021yIHが排出され、反応液201
2y川が得られる。反応液の組成は次の如くであつた。
−ーー.次いで、得られた反応液を減圧蒸留(圧力
100wrfnHgabs凝縮器温度20′C)に掛け
ると、塔頂から酢酸369yIH及び塩化アセチル45
y川が回収された。
At this time, exhaust gas 1021yIH is discharged, and reaction liquid 201
2y river is obtained. The composition of the reaction solution was as follows.
---. Then, when the obtained reaction solution was subjected to vacuum distillation (pressure 100wrfnHgabs, condenser temperature 20'C), acetic acid 369yIH and acetyl chloride 45y were extracted from the top of the column.
y river was recovered.

即ち各成分22y1H及び44y川が損失されたことが
わかる。実施例1 放散塔(ガラス製、40醜φ×600w0nH11h/
10W1磁製ラシヒリング充填、充填塔型)を用いて、
比較例で得られた反応液を下記データで放散を行なつた
That is, it can be seen that the components 22y1H and 44y were lost. Example 1 Diffusion tower (made of glass, 40mm φ x 600w0nH11h/
Using 10W1 porcelain Raschig ring packing, packed tower type),
The reaction solution obtained in the comparative example was diffused using the following data.

即ち、放散塔塔頂より上記反応液(107C)を201
2y川仕込み、塔底部より220yIHの塩素ガスを吹
込んで、反応液と液滞留時間4印2、液/ガス重量比=
9.2で向流させると、塔底部より放散液1873y1
H1塔頂よりパージガズ359y1Hが得られ、夫々の
組成は次の如くであつた。
That is, the above reaction liquid (107C) was poured into 201
Charge 2y river, blow 220yIH chlorine gas from the bottom of the tower, react the reaction liquid and liquid residence time 4 mark 2, liquid/gas weight ratio =
9.2, the emitted liquid 1873y1 flows from the bottom of the column.
Purge gas 359y1H was obtained from the top of the H1 column, and its composition was as follows.

即ち塩化アセチル回収率は47.2% 次いで、得られた放散液を比較例と同様に蒸留して、塔
頂から酢酸301y1H及び塩化アセチル24yIHが
回収され、各成分の損失は22yIH及び23yIHに
すぎなかつた。
That is, the acetyl chloride recovery rate was 47.2%.Then, the obtained dispersion liquid was distilled in the same manner as in the comparative example, and acetic acid 301y1H and acetyl chloride 24yIH were recovered from the top of the column, and the loss of each component was only 22yIH and 23yIH. Nakatsuta.

実施例2〜4 次に第1表に示したデータ以外は実施例1と同様に比較
例に示した反応液を放散塔で処理したところ、結果は第
1表の通りであつた。
Examples 2 to 4 Next, the reaction liquid shown in the comparative example was treated in a stripping tower in the same manner as in Example 1 except for the data shown in Table 1, and the results were as shown in Table 1.

即ち各塩化アセチル回収率は約50〜70%であつた。That is, the recovery rate of each acetyl chloride was about 50 to 70%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の連続式実施態様の一例を示すフ
ローシートである。 3・・・・・・反応塔、7・・・・・・予熱器、8・・
・・・・放散塔、11・・・・・・冷却器、14・・・
・・・ポンプ、1,2,4,5,6,9,10,12,
13,15・ ・・導管。
FIG. 1 is a flow sheet showing an example of a continuous embodiment of the method of the present invention. 3... Reaction tower, 7... Preheater, 8...
...Radiation tower, 11...Cooler, 14...
...Pump, 1, 2, 4, 5, 6, 9, 10, 12,
13,15... Conduit.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒の存在下酢酸と塩素を反応せしめてモノクロル
酢酸を製造するに際し、実質上塩素化反応を完了した反
応液に原料塩素ガスの一部(又は全部)を、液滞留時間
が約0.3〜5分で且つ液/ガス重量比が約2〜10に
なる様に調節して吹込んで反応液から塩化アセチルを放
散させ、排出される塩化アセチルを含む塩素ガスを反応
塔への原料ガスとして使用することを特徴とするモノク
ロル酢酸の製造方法。
1. When producing monochloroacetic acid by reacting acetic acid and chlorine in the presence of a catalyst, a part (or all) of the raw material chlorine gas is added to the reaction liquid that has substantially completed the chlorination reaction, and the liquid residence time is approximately 0.3. The acetyl chloride is diffused from the reaction solution by blowing it in for ~5 minutes and adjusting the liquid/gas weight ratio to about 2 to 10, and the discharged chlorine gas containing acetyl chloride is used as a raw material gas to the reaction tower. A method for producing monochloroacetic acid, characterized in that it is used.
JP3015980A 1980-03-10 1980-03-10 Manufacturing method of monochloroacetic acid Expired JPS6058215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3015980A JPS6058215B2 (en) 1980-03-10 1980-03-10 Manufacturing method of monochloroacetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3015980A JPS6058215B2 (en) 1980-03-10 1980-03-10 Manufacturing method of monochloroacetic acid

Publications (2)

Publication Number Publication Date
JPS56127329A JPS56127329A (en) 1981-10-06
JPS6058215B2 true JPS6058215B2 (en) 1985-12-19

Family

ID=12295968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3015980A Expired JPS6058215B2 (en) 1980-03-10 1980-03-10 Manufacturing method of monochloroacetic acid

Country Status (1)

Country Link
JP (1) JPS6058215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649887A (en) * 2015-02-05 2015-05-27 中国天辰工程有限公司 Production method of chloroacetic acid and method for recovering catalysts in production process of chloroacetic acid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694001B1 (en) * 1992-07-23 1994-09-02 Atochem Elf Sa Process for the synthesis of chloracetic acid in which the hydrochloric acid is purified by product.
JP2007270749A (en) * 2006-03-31 2007-10-18 Toyota Motor Corp Internal combustion engine
CN105646192B (en) * 2016-03-22 2018-03-06 湖北新蓝天新材料股份有限公司 A kind of chloroacetic chloride discoloration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649887A (en) * 2015-02-05 2015-05-27 中国天辰工程有限公司 Production method of chloroacetic acid and method for recovering catalysts in production process of chloroacetic acid

Also Published As

Publication number Publication date
JPS56127329A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
US5808123A (en) Continuous method of producing γ-aminopropyltrialkoxysilanes
JP3241695B2 (en) Method for producing hydromethylpolysiloxane having trimethylsilyl end groups
JPS6096520A (en) Manufacture of silane from methyldichlorosilane and chlorosilane
JPS6058215B2 (en) Manufacturing method of monochloroacetic acid
JPH0222004B2 (en)
JP3169171B2 (en) Method for producing high-purity fluoroalkylsulfonic anhydride
JPH09227498A (en) Production of high-purify fluoroalkylsulfonic anhydride
JPH026466A (en) Production of lower dialkyldisulfide
JPS5940160B2 (en) Manufacturing method of organic vanadate
GB2196617A (en) Purifying thionyl chloride
DK155598B (en) PROCEDURE FOR PREPARING ETHYL CHLORTHIO FORM
US4906762A (en) Process for producing trialkylarsenic compound
US4038377A (en) Removal of selenium from urethane solutions
US4666637A (en) Process for producing chlorobenzene sulfochloride
JPH01203342A (en) Production of bisphenol a
JP3475325B2 (en) Preparation of dimethyl sulfide
AU611429B2 (en) Process for purifying crude 4-aminophenol
US4305889A (en) Process for producing α, α, α-trifluoro-o-toluic fluoride
JP2003012646A (en) Method for distillation of 2-(4-pyridyl)ethanethiol
KR910021370A (en) Method for producing aromatic urethane
EP0344738A1 (en) Process for purification of hydrochloric acid
US4834960A (en) Process for purifying phosphorous acid
JP4168646B2 (en) Method for producing 4,4 '-(1-phenylethylidene) bisphenol
US3743702A (en) Process for the manufacture of carbon disulphide and for the recovery of sulphur
US4695441A (en) Manufacture of silane