JPS6058087A - Production of alpha-fluoro-beta-hydroxycarboxylic acid ester - Google Patents

Production of alpha-fluoro-beta-hydroxycarboxylic acid ester

Info

Publication number
JPS6058087A
JPS6058087A JP16718583A JP16718583A JPS6058087A JP S6058087 A JPS6058087 A JP S6058087A JP 16718583 A JP16718583 A JP 16718583A JP 16718583 A JP16718583 A JP 16718583A JP S6058087 A JPS6058087 A JP S6058087A
Authority
JP
Japan
Prior art keywords
fluoro
acid ester
beta
alpha
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16718583A
Other languages
Japanese (ja)
Other versions
JPS6330000B2 (en
Inventor
Nobuo Ishikawa
延男 石川
Tomoya Kitatsume
智哉 北爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP16718583A priority Critical patent/JPS6058087A/en
Publication of JPS6058087A publication Critical patent/JPS6058087A/en
Publication of JPS6330000B2 publication Critical patent/JPS6330000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the titled compound, easily, in high yield, by treating a specific alpha-fluoro-beta-ketocarboxylic acid ester with microorganisms, thereby selectively reducing only the keto group without reducing the ester-side carbonyl group. CONSTITUTION:The alpha-fluoro-beta-ketocarboxylic acid ester of formula I (R<1> and R<2> are aliphatic group or aromatic group) (e.g. 2-fluoroacetoacetic acid ethyl ester) is treated with microorganisms such as baker's yeast in distilled water containing starch, etc. at room temperature for 5 days. The reaction mixture is separated into the solid phase and the liquid phase by centrifugal separator. The liquuid phase is extracted with diethyl ether, the extract is dried with magnesium sulfate, etc., and the solvent is distilled off to obtain the alpha-fluoro-beta-hydroxycarboxylic acid ester of formula II (e.g. 2-fluoro-3-hydroxybutanoic acid ethyl ester).

Description

【発明の詳細な説明】 本発明はα−フルオロ−β−ヒドロキシカルボン酸エス
テル類の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing α-fluoro-β-hydroxycarboxylic acid esters.

微生物による化合物の変換は、生態系においては想像以
上に大きなスケールで行なわれているが、有機ハロゲン
化合物(特に合成されたもの)の殆んどは微生物的に難
分解性であることが知られている。
Conversion of compounds by microorganisms takes place on a larger scale than imagined in ecosystems, but it is known that most organic halogen compounds (especially those that have been synthesized) are difficult to decompose microbially. ing.

フッ素化合物については、モノフルオロ酢酸を資化する
細菌が分解され、近時、次式の如くにそのC−F結合を
加水分解する酵素が細菌から精製、結晶化され得ること
が報告されている。
Regarding fluorine compounds, it has been reported that bacteria that assimilate monofluoroacetic acid are decomposed, and that an enzyme that hydrolyzes the C-F bond as shown in the following formula can be purified and crystallized from bacteria. .

e酵素 θe F CH2COt−→HOCHtCOz+ Fこの加水
分解は、モノフルオロ酢酸に関してのみであるが、自然
界にもフッ素化合物を資化して変換する微生物が存在す
ることが示唆されている。
e Enzyme θe F CH2COt-→HOCHtCOz+ F Although this hydrolysis only applies to monofluoroacetic acid, it has been suggested that there are microorganisms that assimilate and convert fluorine compounds in nature.

本発明者は、特に生態系におけるフッ素化合物に対する
微生物の役割について検討し、ミミック(mimic 
)効果を示すモノフルオロ化合物に関する新規で有用な
変換方法を見出し、本発明に到達したもの゛である。
The present inventors particularly investigated the role of microorganisms in relation to fluorine compounds in ecosystems, and discovered that
) We have discovered a new and useful conversion method for monofluoro compounds that exhibit this effect, and have arrived at the present invention.

即ち、本発明は、 一般式: (但、R1、R2は脂肪族基又は芳香族基である。)で
表わされるα−フルオロ〜β−ケトカルボン酸エステル
に微生物を作用させ、これによって、一般式: (但、R1、R2は前記したものと同じである。)で表
わされるα−フルオロ−β−ヒドロキシカルボン酸エス
テル類を得ることを特徴とするα−フルオロ−β−ヒド
ロキシカルボン酸エステル類の製造方法に係るものであ
る。
That is, the present invention allows a microorganism to act on an α-fluoro to β-ketocarboxylic acid ester represented by the general formula: (However, R1 and R2 are an aliphatic group or an aromatic group.) : (However, R1 and R2 are the same as those mentioned above.) This relates to the manufacturing method.

本発明によれば、フッ素原子が、α位に1つ導入された
上記のα−フルオロ〜β−ケトカルボン酸エステル(モ
ノフルオロ化合物)は、微生物の作用下で相当する通常
の炭化水素系化合物よりも難分解性である(即ち、微生
物による還元に長時に選択的に還元されるのである。こ
の場合、微生ル基側のカルボニル基は同エステル結合に
よって保護され、安定となっている)。これは、ミミソ
ク効果を考える上で非常に興味深いものである。
According to the present invention, the above α-fluoro to β-ketocarboxylic acid ester (monofluoro compound) in which one fluorine atom has been introduced at the α-position is lower than the corresponding ordinary hydrocarbon compound under the action of microorganisms. It is also difficult to decompose (that is, it is selectively reduced over time by microorganisms. In this case, the carbonyl group on the microorganism side is protected by the same ester bond and is stable). This is very interesting when considering the Mimisoku effect.

本発明における微生物の作用で、実際には次式で示され
るキラルなヒドロキシカルボン酸エステルが不斉還元に
より効率良く生成する。
Through the action of microorganisms in the present invention, a chiral hydroxycarboxylic acid ester represented by the following formula is actually efficiently produced by asymmetric reduction.

(但、Cは不斉炭素原子である。) 本発明で使用する上記α−フルオロ−β−ケトカルボン
酸エステルの一般式において、R’、R”は炭素原子数
lO以下のアルキル基とするのがよく、一般式: CI
h (CHt)、−又は(CHe)lICH(CHt)
1−で表わされるもの、例えばCHプラーCH2OHt
−1CHe(CHt)2−1CHy (CHz)y−1
CHy (CHt)4−1CHe (CHz)y−1C
He (CHt)4−1(CHy)2CH−1(CHy
)t CHCHe−1(CHv)t CH(C)(2)
g −1(CHe)2 CH(CHz)5−等がある。
(However, C is an asymmetric carbon atom.) In the general formula of the above α-fluoro-β-ketocarboxylic acid ester used in the present invention, R' and R'' are alkyl groups having 10 or less carbon atoms. is often the general formula: CI
h (CHt), - or (CHe)ICH(CHt)
1-, such as CH plar CH2OHt
-1CHe(CHt)2-1CHy (CHz)y-1
CHy (CHt)4-1CHe (CHz)y-1C
He (CHt)4-1(CHy)2CH-1(CHy
)t CHCHe-1(CHv)t CH(C)(2)
g -1(CHe)2 CH(CHz)5-, etc.

これら以外に、R1、R2として、上記アルキル基と同
炭素原子数のアルケニル基、例えばCH2= CHCH
t−1CH,CH=CH−等も適用可能であり、更には
フェニル基等の芳香族基が挙げられる。なお、R1、R
2には置換基が導入されていてもよい。
In addition to these, as R1 and R2, an alkenyl group having the same number of carbon atoms as the above alkyl group, for example, CH2=CHCH
t-1CH, CH=CH-, etc. are also applicable, and further examples include aromatic groups such as phenyl group. In addition, R1, R
A substituent may be introduced into 2.

次に、本発明に使用する化合物を例示して更に詳細に説
明する。
Next, compounds used in the present invention will be illustrated and explained in more detail.

まず、不斉還元されるべきα−フルオロ−β−ケトカル
ボン酸エステル上は、次の反応によって合成することが
できる。
First, the α-fluoro-β-ketocarboxylic acid ester to be asymmetrically reduced can be synthesized by the following reaction.

〔 次に、土にパン酵母を作用させると、対応するα−フル
オロ−β−ヒドロキシカルボン酸エステル−へ変換され
る。
[Next, when baker's yeast is applied to the soil, it is converted to the corresponding α-fluoro-β-hydroxycarboxylic acid ester.

この反応において、パン酵母による土の不斉還元は、種
々のR1について示す下記表に示す結果から長時間装す
ることが分る。
In this reaction, it can be seen that the asymmetric reduction of soil by baker's yeast lasts for a long time from the results shown in the table below for various R1s.

ル(R1=CH5>を使用すると、パン酵母による還元
は収率78%で進行し、生成物1の立体異性(ジアステ
レオ選択性)は81 : 19であった。この生成物の
立体構造の決定は、NMRスペクトル及びIRスペクト
ルで行なうことができる。IRスペクトルにおいては、
OH基の吸収が3200cmの低波数に現われ、エステ
ル基の、C−0の吸収も1705cmと低波数に現われ
たことから、生成物上は分子内第1図ではエナンチオマ
ーがスペクトル上分離されないが、生成物1に対しシフ
ト試薬、例えばペルフルオロ−2−プロポキシプロピオ
ン酸クロリドを作用させ、″FNMRスペクトルをとっ
たところ、第2図に示すように、第1図に示したスペク
トルaがAとCに、bがBとDに夫々分かれ、4つのC
HF基のシグナルが測定できた。ここで、生成物上のジ
アステレオマーにおいて、トレオ体(A + C)とエ
リトロ体(B十C)の結合定数は前者がJF−hv;c
 =6.6 Hz、 JH−)IVIII:=7.91
1Zであり、後者がJF−)1v;(=−22HzXJ
H−Hv;。”6.6 Hzであること、及び上記した
如き分子内水素結合の可能性とから、上記した不斉還元
によってトレオ体の方がエリトロ体よりも優先的に生成
しているものと考えられる。
When using R1=CH5>, the reduction with baker's yeast proceeded in 78% yield, and the stereoisomerism (diastereoselectivity) of product 1 was 81:19. The determination can be made in the NMR spectrum and in the IR spectrum. In the IR spectrum,
The absorption of the OH group appeared at a low wave number of 3200 cm, and the absorption of C-0 of the ester group also appeared at a low wave number of 1705 cm. Therefore, on the product, enantiomers are not separated spectrally in the molecule in Figure 1. When a shift reagent such as perfluoro-2-propoxypropionic acid chloride was applied to product 1 and an FNMR spectrum was taken, as shown in Fig. 2, the spectrum a shown in Fig. 1 was changed to A and C. , b is divided into B and D, respectively, and four C
A signal of HF group could be measured. Here, in the diastereomers on the product, the binding constant of the threo isomer (A + C) and the erythro isomer (B + C) is JF-hv; c
=6.6 Hz, JH-)IVIII:=7.91
1Z, and the latter is JF-)1v; (=-22HzXJ
H-Hv;. ``6.6 Hz and the possibility of intramolecular hydrogen bonding as described above, it is thought that the threo isomer is preferentially produced than the erythro isomer by the asymmetric reduction described above.

トレオ体(JCF−c)lvl(z=2011z) :
エリトロ体(JCF−CHv;c= 22Hz ) :
上記した分析結果から、パン酵母による還元がエナンチ
オ選択的というよりも、エナンチオマーに共通な中間体
を経て進行していることを示唆している。
Threo body (JCF-c) lvl (z=2011z):
Erythro form (JCF-CHv; c=22Hz):
The above analytical results suggest that the reduction by baker's yeast is not enantioselective but rather proceeds through intermediates common to the enantiomers.

なお、上記した還元反応は、次の条件で行なうことがで
きる。
In addition, the above-mentioned reduction reaction can be performed under the following conditions.

反応温度:30〜37℃ 反応時間:3〜14日 使用する溶媒: R20(水) 上記に得られた生成物上(α−フルオロ−β−ヒドロキ
シカルボン酸エステル)は、常法によりそのα位のOH
基をメトキシ化等によって保護した状態でエステル基を
変換することにより、ヘテロ環化合物に導びくことがで
きる。
Reaction temperature: 30 to 37°C Reaction time: 3 to 14 days Solvent used: R20 (water) On the product obtained above (α-fluoro-β-hydroxycarboxylic acid ester), the α-position OH
By converting the ester group with the group protected by methoxylation or the like, a heterocyclic compound can be obtained.

次に本発明の具体的な実施例を説明する。Next, specific examples of the present invention will be described.

1五拠上 2−フルオロ−3−ヒドロキシブタン酸エチルの製造: 2−フルオロアセト酢酸エチル20gを蒸留水21中で
パン酵母200gとデンプン粉300gと共に室温で5
日間かきまぜた。反応液を遠心分離機で固層と分離した
後、ジエチルエーテルで抽出した。抽出液を硫酸マグネ
シウムで乾燥した後、溶媒を留去した。残留物を蒸留精
製し、2−フルオロ−3−ヒドロキシブタン酸エチル(
b 、 p、140〜143’C/101 mmHg)
を収率78%で得た。この生成物の分析データは次の通
りであった(但、以下においてa)は第1図のシグナル
aに、b)は第1し゛ 以下同じ) a)123 (CF、二重二重線、J cF(Hkx=
 4711z 、。
1. Preparation of ethyl 2-fluoro-3-hydroxybutanoate: 20 g of ethyl 2-fluoroacetoacetate was mixed with 200 g of baker's yeast and 300 g of starch flour in distilled water for 5.5 g at room temperature.
Stirred for days. The reaction solution was separated from the solid phase using a centrifuge, and then extracted with diethyl ether. After drying the extract over magnesium sulfate, the solvent was distilled off. The residue was purified by distillation to obtain ethyl 2-fluoro-3-hydroxybutanoate (
b, p, 140-143'C/101 mmHg)
was obtained in a yield of 78%. The analytical data for this product were as follows (however, in the following, a) corresponds to signal a in Figure 1, b) corresponds to signal 1, and the same applies below) a) 123 (CF, double doublet, J cF(Hkx=
4711z,.

Jcr−−QHvqe”20Hz) b)128 (CF、二重二重線、JcF −ohl+
t、I−46Hz 。
Jcr--QHvqe”20Hz) b) 128 (CF, double doublet, JcF-ohl+
t, I-46Hz.

J CF −CHVIm= 22 Hr、 )1H−N
MR[δ(ppm ) ”J :a ) 1.30 (
CH5、二重線、Jc、y5−c、4=6.0 Hz)
、4.00〜4.67 (CH,OH) 、4.87 
(CHF、二重二重線、JCH−QH=7.9 Hz)
b) 1.33 (CH3、二重線、Jc)s−cH=
7.5 Hz) \4.00〜4.67(CHlOH)
 、4.77 (CHF、二重二重線、JCI−1−C
H=6.61(z)分析値: C47,86%、H7,
61%CメH1+03Fとしての計算値: C48,0
0%、H7,38%ス」l糺1 2−フルオロ−3−ヒドロキシペンクン酸エチルの製造
: 実施例1において、2−フルオロアセト酢酸エチルの代
りに、2−フルオロ−3−ケトペンタン酸エチルを使用
し、同様に反応させた結果、液体の2−フルオロ−3−
ヒドロキシペンクン酸エチル(b、 p、92〜94℃
/42mmHg)が69%の収率で得られた。この生成
物の分析データは次の通りであった。
J CF -CHVIm= 22 Hr, )1H-N
MR[δ(ppm) ”J:a) 1.30 (
CH5, doublet, Jc, y5-c, 4=6.0 Hz)
, 4.00-4.67 (CH,OH) , 4.87
(CHF, double doublet, JCH-QH=7.9 Hz)
b) 1.33 (CH3, doublet, Jc) s−cH=
7.5 Hz) \4.00~4.67 (CHlOH)
, 4.77 (CHF, double double line, JCI-1-C
H=6.61(z) Analysis value: C47, 86%, H7,
Calculated value as 61% Cme H1+03F: C48,0
Preparation of ethyl 2-fluoro-3-hydroxypencunate: In Example 1, ethyl 2-fluoro-3-ketopentanoate was used instead of ethyl 2-fluoroacetoacetate. As a result of the same reaction, liquid 2-fluoro-3-
Ethyl hydroxypencunate (b, p, 92-94℃
/42 mmHg) was obtained with a yield of 69%. The analytical data for this product were as follows.

11F−NMR〔δ(p9m ) ) :a)124 
(CF、二重二重線、JcF−CH@aj= 44 H
z 。
11F-NMR [δ(p9m)): a) 124
(CF, double doublet, JcF-CH@aj=44H
z.

JCF−CHgs6・F19 Hz )b)129 (
CF、二重二重線、JeF−C+Bx= 43Hz 。
JCF-CHgs6・F19 Hz ) b) 129 (
CF, double doublet, JeF-C+Bx = 43Hz.

”F−CHv+e = 23 Hz )’H−NMR(
δ (ppm ) ) :a ) 1.18 (CH5
CH2、三重線、Jes、−cl、Iz=6.511z
)、3.97〜4.64 (C)15c 1%、CH,
、OH) 、4.86(CHF、二重二重線、Jts−
ch =4.3 Hz)b) 1.18 (CHツCH
!、三重線、) 、3.97〜4.65(CH3CHI
!、CH,OH) 、4.75 (CHF、二重二重線
、JC,H−(,1−1=4.3 Hz)分析値: C
47,62%、H8,46%c7H15OFFとしての
計算値: C47,36%、H8,61%スJ直肌1 2−フルオロ−3−ヒドロキシ−n−ヘキシル酸エチル
の製造: 実施例1において、2−フルオロアセト酢酸エチルの代
りに、2−フルオロ−3−ケトーn−ヘキシル酸エチル
を使用し、同様に反応させた結果、液体の2−フルオロ
−3−ヒドロキシ−n−ヘキシル酸エチル(b、 p、
95〜97℃/25mmHg)が収率74%で得られた
。この生成物の分析データは次の通りであった。
"F-CHv+e = 23 Hz)'H-NMR(
δ (ppm) ) :a) 1.18 (CH5
CH2, triple line, Jes, -cl, Iz=6.511z
), 3.97-4.64 (C)15c 1%, CH,
, OH), 4.86 (CHF, double doublet, Jts-
ch = 4.3 Hz) b) 1.18 (CH ツCH
! , triple line, ), 3.97-4.65 (CH3CHI
! , CH, OH), 4.75 (CHF, double doublet, JC, H-(, 1-1 = 4.3 Hz) Analysis value: C
Calculated values as 47,62%, H8,46%c7H15OFF: C47,36%, H8,61%SJ Direct Skin 1 Production of ethyl 2-fluoro-3-hydroxy-n-hexylate: In Example 1, In place of ethyl 2-fluoroacetoacetate, ethyl 2-fluoro-3-keto n-hexylate was used and reacted in the same manner, resulting in liquid ethyl 2-fluoro-3-hydroxy-n-hexylate (b , p,
95-97°C/25mmHg) was obtained in a yield of 74%. The analytical data for this product were as follows.

”F−NMR[δ(ppm ) ) :a)122 (
CF、二重二重線、JCF−CHh、=46h、J C
p−C−Hv+z718)Iz )b)128 (CF
、二重二重線、JCF−CH4cx= 44 Hz、J
g−tI−<= 2111z ) 1H−NMR〔δ(ppm ) ) :a ) 0.8
0−1.62 (7X−H) 、4.01〜4.62 
(CH。
"F-NMR [δ (ppm)): a) 122 (
CF, double double line, JCF-CHh, = 46h, JC
p-C-Hv+z718)Iz)b)128 (CF
, double doublet, JCF-CH4cx=44 Hz, J
g-tI-<=2111z) 1H-NMR [δ(ppm)):a) 0.8
0-1.62 (7X-H), 4.01-4.62
(CH.

OH) 、4.88 (CHF、 二重二重線、J(、
H−cH−4、111z ) 分析値F C54,11%、H8,26%C・H1SO
5Fとしての計算値: C53,92%、I(8,49
%尖施週互 ・ 2−フルオロ−3−ヒドロキシ−n−オクタン酸エチル
の製造: 実施例1において、2−フルオロアセト酢酸エチルの代
りに2−フルオロ−3−ケトーn−オクタン酸エチルを
使用し、同様に反応させたところ、液体の2−フルオロ
−3−ヒドロキシ−n−オクタン酸エチル(b、 p、
92〜95℃/工3mmHg)が収率71%で得られた
。この生成物の分析データは次の通りであった。
OH), 4.88 (CHF, double doublet, J(,
H-cH-4, 111z) Analysis value F C54, 11%, H8, 26% C・H1SO
Calculated value as 5F: C53,92%, I(8,49
Production of ethyl 2-fluoro-3-hydroxy-n-octanoate: In Example 1, ethyl 2-fluoro-3-ketone n-octanoate was used instead of ethyl 2-fluoroacetoacetate. When a similar reaction was carried out, liquid ethyl 2-fluoro-3-hydroxy-n-octanoate (b, p,
92-95°C/engine 3mmHg) was obtained in a yield of 71%. The analytical data for this product were as follows.

”F−NMR(δ(ppm ) ) :a)121 (
CF、二重二重線、JoF<H@t−−4511z 。
"F-NMR (δ (ppm)): a) 121 (
CF, double doublet, JoF<H@t--4511z.

J(5−cl−1vIC= 19Hz )b)126 
(CF、二重二重線、JCF −o)lyl−= 42
Hz 。
J(5-cl-1vIC=19Hz)b)126
(CF, double doublet, JCF -o)lyl- = 42
Hz.

JOF−側v+a=23Hz ) ’H−NMR(δ (ppm)): a ) 0.78〜2.11(IIX(IIX H) 
、3.−97〜4.57 (CH。
JOF-side v+a=23Hz) 'H-NMR (δ (ppm)): a) 0.78 to 2.11 (IIX (IIX H)
, 3. -97~4.57 (CH.

OH) 、4.86 (CHF、二重二重綿1.JCH
−c+= 4 、1 Hz ) b)0.78〜2.11 <llx H) 、3.97
〜4.57(CHlOH) 、4.75 (CHF、二
重二重線、JCH−CH=4 、1 Hz ) 分析値: C58,23%、H9,29%C+*Hte
OうFとしての計算値: C58,16%、H9,02
OH), 4.86 (CHF, double double cotton 1.JCH
-c+=4, 1 Hz) b) 0.78~2.11 <llx H), 3.97
~4.57 (CHlOH), 4.75 (CHF, double doublet, JCH-CH=4, 1 Hz) Analysis values: C58, 23%, H9, 29% C++*Hte
Calculated value as OF: C58.16%, H9.02
%

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1図は2
−フルオロ−3−ヒドロキシブタン酸エチルの1シNM
Rスペクトル図、 第2図はシフト試薬の使用下での2−フルオロ−3−ヒ
ドロキシブタン酸エチルの”F N M Rスペクトル
図 である。
The drawings show embodiments of the present invention, and FIG.
-1 NM of ethyl fluoro-3-hydroxybutanoate
R Spectrum, FIG. 2 is an "F NMR spectrum of ethyl 2-fluoro-3-hydroxybutanoate using a shift reagent.

Claims (1)

【特許請求の範囲】 1、一般式: %式% (但、R′、R2は脂肪族基又は芳香族基である。)で
表わされるα−フルオロ−β−ケトカルボン酸エステル
に微生物を作用させ、これによって、一般式: (但、R′、♂は前記したものと同じである。)で表わ
されるα−フルオロ−β−ヒドロキシカルボン酸エステ
ル類を得ることを特徴とするα−フ)Lt−J−ローβ
−ヒドロキシカルボン酸エステル類の製造方法。 2、R1、Iを炭素原子数1〜10のアルキル基又はア
ルケニル基とする、特許請求の範囲の第1項に記載した
方法。 3、微生物としてパン酵母を特徴する特許請求の範囲の
第1項又は第2項に記載した方法。
[Claims] 1. General formula: α-fluoro-β-ketocarboxylic acid ester represented by the formula % (where R' and R2 are aliphatic groups or aromatic groups) is treated with microorganisms. , thereby obtaining α-fluoro-β-hydroxycarboxylic acid esters represented by the general formula: (However, R' and ♂ are the same as those described above.) -J-Rho β
- A method for producing hydroxycarboxylic acid esters. 2. The method according to claim 1, wherein R1 and I are an alkyl group or an alkenyl group having 1 to 10 carbon atoms. 3. The method according to claim 1 or 2, wherein the microorganism is baker's yeast.
JP16718583A 1983-09-09 1983-09-09 Production of alpha-fluoro-beta-hydroxycarboxylic acid ester Granted JPS6058087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16718583A JPS6058087A (en) 1983-09-09 1983-09-09 Production of alpha-fluoro-beta-hydroxycarboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16718583A JPS6058087A (en) 1983-09-09 1983-09-09 Production of alpha-fluoro-beta-hydroxycarboxylic acid ester

Publications (2)

Publication Number Publication Date
JPS6058087A true JPS6058087A (en) 1985-04-04
JPS6330000B2 JPS6330000B2 (en) 1988-06-16

Family

ID=15844999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16718583A Granted JPS6058087A (en) 1983-09-09 1983-09-09 Production of alpha-fluoro-beta-hydroxycarboxylic acid ester

Country Status (1)

Country Link
JP (1) JPS6058087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204248A (en) * 1990-03-22 1993-04-20 Tanabe Seiyaku Co., Ltd. Process for preparing 2-halogeno-3-hydroxy-3-phenyl-propionic acid ester compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204248A (en) * 1990-03-22 1993-04-20 Tanabe Seiyaku Co., Ltd. Process for preparing 2-halogeno-3-hydroxy-3-phenyl-propionic acid ester compounds
AU646436B2 (en) * 1990-03-22 1994-02-24 Tanabe Seiyaku Co., Ltd. Processes for preparing 2-halogeno-3-hydroxy-3- phenylpropionic acid ester compounds

Also Published As

Publication number Publication date
JPS6330000B2 (en) 1988-06-16

Similar Documents

Publication Publication Date Title
US5034541A (en) Method of preparing 1-phenyl-1-diethylaminocarbonyl-2-phthalimidomethyl-cyclopropane-z
WO1997020817A1 (en) Method for separating carbinols
CN1178942C (en) Penicillin crystal and process for producing the same
JPS6058087A (en) Production of alpha-fluoro-beta-hydroxycarboxylic acid ester
JPS61227797A (en) Production of optically active glycol
US5760242A (en) Method of producing a cis-oxazoline
JPH01238593A (en) 1-substituted alkylsulfonic ester and its production
JP2002544252A (en) Process for preparing R-(-)-carnitine from S-(-)-chlorosuccinic acid or derivatives thereof
JPH0248585A (en) Phospholipid derivative and production thereof
US3910958A (en) Process for preparing arylacetic acids and esters thereof
Youn et al. Highly diastereoselective additions of methoxyallene and acetylenes to chiral α-keto amidesElectronic supplementary information (ESI) available: synthesis and spectroscopic data for 4b, 5g, 6b and 7b. See http://www. rsc. org/suppdata/cc/b1/b100355k
JP2939649B2 (en) Method for producing glyceroglycolipid
CN115368283A (en) Preparation method of cis-3-fluoro-4-hydroxypyrrolidine with chiral structure or achiral structure and derivatives thereof
JPH02212473A (en) L-tartaric acid salt of (2r,4r)-4-methyl-2-piperidine-carboxylic acid ethyl ester and its desalted substance
JPS5927343B2 (en) Synthesis method of 3-aminoisoxazoles
RU2151137C1 (en) Method of preparing 2-(4-hydroxyphenyl)ethanol
SU1143745A1 (en) Method of obtaining derivatives of 3-(3-benzoxazolonyl) propionic acid
SU1641822A1 (en) Method for obtaining 1,3,5,7-tetramethyl-2,4,6,8,9,10-hexathiadamantane
JPH0348641A (en) Optically active hydroxyketo ester and its production
JPH0829115B2 (en) Process for producing optically active 1-halogeno-2-alkanol derivative
JP2538231B2 (en) Process for producing optically active 4-pentene-2-ol derivative
US5663423A (en) Method for handling (2-alkyl) (acryloyl) isocyanate, method for stabilizing (2-alkyl) (acryloyl) isocyanate, method for producing (2-alkyl) (acryloyl) isocyanate, heterocyclic compound, and method for producing heterocyclic compound
JPS63132874A (en) N-acyllactam compound, production thereof and alcoholic fermentation promoter comprising the said compound as active ingredient
JPH02165A (en) Preparation of 1-crotonoyl-2,6,6- trimethylcyclohexa-1,3-diene
JP3669726B2 (en) Process for producing optically active 3- (p-alkoxyphenyl) glycidic acid ester derivative