JPS605806A - Production of sintered body consisting of metallic powder - Google Patents

Production of sintered body consisting of metallic powder

Info

Publication number
JPS605806A
JPS605806A JP11478283A JP11478283A JPS605806A JP S605806 A JPS605806 A JP S605806A JP 11478283 A JP11478283 A JP 11478283A JP 11478283 A JP11478283 A JP 11478283A JP S605806 A JPS605806 A JP S605806A
Authority
JP
Japan
Prior art keywords
mold
molding
sintering
sintered body
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11478283A
Other languages
Japanese (ja)
Inventor
Tadashi Miyamura
宮村 忠志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11478283A priority Critical patent/JPS605806A/en
Publication of JPS605806A publication Critical patent/JPS605806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent collapsion of a molding during sintering by using the mold formed by a lost was method, molding metallic powder by injection in said mold, sintering the powder together with the mold, parting the mold after sintering and taking out a sintered body. CONSTITUTION:A ceramic mold is first manufactured by a lost wax method from a wax pattern having a required shape in a process for producing a sintered body by sintering metallic powder after compression molding. A master molding die is formed to the same shape as the cavity of the injection mold and is mounted to the injection mold. Metallic powder incorporated therein with a binder removing treatment and sintering together with the molds after injection molding and the sintered body is taken out by parting the mold after sintering.

Description

【発明の詳細な説明】 この発明は、金)11;粉゛末を圧縮成形したのち焼成
覆る焼結体の製造方法に係り、詳しくは、金属あるいは
合金のね体をロス]・ワックス法による成形型を使用し
射出成形す゛る方法であり、焼成づるにあたり、射出成
形後に成形型ごと焼成し、焼結時の成形体の型くづ”れ
を防止した焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sintered body in which powder is compression-molded and then fired, and more specifically, a metal or alloy body is produced by a loss-wax method. This is a method of injection molding using a mold, and relates to a method of manufacturing a sintered body in which the mold is fired together with the mold after injection molding to prevent the molded body from deforming during sintering.

粉末冶金、セラミックスの製造にJ3いて、金属あるい
は;jlj機貿の粉末を所定形状に成形づ−る圧縮成形
方法は金型ブレス成形、押出し成形を始め秤々の方d1
があるが、いずれの方法においてら成形体は所定のJB
iバインダー、焼結工程をIY: ’l製品化され、例
えば、金型ブレス成形後、成形体はぞのままあるいシは
アルミナ粉末中に埋入しく焼成されCいる。
J3 is involved in powder metallurgy and ceramics manufacturing, and compression molding methods for molding metal or powder into a predetermined shape include mold press molding, extrusion molding, and weighing methods D1.
However, in either method, the molded product meets the specified JB
The binder and the sintering process are made into a product, for example, after mold press molding, the molded body is fired as is or embedded in alumina powder.

このわ)木の圧縮成形に際し、成形ゼ1を向上さUるた
め、通常バインダーを使用するが、焼結時特にj152
パイング一時に、バインターが溶融し成形体の強度が低
下し、型崩れが発生しやづ−くなる問題があった1、こ
の型崩れの発生防lFのためにアルミナ粉等の#4大物
中に成形体を埋入し″C焼結さける省の方d1が採られ
るが、大型あるいは複雑形状の成形体の場合は耐火物中
に埋入し−Cも型崩れが発生し易かった。
When compression molding wood, a binder is usually used to improve the molding properties, but especially when sintering, binder is used.
During piping, the binder melts, reducing the strength of the molded product and making it more likely to lose its shape1.To prevent this from happening, #4 large particles such as alumina powder are used. d1 is used to avoid sintering by embedding a molded body in a refractory material, but in the case of a large or complex shaped molded body, d1, which involves embedding the molded body in a refractory material, is also susceptible to deformation.

また−一方、セラミックスの成形方法どしく、割出成形
方法が実用化され、また金属粉末の射出成形方法も研究
されており、これは従来の樹脂の射出成形と同様に、金
型ギトビディー内に直接Q・j出成形し、成形体を耐火
物粉末内に埋入し−(脱バイシダー。焼結して製品をI
Uる方法であるが、射出成形時に必要どされる流動性を
寄るため樹脂等のバインダーを多く使用する必要から、
焼成時に比較的比重の小さな耐火物粉末中に埋入しても
、いわゆる成形体のバックアップ効果が期待できず、複
雑、薄肉形状の成形体に型崩れが発生ずる問題。
On the other hand, the index molding method has been put into practical use as a method for molding ceramics, and the injection molding method for metal powder is also being researched. Direct Q/J extrusion molding, embedding the molded body in refractory powder (removal of bisider), sintering to make the product
However, it is necessary to use a large amount of binder such as resin to improve the fluidity required during injection molding.
Even if it is embedded in a refractory powder with a relatively low specific gravity during firing, the so-called backup effect of the compact cannot be expected, and the complex, thin-walled compact may lose its shape.

がある。There is.

また、粉末の成形方法どして、金型プレス成形、容器封
入成形、押出し成形、圧延成形、溶射成形、及び上記の
射出成形が656が、いずれの方法も複雑な形状の成形
体を大量に生産することが困難であり、上)ホしたよう
に焼結前に型崩れが発生りる問題1iあるため、薄肉あ
るいは複91[形状品の製造ができなかった1゜ この発明は、かかる現状に鑑み、粉末冶金にd3りる、
脱バインダー、焼結時に成形体の型崩れ発生を防廿した
焼結体の装造方法を目的とし、また、従来の成形方法で
は不可能ないわゆる三次元的複雑形状品の成形・焼結が
可能で、かつ大旗に歩留よく製造でさる焼結体の製造方
法を目的としている。
In addition, there are 656 powder molding methods such as mold press molding, container encapsulation molding, extrusion molding, rolling molding, thermal spray molding, and the above-mentioned injection molding, but all of these methods produce large amounts of molded bodies with complex shapes. It is difficult to produce products, and as mentioned above, the product loses its shape before sintering. In view of this, d3 is applied to powder metallurgy.
The purpose is to remove the binder and to create a method for manufacturing sintered bodies that prevents the molded body from losing its shape during sintering.It also enables molding and sintering of so-called three-dimensional complex-shaped products that are impossible with conventional molding methods. The purpose of the present invention is to provide a method for producing a sintered body that is possible and can be produced with a high yield.

すなわち、この発明は、金属粉末を圧縮成形したのち焼
成する焼結体の製造り法にd3い−C、ロストワックス
法ににる成形型を用い、この成形型に金属わ)末を射出
成形し、OJ出成形後に成形型ごと焼成し、焼結後に成
形型を壊し−C焼結体を取出りことを特徴とする焼結体
の製造方法である。
That is, this invention uses a mold based on the d3-C lost wax method in a method for producing a sintered body in which metal powder is compression molded and then fired, and the metal powder is injection molded into this mold. The method for producing a sintered body is characterized in that the whole mold is fired after OJ molding, the mold is broken after sintering, and the -C sintered body is taken out.

この発明方法が適用可能な焼結体原イ゛)[粉末は、づ
へ−も”の金属、合金であり、またセラミックスに対し
Cしイj効である。
The sintered body raw materials to which the method of the present invention is applicable) [The powders are all metals and alloys, and have a carbon-resistant effect on ceramics.

凸らに、詳述覆れば、この発明は、金属粉末を圧縮成形
した後焼成する焼結体の製造方法におい−C1次の工程
を特徴とづる焼結体の製造方法でd5る。
More specifically, the present invention relates to a method for producing a sintered body in which metal powder is compression-molded and then fired, which is characterized by the following step -C1.

■所9.Q形状のワックスパターンよりロストワツクス
払にJ、ってビラミックス成形型を作製し、■成形型外
形を射出成形用金型のキIlビア、rと同形状に成形し
、 ■該成形型を射出成形用金型に装着して、該成形型にバ
インダーを混入した金属粉末を射出成形し、■射出成形
後、該成形型ごと、Bliバインダー処理、焼結し、 ■焼成徒に:+v :tl して焼結体を取出す。
■Tokoro 9. From the Q-shaped wax pattern, remove the lost wax to create a Viramix mold, ■Mold the outside of the mold to the same shape as the via and r of the injection mold, and ■Inject the mold. It is installed in a mold for molding, and the metal powder mixed with a binder is injection molded into the mold. After the injection molding, the mold is treated with a Bli binder and sintered. and take out the sintered body.

この発明にd月Jる、ロストワツクス払によるセラミッ
クス成形y(を説明づ−ると、公知のソリッドモールド
法、レラミックスシlルモールド法のいす゛れの方法で
作製した成形型であってもよい。
Ceramic molding by lost wax removal according to the present invention may be a mold made by any of the known solid molding methods and ceramic silica molding methods.

ソリッドモールド法は、所要製品形状とほぼ相似で、収
縮illを考F(シたN法の模型をろう等ぐワックスパ
ターンどしC作製し、その表面に微粒子の耐火物と粘結
剤とを混合したスラリーで覆い(コーテイング)、これ
が乾かないうりに相粒瓜の耐火物を振り掛(プ(サンデ
ィング)、乾燥さUだのも、型枠内に入れ′Cぞの周囲
にパインターとともに混わ1!シた耐火物粉を充填して
92燥さU、所定湿度で脱ろうし、又必要に応じて焼成
り−るものである、1 また、レラミックスシ1ルモールド法は、ソリッドモー
ルド法と同工程でtj?だワックスパターンに、コーフ
イングとサンディングを数回繰り返して所要の19みに
なし、11;2ろうし−(成形型どイrりものである。
The solid mold method is almost similar to the required product shape and takes into account shrinkage.The model of the N method is made into a wax pattern, and fine particles of refractories and a binder are applied to the surface of the model. Cover with the mixed slurry (coating), and until it dries, sprinkle (sanding) a refractory made of phase melon. 1! Filled with refractory powder, dried at 92 U, dewaxed at a specified humidity, and fired if necessary. In the process, corfing and sanding were repeated several times to create the desired wax pattern, and the required 19mm diameter was obtained.

 − 上記のスラリーやり゛ンディングに使Jli tlる耐
火物粉t3裏、アルミナ磁器粉、ジル」ニアMl器粉笠
の酸化物セラミックスが使用でさ、スラリーの粘結剤は
ロラミックス秤や粒度等に応じ(適宜選定q゛ればJ:
い1゜ この発明のail出成形用しラミックス成形型として使
用覆るには、射出成形金型に装着Jるための外郭形状、
例えば単純な円筒体等の形状を右することか必U? ’
Pあるので、適当イ1厚みのシ]−ルどしたセラミック
スシートルモールド法の成形型に、射出成形金型に装着
するだめの外郭形状に耐火物粉ぐ成形・焼成するのが望
ましい、。
- Refractory powder T3, alumina porcelain powder, and oxide ceramics used in the slurry and binding are used for the slurry and binding. Depending on (select as appropriate) J:
1゜ To cover the use as a lamix mold for ail injection molding of this invention, an outer shape for mounting on an injection mold,
For example, is it necessary to shape the shape of a simple cylinder? '
Therefore, it is desirable to mold and sinter a refractory powder into a sealed ceramic seat molding mold having an appropriate thickness to form the outer shape of the receptacle to be attached to the injection mold.

次に、セラミックス成形型を射出成形用金型の−VVヒ
ーノイーに挿入し、所定のq4出成形をfJ ’、L・
)が、上記−トビイーj゛−イーの形状用法を統一りる
ことにj、す、企型種の低減並びに作業能率が白土りる
Next, the ceramic mold is inserted into the -VV hee of the injection mold, and the predetermined q4 output is fJ', L.
) However, by unifying the shape and usage of the above-mentioned Tobii, the number of design types and work efficiency will be improved.

射出成形に先立って金属粉末を射出成形に適した流体と
覆るため、V)未組成、粒度に応じ−Cバインダ一種類
及び量を選定し、加熱混練して混合体どなし、さらに必
要に応じてベレンj〜化し、また、′II)未組成やバ
インダーに応じて射出湯度及び11力を決定Jる。
Prior to injection molding, in order to cover the metal powder with a fluid suitable for injection molding, V) uncomposed, depending on the particle size -C select one type and amount of binder, heat knead to form a mixture, and further as necessary. Then, 'II) Determine the injection temperature and force depending on the composition and binder.

射出成形後のIB2バインダー処理は、セラミックス成
形型ごと加熱炉において行なうか、あるいは焼成炉r 
11+2バインダー処理と焼結をl1iJ詩に行ない焼
成を完了りる。
The IB2 binder treatment after injection molding is performed in a heating furnace with the ceramic mold, or in a firing furnace.
11+2 binder treatment and sintering are performed on l1iJ poem to complete firing.

焼成後に、砂落しあるいは型別を行ない焼結体を取出す
ことにより全工程を終了する。
After firing, the entire process is completed by removing sand or molding and removing the sintered body.

づなわも、この発明は、金属粉末を圧縮成形したのち焼
成ターる焼結体の製造方法にJ3い−(、金属粉末をロ
ストワックス法によるセラミックス成形へ゛1を使用し
射出成形し、焼成するにあたり、射出成形接に成形型ご
ど焼成することにより、成形体のバックアップが十分に
行なわれるため、焼結特に脱バインダ一時の成形体の型
くずれが防止でき、製品の寸法精度が著しく向上し、さ
らには複雑形状や薄肉の焼結体が容易にかつ人足に製造
できる効果がある。
Furthermore, this invention relates to a method for manufacturing a sintered body in which metal powder is compression molded and then fired. By firing the mold together with the injection molding, the molded body is sufficiently backed up, which prevents the molded body from deforming during sintering, especially during binder removal, and significantly improves the dimensional accuracy of the product. Furthermore, it has the effect that complex-shaped and thin-walled sintered bodies can be manufactured easily and manually.

また、セラミックス成形型を製造ツるためのワックスパ
ターン用型は、低圧注入のため安価に製造でさ−、セラ
ミックス成形型は上述したように、耐火物粉J、り作製
するするため容易かつ安11i Cある。射出成形用金
型は通常、i!′モ圧及び耐1q−耗1イ1が要求され
るため8価であるが、この発明て゛は該金型の+1・ご
イアイーを単純な形状用法に統一し金型種類4Mりこと
がでさるため、設置+ii°i費が安価になる1゜ Jスートに、この発明による実施例を示しでの効果を明
らかにする。ここでは、従来製造り法と比軸”するため
、鉄粉を使用し薄肉の断面円弧状板を製造覆る場合を示
(。
In addition, wax pattern molds for manufacturing ceramic molds can be manufactured at low cost due to low-pressure injection, and as mentioned above, ceramic molds are easy and cheap to manufacture because they are made from refractory powder. There is 11iC. Injection molds are usually i! The mold is octavalent because it requires pressure and wear resistance of 1q and 1x1, but this invention unifies the +1 and wear resistance of the mold to a simple shape and usage, making it possible to have 4M types of molds. Therefore, an embodiment according to the present invention will be shown for a 1°J suit in which the installation +ii°i cost is reduced, and the effects will be clarified. Here, we will show a case in which iron powder is used to manufacture and cover a thin plate with an arcuate cross section, in order to achieve a ratio compared to the conventional manufacturing method.

まず、断面円弧状の薄肉板模型作製用11すに、パラフ
ィン系ワックスを50°C〜90℃で注入し、ワックス
パターンを作製した。
First, paraffin wax was injected at 50° C. to 90° C. into a thin plate model manufacturing mold having an arcuate cross section to create a wax pattern.

このワックスパターンをアセトン又はア廿トン。Add this wax pattern to acetone or acetone.

メタノール混合液で洗浄した後、5層の」−ディングど
サンディングを施した。
After washing with a methanol mixture, five layers of sanding were applied.

コーディングするスラリーには下記の成分のものを使用
し、第1層、第2層のサンディングには、ジルコンサン
ドく荒目#809目途化学社製〉、第3層から第5層の
4ノンデイングに(よ、ハイアルミナ(粒度0.3〜0
.7 nu11*日産化学目途)、をそれぞれ振り11
トけ、その後第1層から第4層の場合は2〜3時間の乾
燥、り〕5層のみ48時間の乾燥を施した。ついで、同
じスラリー成分で成形型外形を直方体に成形した。
The following ingredients were used for the slurry to be coated: Zircon sand (coarse #809 made by Kagakusha) was used for sanding the first and second layers, and 4 non-dings were used for the third to fifth layers. (Yo, high alumina (particle size 0.3~0
.. 7 nu11*Nissan Chemical Target), each shake 11
After drying for 2 to 3 hours for the first to fourth layers, only the fifth layer was dried for 48 hours. Next, the mold was molded into a rectangular parallelepiped using the same slurry components.

スラリー成分: 粘結剤: ;%水珪酸、商品名 スノー】ツクS1日産
化目途製、ioog、 耐火1’r)未:商品名 ジルコンノラワー(#3!□
IO)目途化学社製、350(]、 界面活性材:商品名 二1−レックス]−△[310%
水溶液、目途化学社製、0.05+I+消泡剤二F19
品名 東しシリコーン5115!ioo、東し社製、 
0.1g、 の配合割合どし、す“−ンカップ粘度訓No、4による
粘瓜が25秒となるよう水で調整したもの。
Slurry component: Binder: ;% Hydrosilicic acid, Product name: Snow] Tsuku S1 manufactured by Nissan Kazoku, ioog, Fireproof 1'r) Not yet: Product name: Zircon laureate (#3!□
IO) Manufactured by Meku Kagakusha, 350 (], Surfactant: Product name 21-Rex] -△[310%
Aqueous solution, made by Meku Kagakusha, 0.05 + I + antifoaming agent 2F19
Product name Azuma Silicone 5115! ioo, manufactured by Toshisha,
The blending ratio of 0.1 g was adjusted with water so that the viscosity according to the cup viscosity test No. 4 would be 25 seconds.

外形成形したものに、900°C〜1000°C,0,
5時間の脱ろう、並びに、900℃〜1050℃、 1
時間の焼成を流し、レラミックス成形型を行だ。
900°C to 1000°C, 0,
5 hours of dewaxing and 900℃~1050℃, 1
After baking for a while, mold the Reramix mold.

このセラミックス成形型を、所定の射出成形金型に装?
1し、鉄粉を射出成形した。
Mount this ceramic mold into a designated injection mold?
1, and the iron powder was injection molded.

鉄粉組成は、純鉄粉にカーボンを添加したl+2 %i
銅ひあり、パラフィン系ワックス7 、 OW L 9
ii、ポリX【ブレン0.≦+wt%、ステアリン酸亜
鉛1.4vt%、残部350メツシ]以下の鉄粉となる
に・〕に配合し。
The iron powder composition is pure iron powder with carbon added l+2%i
Copper glaze, paraffin wax 7, OW L 9
ii, PolyX [Blen 0. ≦+wt%, zinc stearate 1.4vt%, balance 350 mTS] or less].

1記ワツクスの融魚以−りにIJ11熱混練しlこもの
を2111111以下にベレツ1〜化して使用し、射出
湯度100℃−120℃、射出圧力フ00に唱4の条イ
!+?”n(出成形した。
Heat-knead the IJ11 mixture using the melted wax of the wax mentioned above and use it to reduce the temperature to 2111111 or less. +? "n (molded.

その(U %セラミックス成形型ごと、II(2出バー
(ンダー、窒素雰囲気中焼結を行なった。
Each ceramic mold was sintered in a nitrogen atmosphere using a 2-bar oven (II).

ヒートパターンは、室温より300℃まで、10℃/1
1のH混率ぐ、300℃〜1200℃は60°C/ b
のが温率で!+1温い1200℃X O,5h保持、イ
の接徐冷、であつlこ。
Heat pattern is 10℃/1 from room temperature to 300℃
H mixture ratio of 1, 300℃~1200℃ is 60℃/b
That's the temperature rate! +1 Warm 1200℃X O, held for 5 hours, then slowly cooled.

焼結を完了したのち、砂落しし、断面円弧状薄板の焼結
体を胃だ。
After sintering is completed, the sand is removed and the sintered body, which has an arc-shaped cross section, is poured into the stomach.

また、同じ鉄お)を使用して、金型プレス成形したのち
、上記のヒートパターンで焼成し、従来製造方法による
断面円弧状薄板を作製した。
Further, using the same iron (2), after press molding with a die, firing was performed using the heat pattern described above to produce a thin plate with an arcuate cross section according to the conventional manufacturing method.

いずれの製法も各々50個作製したところ、型崩れを起
した製品は、従来製造方法の場合、30周であるのに対
して、本発明法の場合は皆無であり、成形体の型崩れ防
止に有効であること、jlf2びに鉄粉の射出成形が十
分に実用化できることが分る。
When 50 pieces of each product were manufactured using each manufacturing method, the number of products that lost their shape was 30 times using the conventional manufacturing method, but there was no product that lost its shape using the method of the present invention, which prevented the molded products from losing their shape. It is found that injection molding of jlf2 and iron powder can be fully put into practical use.

出願人 住友金属工業株式会社Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 金属粉末を圧縮成形したのち焼成する焼結体の製造
方法において、ロストワックス法による成形型を用い、
この成形型に金属粉末を射出成形し、射出成形後に成形
型ごと焼成し、焼結後に型んjし−(焼結体を取出すこ
とを特徴どする焼結体の製造方法。
1. In a method for manufacturing a sintered body in which metal powder is compressed and then fired, a mold using a lost wax method is used,
A method for manufacturing a sintered body, which comprises injection molding metal powder into the mold, firing the mold together after injection molding, and removing the sintered body from the mold after sintering.
JP11478283A 1983-06-24 1983-06-24 Production of sintered body consisting of metallic powder Pending JPS605806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11478283A JPS605806A (en) 1983-06-24 1983-06-24 Production of sintered body consisting of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11478283A JPS605806A (en) 1983-06-24 1983-06-24 Production of sintered body consisting of metallic powder

Publications (1)

Publication Number Publication Date
JPS605806A true JPS605806A (en) 1985-01-12

Family

ID=14646538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11478283A Pending JPS605806A (en) 1983-06-24 1983-06-24 Production of sintered body consisting of metallic powder

Country Status (1)

Country Link
JP (1) JPS605806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530220A (en) * 1998-11-23 2002-09-17 アライドシグナル インコーポレイテッド Low pressure injection molding of metals and ceramics using flexible molds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530220A (en) * 1998-11-23 2002-09-17 アライドシグナル インコーポレイテッド Low pressure injection molding of metals and ceramics using flexible molds

Similar Documents

Publication Publication Date Title
US2869215A (en) Molding method
US4057433A (en) Oxyfluoride-type mold for casting molten reactive and refractory metals
JPS6260551A (en) Production of metal denture
US4925492A (en) Ceramic core for investment casting and method for preparation
KR100864717B1 (en) Plastery Investment used for Investment casting
JPS6350311B2 (en)
JPH0428455B2 (en)
JPS605806A (en) Production of sintered body consisting of metallic powder
JPH04329801A (en) Production of sintered parts
JP2002530220A (en) Low pressure injection molding of metals and ceramics using flexible molds
JP2016501131A (en) Composition of ceramic layers for making molds and other products
CN107282857A (en) MgO‑SrZrO3Composite shell, using and preparation method thereof
JPH0663684A (en) Production of ceramic core for casting
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JPS5895658A (en) Manufacture of silicon nitride sintered body
JP2654999B2 (en) Precision suction mold
JPS6317017B2 (en)
NO115108B (en)
JPS6153007A (en) Method of heating-molding ceramics
JP2932763B2 (en) Method of manufacturing injection molded powder metallurgy products
CN107344856B (en) MgAl2O4-BaZrO3Composite shell, application and preparation method thereof
JPH057977A (en) Casting mold for casting high melting active metal and production thereof
JP2000509340A (en) A simultaneous molding method for producing refractory materials without firing or coke
CN113210566A (en) Heat-conducting core material for forming cavity structure of precision casting and preparation method thereof
SU505488A1 (en) Mixture for making foundry ceramic molds and cores