JPS6058170B2 - Method for recovering gallium from dust generated in an aluminum electrolytic furnace - Google Patents

Method for recovering gallium from dust generated in an aluminum electrolytic furnace

Info

Publication number
JPS6058170B2
JPS6058170B2 JP22030582A JP22030582A JPS6058170B2 JP S6058170 B2 JPS6058170 B2 JP S6058170B2 JP 22030582 A JP22030582 A JP 22030582A JP 22030582 A JP22030582 A JP 22030582A JP S6058170 B2 JPS6058170 B2 JP S6058170B2
Authority
JP
Japan
Prior art keywords
gallium
slurry
dust generated
dust
electrolytic furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22030582A
Other languages
Japanese (ja)
Other versions
JPS59111919A (en
Inventor
秀継 池田
博徳 伊藤
博文 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Aluminum Co Ltd
Original Assignee
Mitsui Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Aluminum Co Ltd filed Critical Mitsui Aluminum Co Ltd
Priority to JP22030582A priority Critical patent/JPS6058170B2/en
Publication of JPS59111919A publication Critical patent/JPS59111919A/en
Publication of JPS6058170B2 publication Critical patent/JPS6058170B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は溶融氷晶石を用いるアルミニウム電解製錬に際
して、電解炉より発生するダスト中に含まれるガリウム
を回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering gallium contained in dust generated from an electrolytic furnace during aluminum electrolytic smelting using molten cryolite.

ガリウムは近年ガリウムーヒ素(GaAs)あるいはガ
リウム−リン(GaP)等の半導体材料として注目され
ている。
Gallium has recently attracted attention as a semiconductor material such as gallium-arsenide (GaAs) or gallium-phosphide (GaP).

ガリウムは地球上に広く存在しているが、高品位の鉱物
としては産出しないため、従来はボーキサイトからアル
ミナを製造する際のバイヤー液や亜鉛精練浸出残渣等か
ら回収されていた。
Although gallium exists widely on Earth, it is not produced as a high-grade mineral, so it has traditionally been recovered from Bayer fluid used in the production of alumina from bauxite or from zinc smelting leaching residue.

然しこれらの方法ではガリウム回収用原料中におけるガ
リウム含有率が非常に低いため、回収のためには複雑な
工程と高価な処理費用を必要としていた。
However, in these methods, since the gallium content in the raw material for gallium recovery is very low, recovery requires complicated steps and expensive processing costs.

例えばバイヤー液からの回収法としてはライム法、炭酸
法、電解法があり、そのうち電解法が工業的にもつとも
すぐれている。
For example, there are the lime method, carbonation method, and electrolytic method as methods for recovering from Bayer's liquid, and among these methods, the electrolytic method is industrially superior.

この方法はバイヤー液を水銀陰極、ニッケル陽極を使用
して一次電解を行い、回収された粗ガリウムをカセイソ
ーダて処理しその溶液をさらに二次電解するものである
が、水銀を使用するので公害上問題がある等の欠点があ
り、工程が簡単でかつ経済的にも有利な方法の開発が要
望されている。ガリウムの回収を効率よくしかも低廉に
行うためにはガリウム含有量の多い原料を使用する必要
がある。
In this method, Bayer's solution is subjected to primary electrolysis using a mercury cathode and a nickel anode, the recovered crude gallium is treated with caustic soda, and the resulting solution is subjected to secondary electrolysis, but since mercury is used, it is a problem with pollution. There are drawbacks such as problems, and there is a demand for the development of a method that is simple in process and economically advantageous. In order to recover gallium efficiently and at low cost, it is necessary to use raw materials with a high gallium content.

このような条件に合う原料にアルミニウム電解炉発生ダ
ストがある。まづこのアルミニウム電解炉発生ダストに
ついて詳述する。
Dust generated from an aluminum electrolytic furnace is a raw material that meets these conditions. The dust generated by Mazuko's aluminum electrolysis furnace will be explained in detail.

前述せるようにバイアー液中にはガリウムが含有されて
おり、このガリウムはバイアー法工程においてアルミニ
ウムと同様の挙動を示し、ほS゛全量がアルミナ中に含
有される。
As mentioned above, the viar liquid contains gallium, and this gallium exhibits the same behavior as aluminum in the viar process, and almost the entire amount of S is contained in the alumina.

そしてアルミナ中のガリウム濃度は原鉱のボーキサイト
の品位によつて異なる数10ppmから最高100pp
m程度である。このアルミナ中のガリウムはアルミナの
電解時にはアルミニウムメタル中に混入するが、一部は
電解発生ダスト中に含まれる。このダストは電気集じん
器、サイクロン、湿式スクラバー等湿式又は乾式の集じ
ん装置によつて捕集される。このダスト中のガリウム濃
度は750ppmから最高2000ppm程度てあつて
アルミナ中の濃度に比して数1咋に濃縮されており、こ
のような高濃度のガリウムが含まれている例は見当らず
ガリウム取得原料として極めてすぐれている。アルミニ
ウム電解に際して発生するダストからガリウムを回収す
る方法としては、例えば西独にも出願され、同国におい
ては第2542642号として公開されている英国特許
第1527981号がある。
The gallium concentration in alumina varies from several tens of ppm to a maximum of 100 ppm, depending on the grade of bauxite in the raw ore.
It is about m. This gallium in alumina is mixed into the aluminum metal during alumina electrolysis, and some of it is included in the electrolytically generated dust. This dust is collected by a wet or dry dust collector such as an electrostatic precipitator, cyclone, or wet scrubber. The concentration of gallium in this dust ranges from 750 ppm to a maximum of 2000 ppm, which is several tens of times more concentrated than the concentration in alumina.There are no examples of such high concentrations of gallium being found, so it is difficult to obtain gallium. It is an excellent raw material. As a method for recovering gallium from dust generated during aluminum electrolysis, there is, for example, British Patent No. 1527981, which was also filed in West Germany and published as No. 2542642 in that country.

この方法は最高0.2%まてのガリウムを含むダストに
過剰のアルカリ融剤(実施例ではダスト重量の5倍)を
添加した後、500〜800℃で焙焼后水で浸.出し、
溶解したガリウムにアルミニウム、マグネシウム等の金
属粉に添加して固定し、金属ガリウムを製造する方法て
ある。この方法は高価なアルカリ熔融剤をダスト量の数
倍も添加して焙焼するため、多量のアルカリ熔.融剤が
必要である。
This method involves adding an excess of alkaline flux (5 times the weight of the dust in the example) to dust containing up to 0.2% gallium, followed by roasting at 500-800°C and soaking in water. broth,
There is a method of manufacturing metal gallium by adding metal powder such as aluminum or magnesium to molten gallium and fixing it. In this method, an expensive alkaline melting agent is added several times the amount of dust and roasted, so a large amount of alkaline melting agent is added. Fluxing agent is required.

又ダスト中にはガリウムの他に多量のアルカリに溶解す
る成分が含まれているため、ガリウム採取後の廃液の処
理も必要となり、浸出后の残渣も、廃棄する以外に方法
はない等、工業的に実用化に際して解決すべき点がなお
・あり、更に経済的にも成立し難い。本発明者らは前記
方法の主な欠点の一つは、ダスト中に含まれるガリウム
以外の溶解成分が多く、それらの成分をもガリウムと同
時に処理するため、工程も複雑となり、処理費用も増加
する点にあることに着目し、種々研究の結果、ガリウム
成分に共存する溶解成分を少なくするには浮遊選鉱を適
用すれはよいとの知見を得、本発明を完成した。
In addition, since the dust contains a large amount of alkali-soluble components in addition to gallium, it is necessary to treat the waste liquid after gallium is collected, and there is no other way to dispose of the residue after leaching. There are still some issues that need to be solved for practical use, and it is also difficult to achieve economical results. The present inventors believe that one of the main drawbacks of the above method is that there are many dissolved components other than gallium in the dust, and these components are also treated at the same time as gallium, which complicates the process and increases processing costs. Focusing on this point, as a result of various studies, they found that flotation should be applied to reduce the dissolved components coexisting with the gallium component, and the present invention was completed.

即ち本発明はアルミニウム電解炉発生ダストを浮遊選鉱
によりダスト中に含まれるガリウムを分離濃縮したフロ
スを得、ついで該フロスを焙焼し、次に焙焼生成物を鉱
酸により高温酸浸出処理)をしてスラリーを得、該スラ
リーに還元剤を添加してスラリー中のFe3+をFe2
+に還元后、スラリーをろ過し、生成せるろ液にアルカ
リを添加してガリウム成分を水酸化物として析出させる
ことを特徴とするアルミニウム電解炉発生ダストからガ
リウムを回収する方法に関する。
That is, the present invention involves flotation of dust generated from an aluminum electrolytic furnace to separate and concentrate the gallium contained in the dust to obtain floss, then roasting the froth, and then treating the roasted product with high-temperature acid leaching using mineral acid. A reducing agent is added to the slurry to convert Fe3+ in the slurry to Fe2.
The present invention relates to a method for recovering gallium from dust generated in an aluminum electrolytic furnace, which comprises filtering the slurry after reduction to +, and adding an alkali to the resulting filtrate to precipitate the gallium component as hydroxide.

さらに本発明について詳しく説明する。Further, the present invention will be explained in detail.

アルミニウム電解炉発生ダスト中には微細なりーボンが
最大20%ふくまれており、このカーボンは浮遊選鉱に
よりフロスとして浮いてかなりの量分離される。
The dust generated from an aluminum electrolytic furnace contains up to 20% of fine carbon, and a considerable amount of this carbon floats as froth during flotation and is separated.

本発明者らはこのカーボンが浮遊選鉱される際にガリウ
ム、鉄、ニッケル、ケイ素、バナジウムなどの微量の金
属不純物を巻き込んで同時に分離されることを見出した
。そして浮遊選鉱に際してはカーボンの捕集剤として例
えば灯油を、それに起泡剤として一般に市販されている
ものをダストに加えスラリーとすることが必要であり、
さらにスラリー中のダスト濃度を50〜200y/e1
好ましくは100〜150y/′とすることが必要であ
る。50y/eに達しない場合は、起泡を助けるカーボ
ンが少ないためあまり起泡せず浮選操作がうまく進行し
ない。
The present inventors discovered that when this carbon is floated, trace amounts of metal impurities such as gallium, iron, nickel, silicon, and vanadium are involved and separated at the same time. During flotation, it is necessary to add, for example, kerosene as a carbon scavenger and a commercially available foaming agent to the dust to form a slurry.
Furthermore, the dust concentration in the slurry was increased to 50 to 200y/e1.
Preferably, it is necessary to set it to 100 to 150 y/'. If it does not reach 50 y/e, there is less carbon to help foaming, so foaming does not occur much and the flotation operation does not proceed well.

又200y/′をこえるとカーボン量が多くなるためよ
く起泡する力幼−ボン以外の電解浴成分が多量フロスに
混入するためガリウムの分離効率が低下する。
If it exceeds 200y/', the amount of carbon increases, and a large amount of electrolytic bath components other than the carbon, which often foams, is mixed into the froth, resulting in a decrease in the separation efficiency of gallium.

前述のように浮遊選鉱に際してのガリウムのフロスへの
分離効率はカーボンの含有量に影響されるのでフロス分
を浮遊選鉱の初期にダストに対して重量で10〜50%
循環させるとガリウムのダストよりの分離効率は向上す
る。
As mentioned above, the separation efficiency of gallium into froth during flotation is affected by the carbon content, so the froth content should be adjusted to 10 to 50% by weight relative to dust at the beginning of flotation.
Circulation improves the separation efficiency of gallium from dust.

本発明方法における浮遊選鉱に際してのガリウムの収率
は約80%てあつてダスト中の濃度に比し約2倍に濃縮
され、フロス中のガリウムの濃度は1500〜4000
ppmとなる。
The yield of gallium during flotation in the method of the present invention is about 80%, which is about twice the concentration in the dust, and the concentration of gallium in the floss is 1,500 to 4,000.
ppm.

この場合ガリウム以外の溶解成分も約7割程度がテイル
中に分離される。そして浮遊選鉱によるテイル分は、ア
ルミナ、氷晶石、フッ化アルミニウム等の電解浴成分で
あり、従来ダストの再使用を困難にしていたカーボン、
金属不純物等が大部分分離されているため、そのま)乾
燥すれば電解炉ての再使用が可能てあり、廃棄物対策、
資源の無駄のない有効利用などの面においてもすぐれた
効果がある。次に前記のフロスを焙焼してガリウムの濃
度を高め、かつガリウムの溶解性を増加させる。
In this case, about 70% of dissolved components other than gallium are separated into the tail. The tail from flotation consists of electrolytic bath components such as alumina, cryolite, and aluminum fluoride.
Since most of the metal impurities have been separated, it is possible to reuse the electrolytic furnace by simply drying it, which is useful for waste management and
It also has excellent effects in terms of effective use of resources without waste. The floss is then roasted to increase the gallium concentration and increase the solubility of the gallium.

電解炉発生ダスト中に含まれるガリウムは酸化物又はフ
ッ化物と想定される。本発明では後の工程で高温酸浸出
処理をしているが、フッ化物は高温酸浸出処理を行なつ
ても溶解し難いが、焙焼するとと溶解性がよくなる。又
焙焼によりほS゛カーボンの含有率の30〜40%の重
量減があり、上述の溶解性の向上と同時にガリウムも濃
縮されて3000〜6000ppm程度となる。即ち当
初のダスト中の濃度に比し3〜4倍に濃縮されたことに
なる。焙焼温度は500〜800℃が適当であり、これ
により低い温度では焼成が充分に進行せず、又高い温度
では焼成物が溶融する等の不都合を生じ、いずれの場合
も溶解性増加の効果は殆んどなく、したがつて高温酸浸
出処理に際してのガリウムの浸出率の向上は期待てきな
い。即ちガリウムの濃度を高め、且つ溶解性を高めるた
めには500〜800よCで焙焼することが必要である
。次に焙焼されたダストを硫酸、塩酸、硝酸などの鉱酸
により温度80をC〜1000Cの範囲て高温酸浸出処
理を行う。
The gallium contained in the electrolytic furnace dust is assumed to be an oxide or fluoride. In the present invention, a high-temperature acid leaching treatment is performed in a later step, and although fluoride is difficult to dissolve even if the fluoride is subjected to a high-temperature acid leaching treatment, its solubility improves when it is roasted. Furthermore, due to roasting, the weight of the carbon content is reduced by 30 to 40%, and at the same time as the above-mentioned solubility is improved, gallium is also concentrated to about 3000 to 6000 ppm. In other words, the concentration was three to four times higher than the initial concentration in the dust. The appropriate roasting temperature is 500 to 800°C; lower temperatures will not allow the firing to proceed sufficiently, while higher temperatures will cause problems such as melting of the fired product. In either case, the effect of increasing solubility will be reduced. Therefore, no improvement in the leaching rate of gallium can be expected during high-temperature acid leaching treatment. That is, in order to increase the concentration and solubility of gallium, it is necessary to roast it at 500 to 800 degrees Celsius. Next, the roasted dust is subjected to high-temperature acid leaching treatment using a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid at a temperature ranging from 80C to 1000C.

この処理により焙焼生成物中のガリウムの約80%およ
び他の金属不純物(鉄、ニッケル、ケイ素、バナジウム
)が溶解し、又焙焼物中の主成分てあるアルミニウム、
フッ素、ナトリウムもかなりの量が溶解したスラリーを
得る。本発明においてはガリウム成分を最終的にはアル
カリ添加により加水分解して水酸化物として取得するが
、Fe3+はガリウム水酸化物析出のための条件下では
ほS゛全量が析出するので、これを防ぐため例えは鉄粉
、亜鉛粉等の還元剤を加えてFe3+をFe2+とする
ことが必要である。即ち前記高温酸浸出后のスラリーに
還元剤を加えてFe3+をFe2+に還元し、ついでろ
過し、ろ液にアルカリを加えて加水分解により溶解して
いるガリウム成分を水酸化物として析出させる。
This treatment dissolves about 80% of the gallium and other metal impurities (iron, nickel, silicon, vanadium) in the roasted product, and also dissolves aluminum, which is the main component in the roasted product.
A slurry in which considerable amounts of fluorine and sodium are also dissolved is obtained. In the present invention, the gallium component is ultimately hydrolyzed by addition of alkali to obtain hydroxide, but since almost the entire amount of Fe3+ is precipitated under the conditions for gallium hydroxide precipitation, this is To prevent this, it is necessary to convert Fe3+ into Fe2+ by adding a reducing agent such as iron powder or zinc powder. That is, a reducing agent is added to the slurry after high-temperature acid leaching to reduce Fe3+ to Fe2+, followed by filtration, and an alkali is added to the filtrate to precipitate the dissolved gallium component as hydroxide by hydrolysis.

この際にガリウム水酸化物を選択的に析出させることが
好ましく、このためにはガリウムが水酸化物として沈澱
を始める際のPHが主溶解成分であるアルミニウムが沈
澱し始めるPHに比し低いことを利用して、PHが4〜
5になるように調整すればよい。Fe3+をFe2+に
還元するとガリウム水酸化物の析出率がや)低下する傾
向があるが、すくなくとも95%は確保できる。最後に
ろ過して水酸化物の混合物をうるが、この混合物中のガ
リウム濃度は10%以上となる。即ち焙焼生成物のガリ
ウム濃度に比し、2皓程度のガリウム濃度であり、当初
使用のダストに比しガリウム濃度は約100f8にもな
つている。かくして本発明の方法により得られた水酸化
物の混合物は金属ガリウム取得の良好な原料となる。
At this time, it is preferable to selectively precipitate gallium hydroxide, and for this purpose, the pH at which gallium begins to precipitate as hydroxide must be lower than the pH at which aluminum, the main dissolved component, begins to precipitate. Using this, the pH is 4~
Just adjust it so that it becomes 5. When Fe3+ is reduced to Fe2+, the precipitation rate of gallium hydroxide tends to decrease somewhat, but at least 95% can be ensured. Finally, it is filtered to obtain a hydroxide mixture, and the gallium concentration in this mixture is 10% or more. That is, the gallium concentration is about 2 times lower than that of the roasted product, and the gallium concentration is about 100 f8 compared to the initially used dust. The hydroxide mixture thus obtained by the method of the invention is a good raw material for obtaining metallic gallium.

この原料より金属ガリウムをうる方法の一例を次に示す
。まず前記水酸化物混合物を塩酸で溶解后、工ーテル類
で溶媒抽出を行ない、ガリウム以外の金属と分離する。
An example of a method for obtaining metallic gallium from this raw material is shown below. First, the hydroxide mixture is dissolved in hydrochloric acid, and then subjected to solvent extraction using esters to separate metals other than gallium.

この溶媒を水て逆抽出し、抽出后の水溶液中のガリウム
をアルカリて加水分解して水酸化物を析出させる。つい
でこの水酸化物を水酸化ナトリウムで溶解し、更に水溶
液電解を行なえば、高純度の金属ガリウムを容易にうる
ことができる。以上本発明について詳述したが、従来は
経済的に回収が困難であつたアルミニウム電解炉発生ダ
スト中のガリウムを簡単な工程の組合せにより経済的に
回収としたものであり、工業的価値は極めして大である
This solvent is back-extracted with water, and after extraction, the gallium in the aqueous solution is hydrolyzed with an alkali to precipitate hydroxide. Then, by dissolving this hydroxide with sodium hydroxide and further performing aqueous electrolysis, highly pure metallic gallium can be easily obtained. The present invention has been described in detail above, and gallium in the dust generated from an aluminum electrolytic furnace, which was conventionally difficult to recover economically, can be economically recovered by a combination of simple steps, and it has extremely high industrial value. It's a big deal.

以下、実施例により本発明を更に詳細に説明するが、本
発明はこれにより制限されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 電気集じん器で捕集したアルミニウム電解炉発生ダスト
(組成 重量%、ガリウム0.152、鉄1.10、ケ
イ素0.2伝ニッケル0.28、バナヂウム0.101
ナトリウム13.5、アルミニウム16.5sフッ素2
6.2、カーボン20.1)500yに水を加え、ダス
フト濃度100y/′、スラリーに調整した。
Example 1 Dust generated from an aluminum electrolytic furnace collected by an electrostatic precipitator (composition: 0.152 gallium, 1.10 iron, 0.2 silicon, 0.28 nickel, 0.101 vanadium)
Sodium 13.5, Aluminum 16.5s Fluorine 2
6.2, Carbon 20.1) Water was added to 500y to adjust the dust concentration to 100y/' and slurry.

このスラリーにカーボン捕集剤として灯油を固形分の重
量比で4000ppm1起泡剤を1000ppm添加し
た後、浮遊選鉱を行つた。その結果フロス分41%、テ
イル分44%を得、損失が15%であつた。フロス中の
ガリウム濃度は0.298%で、浮遊選鉱によるガリウ
ムの分解効率は80.4%であり、他の成分の分解効率
は、鉄71.8%、ケイ素65.7%、ニッケル79.
8%、バナジウム76.6%、カーボン84.4%であ
つた。そしてテイル分の組成は氷晶石42.5%、フッ
化アルミ18.6%、アルミナ27.7%、カーホン7
.1%であり、実質的には電解浴組成物のみであつた。
次に100 ゜Cで2時間焙焼した。
After adding 4,000 ppm of kerosene as a carbon scavenger to this slurry in terms of solid weight ratio, and 1,000 ppm of a foaming agent, flotation was performed. As a result, the floss content was 41%, the tail content was 44%, and the loss was 15%. The gallium concentration in the froth is 0.298%, and the decomposition efficiency of gallium by flotation is 80.4%, and the decomposition efficiency of other components is 71.8% for iron, 65.7% for silicon, and 79.9% for nickel.
8%, vanadium 76.6%, and carbon 84.4%. The composition of the tail is 42.5% cryolite, 18.6% aluminum fluoride, 27.7% alumina, and 7% carphone.
.. 1%, which was essentially only the electrolytic bath composition.
Next, it was roasted at 100°C for 2 hours.

その結果カーボン分はほS゛完全に焼失し、焙焼生成物
の重量は96yであり、かつガリウム濃度は0.463
%であつた。なお焙焼によるガリウムの飛散はみられな
かつた。前記焙焼生成物50yに硫酸を焙焼生成物に対
して重量比で0.7、かつ水をスラリー濃度150y/
eになるように添加し、その後95〜100℃で3時間
酸浸出処理を行つてスラリーを得た。このスラリーに鉄
粉2yを添加し、30分かくはんもしながらFe3+の
還元を行つた後ろ別した。ろ液中のガリウム濃度0.5
7y/fで、かつろ液中に焙焼生成物のガリウムの82
%が溶解していた。なお焙焼生成物中の全鉄およびアル
ミニウムの濃度はそれぞれ3.8y/El5.78y/
eであつた。ろ液に10%水酸化ナトリウム水溶液を添
加し、PHを4.5に調整して水酸化物を析出させ、ろ
過により析出水酸化物0.87y,を得た。このうちガ
リウム分21.6%、鉄分2.2%であり、酸浸出処理
后のスラリーからのガリウムの析出率は98.0%であ
つた。参考例 前記実施例1においてフロスを焙焼せずにただこちに実
施例1と同様の酸浸出処理を行なつたところ、ガリウム
の浸出率は35%にすぎなかつた。
As a result, the carbon content was almost completely burned out, the weight of the roasted product was 96y, and the gallium concentration was 0.463.
It was %. Furthermore, no scattering of gallium was observed due to roasting. Sulfuric acid was added to the roasted product 50y at a weight ratio of 0.7, and water was added to the slurry concentration of 150y/y.
After that, acid leaching treatment was performed at 95 to 100°C for 3 hours to obtain a slurry. Iron powder 2y was added to this slurry, and after stirring for 30 minutes to reduce Fe3+, it was separated. Gallium concentration in filtrate 0.5
7y/f, and 82% of the gallium of the roasted product in the filtrate.
% was dissolved. The total iron and aluminum concentrations in the roasted product are 3.8y/El5.78y/
It was e. A 10% aqueous sodium hydroxide solution was added to the filtrate and the pH was adjusted to 4.5 to precipitate hydroxide, and 0.87y of precipitated hydroxide was obtained by filtration. Of these, the gallium content was 21.6% and the iron content was 2.2%, and the precipitation rate of gallium from the slurry after acid leaching treatment was 98.0%. Reference Example In Example 1, when the froth was subjected to the same acid leaching treatment as in Example 1 without being roasted, the leaching rate of gallium was only 35%.

実施例2湿式スクラバーで捕集したアルミニウム電解炉
発生ダスト(組成 ガリウム0.083%、鉄0.98
3%、ケイ素1.10%、ニッケル0.28%、バナヂ
ウム0.18%、ナトリウム10.8%、アルミニウム
20.8%、フッ素21.4%、カーボン13.6%)
500yに水を加え、スラリー濃度130g/fに調整
した。
Example 2 Dust generated from an aluminum electrolytic furnace collected by a wet scrubber (composition: 0.083% gallium, 0.98% iron)
3%, silicon 1.10%, nickel 0.28%, vanadium 0.18%, sodium 10.8%, aluminum 20.8%, fluorine 21.4%, carbon 13.6%)
Water was added to 500y to adjust the slurry concentration to 130g/f.

このスラリーにカーボン捕集剤として灯油を固形分の重
量比で4000ppm、起泡剤を1000ppm添加し
た後、浮遊選鉱を行なつた。その結果フロス分37%、
テイル分57%を得、損失が6%であつた。フロス中の
ガリウム濃度は0.171%で、浮遊選鉱によるガリウ
ムの分解効率は76.2%であり、他の成分の分解効率
は鉄79.3%、ケイ素71.8%、ニッケル76.5
%、バナヂウム81.2%、カーボン64%であ)つた
。そしてテイル分の組成は氷晶石34.6%、フッ化ア
ルミ5.4%、アルミナ50.9%、カーボン6.2%
であり実質的には電解浴組成物のみであつた。次に10
0℃で2時間乾燥したフロス150yを700℃で2時
間焙焼した。その結果カーボン分はほS゛完全に焼失し
、焙焼生成物の重量は116fであり、かつガリウム濃
度は0.22%であつた。なお焙焼によるガリウムの飛
散はみられなかつた。前記焙焼生成物50qに硫酸を焙
焼生成物に対して重量比で0.7、かつ水をスラリー濃
度が150v/eになるように添加し、その後95〜1
00℃で3時間酸浸出処理を行つてスラリーを得た。こ
のスラリーに鉄粉2yを添加し、30分かくはんしなが
らFe3+の還元を行つた後、ろ別した。ろ液中のガリ
ウム濃度は0.284y/fであり、かつろ液中に焙焼
生成物中のガリウムの86%が溶解していた。なお焙焼
生成物中の全鉄およびアルミニウムの濃度はそれぞれ2
.26y/′、6.4y/eであつた。ろ液に10%水
酸化ナトリウム水溶液を添加して、PHを4.5まで上
昇させ、水酸化物を析出させ、ろ過により析出水酸化物
0.67yを得た。このうちガリウム分21.6%、鉄
分4.8%であり、酸浸出処理後のスラリーからのガリ
ウムの析出率は96%であつた。参考例 前記実施例2においてフロスを焙焼せずに実施例2と同
様の酸浸出処理を行なつたところ、ガリウムの浸出率は
42%にすぎなかつた。
After adding 4,000 ppm of kerosene and 1,000 ppm of a foaming agent by weight of solid content as a carbon scavenger to this slurry, flotation was performed. As a result, the floss content was 37%,
A tail portion of 57% was obtained with a loss of 6%. The gallium concentration in the floss is 0.171%, and the decomposition efficiency of gallium by flotation is 76.2%, and the decomposition efficiency of other components is 79.3% for iron, 71.8% for silicon, and 76.5% for nickel.
%, vanadium 81.2%, carbon 64%). The composition of the tail is 34.6% cryolite, 5.4% aluminum fluoride, 50.9% alumina, and 6.2% carbon.
Therefore, it was essentially only the electrolytic bath composition. then 10
Floss 150y dried at 0°C for 2 hours was roasted at 700°C for 2 hours. As a result, the carbon content was almost completely burnt out, the weight of the roasted product was 116 f, and the gallium concentration was 0.22%. Furthermore, no scattering of gallium was observed due to roasting. Sulfuric acid was added to the roasted product 50q at a weight ratio of 0.7 to the roasted product, and water was added so that the slurry concentration was 150 v/e, and then 95 to 1
A slurry was obtained by performing acid leaching treatment at 00°C for 3 hours. Iron powder 2y was added to this slurry, and after stirring for 30 minutes to reduce Fe3+, it was filtered. The gallium concentration in the filtrate was 0.284 y/f, and 86% of the gallium in the roasted product was dissolved in the filtrate. The total iron and aluminum concentrations in the roasted product are each 2
.. They were 26y/' and 6.4y/e. A 10% aqueous sodium hydroxide solution was added to the filtrate to raise the pH to 4.5 to precipitate hydroxide, and 0.67y of precipitated hydroxide was obtained by filtration. Of these, the gallium content was 21.6% and the iron content was 4.8%, and the precipitation rate of gallium from the slurry after the acid leaching treatment was 96%. Reference Example In Example 2, when the same acid leaching treatment as in Example 2 was carried out without roasting the froth, the leaching rate of gallium was only 42%.

Claims (1)

【特許請求の範囲】 1 アルミニウム電解炉発生ダストを浮遊選鉱してダス
ト中に含まれるガリウムを分離濃縮したフロスを得、つ
いで該フロスを焙焼し、次に焙焼生成物を鉱酸により高
温酸浸出処理をしてスラリーを得、該スラリーに還元剤
を添加してスラリー中のFe^3^+をFe^2^+に
還元后、スラリーをろ過し、生成せるろ液にアルカリを
添加してガリウム成分を水酸化物として析出させること
を特徴とするアルミニウム電解炉発生ダストからガリウ
ムを回収する方法。 2 アルミニウム電解炉発生ダストの浮遊選鉱は、ダス
トを濃度が50〜200g/lであるスラリーに調整后
、カーボン捕集剤、起泡剤をスラリーに添加して行う特
許請求の範囲1項のアルミニウム電解炉発生ダストから
ガリウムを回収する方法。 3 フロスの焙焼は500〜800℃で行われる特許請
求の範囲第1項のアルミニウム電解炉発生ダストからガ
リウムを回収する方法。 4 焙焼生成物の鉱酸による高温酸浸出処理は鉱酸とし
て硫酸、塩酸、硝酸のいずれかを用い、温度80〜10
0℃で行う特許請求の範囲第1項のアルミニウム電解炉
発生ダストからガリウムを回収する方法。 5 ろ液に対するアルカリの添加は、pH4〜5になる
ように添加する特許請求の範囲第1項のアルミニウム電
解炉発生ダストからガリウムを回収する方法。
[Claims] 1. Dust generated from an aluminum electrolytic furnace is flotated to obtain a froth in which gallium contained in the dust is separated and concentrated, and then the froth is roasted, and the roasted product is heated at high temperature with mineral acid. Acid leaching treatment is performed to obtain a slurry, a reducing agent is added to the slurry to reduce Fe^3^+ in the slurry to Fe^2^+, the slurry is filtered, and an alkali is added to the resulting filtrate. A method for recovering gallium from dust generated in an aluminum electrolytic furnace, characterized in that the gallium component is precipitated as a hydroxide. 2. Flotation of dust generated from an aluminum electrolytic furnace is carried out by adjusting the dust to a slurry having a concentration of 50 to 200 g/l, and then adding a carbon scavenger and a foaming agent to the slurry. A method for recovering gallium from dust generated in an electrolytic furnace. 3. The method for recovering gallium from dust generated in an aluminum electrolytic furnace according to claim 1, wherein the froth is roasted at a temperature of 500 to 800°C. 4. High-temperature acid leaching treatment using mineral acid for the roasted product uses either sulfuric acid, hydrochloric acid, or nitric acid as the mineral acid, and the temperature is 80 to 10 ml.
A method for recovering gallium from dust generated in an aluminum electrolytic furnace according to claim 1, which is carried out at 0°C. 5. The method for recovering gallium from dust generated in an aluminum electrolytic furnace according to claim 1, wherein the alkali is added to the filtrate so that the pH becomes 4 to 5.
JP22030582A 1982-12-17 1982-12-17 Method for recovering gallium from dust generated in an aluminum electrolytic furnace Expired JPS6058170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22030582A JPS6058170B2 (en) 1982-12-17 1982-12-17 Method for recovering gallium from dust generated in an aluminum electrolytic furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22030582A JPS6058170B2 (en) 1982-12-17 1982-12-17 Method for recovering gallium from dust generated in an aluminum electrolytic furnace

Publications (2)

Publication Number Publication Date
JPS59111919A JPS59111919A (en) 1984-06-28
JPS6058170B2 true JPS6058170B2 (en) 1985-12-18

Family

ID=16749058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22030582A Expired JPS6058170B2 (en) 1982-12-17 1982-12-17 Method for recovering gallium from dust generated in an aluminum electrolytic furnace

Country Status (1)

Country Link
JP (1) JPS6058170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272779A (en) * 1991-02-27 1992-09-29 Hirotaka Nakano Plaything

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO158028C (en) * 1985-12-16 1988-06-29 Elkem As GALLIUM EXTRACTION.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272779A (en) * 1991-02-27 1992-09-29 Hirotaka Nakano Plaything

Also Published As

Publication number Publication date
JPS59111919A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
CN111348669B (en) Preparation method of sodium hexafluoroaluminate
WO2022213678A1 (en) Method for recycling aluminum in waste positive electrode sheet by using selective leaching and application thereof
CN112831660A (en) Process for comprehensively utilizing molybdenum ore leaching slag
US4594102A (en) Recovery of cobalt and nickel from sulphidic material
US2900231A (en) Process for extracting rare earths from ores and residues
JPS6058170B2 (en) Method for recovering gallium from dust generated in an aluminum electrolytic furnace
JPS61261446A (en) Method for recovering zn from zn containing material
US3007770A (en) Extraction of lithium
CN112390231B (en) Method for preparing refined tellurium from tellurium dioxide powder
CN110627106A (en) Method for producing zinc carbonate by using blast furnace cloth bag ash dechlorination wastewater
JP2004182533A (en) Method of recovering cobalt
JP2021161449A (en) Sc extraction method
US3939256A (en) Sulfur recovery process
JPS5839894B2 (en) Method for removing phosphorus and silicon from water-soluble smelting slag
KR101486668B1 (en) Recovery of metalic tin from waste materials by aqueous extraction
JP7243749B2 (en) Valuable metal recovery method and recovery device
CN111909750B (en) Utilization method of waste liquid generated by coal chemical ash removal and coal ash removal method
JPS6154847B2 (en)
JP7359059B2 (en) Method for producing cadmium hydroxide
RU2765974C1 (en) Method for processing metallurgical slag
CN113667842B (en) Method for removing non-rare earth impurities in rare earth hydrometallurgy
CN113003591B (en) Method for purifying and preparing beryllium hydroxide from beryllium fluoride-containing mixture
JPS6316334B2 (en)
SU996495A1 (en) Method for processing ferrous hydrate cakes containing nickel and cobalt
KR101752727B1 (en) Method for recovering tin from tin residue