JPS6057956B2 - Flux-cored wire for gas shield arc welding - Google Patents

Flux-cored wire for gas shield arc welding

Info

Publication number
JPS6057956B2
JPS6057956B2 JP56056497A JP5649781A JPS6057956B2 JP S6057956 B2 JPS6057956 B2 JP S6057956B2 JP 56056497 A JP56056497 A JP 56056497A JP 5649781 A JP5649781 A JP 5649781A JP S6057956 B2 JPS6057956 B2 JP S6057956B2
Authority
JP
Japan
Prior art keywords
weight
flux
oxide
wire
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56056497A
Other languages
Japanese (ja)
Other versions
JPS57190798A (en
Inventor
芳也 酒井
保広 永井
次男 大江
和夫 池本
勝三 新井
秀彦 兼平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56056497A priority Critical patent/JPS6057956B2/en
Publication of JPS57190798A publication Critical patent/JPS57190798A/en
Publication of JPS6057956B2 publication Critical patent/JPS6057956B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明は、軟鋼、高張力鋼および低合金鋼の溶接に使用
するガスシールドアーク溶接用フラックス入りワイヤに
関するものであり、特に立向上進姿勢や上向姿勢などの
溶接も高能率で良好に行なうことができるフラックス入
りワイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flux-cored wire for gas-shielded arc welding used for welding mild steel, high-strength steel, and low-alloy steel, and particularly for welding in a standing forward position or an upward position. The present invention also relates to flux-cored wires that can be manufactured with high efficiency and good performance.

近年、溶接作業を高能率に行なうために、炭酸ガスアー
ク溶接用ソリッドワイヤ(ソリッドワイヤ)を用いて半
自動あるいは全自動で溶接を行なうようになつてきてい
るが、このソリッドワイヤを用いて全姿勢溶接を行なう
と、立向上進姿勢や上向姿勢においてスパッタ量が多く
ビード外観、ビード形状が悪くなり、ひいては溶接能率
の低下もきたしている。
In recent years, in order to perform welding work with high efficiency, welding has been performed semi-automatically or fully automatically using solid wire for carbon dioxide arc welding (solid wire). If this is done, the amount of spatter is large in the upright and upward postures, resulting in poor bead appearance and bead shape, and as a result, welding efficiency is reduced.

この溶接能率低下の原因は、立向上進姿勢や上向姿勢て
は、低電流の短絡移行領域(直径1.2順のソリッドワ
イヤの場合130〜180A)でしか良好な溶接が行な
えないからである。全姿勢溶接を行なつてもビード外観
、ビード形状及び作業性が良好な溶接材料としてチタニ
ア系フラックス入りワイヤが注目をあびるようになつた
が、従来のチタニア系フラックス入りワイヤを用いて溶
接すると、鋼の融点(約153(代))よりもかなり高
融点の二酸化チタン(融点約1855η)を多量に含ん
でいるためにビード表面へのスラグの焼付きを生じやす
く、特に溶接能率を高めるために入熱を30〜50kj
/Emと高くして立向上進姿勢で溶接を行なうと、スラ
グ剥離性が悪くなり、スラグを除去するためにグライン
ダ加工等の後処理が必要となるだけでなく、ビード上に
一部でもスラグが残留するとビード外観の低下を招くと
共に、多層溶接を行なつた際にスラグを巻き込んでブロ
ーホール、融合不良等の欠陥の発生を招く恐れがある。
The reason for this decrease in welding efficiency is that good welding can only be performed in the low current short-circuit transition region (130 to 180 A for solid wire with a diameter of 1.2 mm) in the standing or upward position. be. Titania-based flux-cored wire has attracted attention as a welding material that provides good bead appearance, bead shape, and workability even when welding in all positions, but when welding using conventional titania-based flux-cored wire, Because it contains a large amount of titanium dioxide (melting point approximately 1855η), which has a much higher melting point than steel (approximately 153), it is easy to cause slag to stick to the bead surface. Heat input 30~50kj
If welding is carried out in a standing and advancing position with a high /Em, slag removal will be poor, and post-processing such as grinding will be required to remove the slag. If it remains, the appearance of the bead will deteriorate, and when multi-layer welding is performed, slag may be dragged in, causing defects such as blowholes and poor fusion.

本発明は、上記の問題点を解決するためになされたもの
で、その目的は、従来のチタニア系フラックス入りワイ
ヤの有する良好な作業性を保つた上で、スラグの剥離性
を向上させて全姿勢溶接を高能率に行なうことにある。
The present invention was made to solve the above problems, and its purpose is to maintain the good workability of the conventional titania-based flux-cored wire, improve the slag releasability, and improve the overall The purpose is to perform position welding with high efficiency.

本発明者等は、上記目的を達成させるために、融点の低
い硫化物あるいは酸化物をフラックス中に添加すれば、
溶融スラグおよび溶融金属が凝固した際に、溶接金属と
酸化チタンを主体とするスラグの界面に融点の低い硫化
物や酸化物が介在してスラグの焼付きを防止できる点に
着目して検討を行なつた。本発明は上記検討の結果なさ
れたもので、その特徴は、フラックス中にワイヤ全重量
に対して、酸化チタン4.5〜8.5重量%、酸化バナ
ジウム0.01〜0.0踵量%を含有し、さらに酸化バ
ナジウムを除く融点が500〜1300′Cの硫化物お
よび酸化物の1種以上を合計で0.01〜0.15重量
%含み、或はこれらに加えてフラックス中にワイヤ全重
量に対してアルミニウムおよび/または酸化アルミニウ
ムをアルミニウム換算で0.02〜0.75重量%含有
し、更には同じくフラックス中にワイヤ全重量換算で金
属弗化物0.05〜0.5鍾量%、二酸化チタンを上記
酸化チタンの重量%の0.05以下、並びに酸化カルシ
ウムを全酸化物の重量%の0.005〜0.050にな
る様に含有すると共に、ワイヤ全重量に対するフラック
スの重量%を10〜3踵量%にする点にある。
In order to achieve the above object, the present inventors believe that if a sulfide or oxide with a low melting point is added to the flux,
The study focused on the fact that when the molten slag and molten metal solidify, sulfides and oxides with low melting points are present at the interface between the weld metal and the slag, which is mainly made of titanium oxide, and can prevent the slag from seizing. I did it. The present invention was made as a result of the above studies, and its characteristics include 4.5 to 8.5% by weight of titanium oxide and 0.01 to 0.0% of vanadium oxide based on the total weight of the wire. and further contains a total of 0.01 to 0.15% by weight of one or more sulfides and oxides with a melting point of 500 to 1300'C, excluding vanadium oxide, or in addition to these, a wire is added to the flux. Contains 0.02 to 0.75% by weight of aluminum and/or aluminum oxide based on the total weight in terms of aluminum, and also contains 0.05 to 0.5% of metal fluoride in terms of the total weight of the wire in the flux. %, titanium dioxide is contained in an amount of 0.05 or less of the weight % of the titanium oxide, and calcium oxide is contained in an amount of 0.005 to 0.050 of the weight % of the total oxide, and the weight of the flux is based on the total weight of the wire. % to 10 to 3 heel weight%.

融点の低い硫化物、酸化物をフラックス中に添加してス
ラグの剥離性におよぼす影響を調べるために、第1表に
示す金属鞘に、第2表に示すフラックスをワイヤ全重量
に対して15重量%充填した直径1.2Tfr1ftの
溶接用ワイヤを用いて鋼種JISG3lO6SM−50
A1板厚127rnのすみ肉継手及び板厚1抽500V
開先の突合わせ継手の試験板を第3表に示す溶接条件で
溶接し、その結果を第4表に示す。
In order to investigate the effect of adding sulfides and oxides with low melting points to the flux on the peelability of slag, the flux shown in Table 2 was added to the metal sheath shown in Table 1 at 15% of the total weight of the wire. Steel grade JIS G3lO6SM-50 using a welding wire with a diameter of 1.2Tfr1ft filled with weight%
A1 plate thickness 127rn fillet joint and plate thickness 1 draw 500V
Test plates of grooved butt joints were welded under the welding conditions shown in Table 3, and the results are shown in Table 4.

融点の低い硫化物、酸化物は通常沸点が低いと考えられ
るので低融点の硫化物、酸化物によるヒユーム発生量を
調べるために、第4表にヒユーム発生量を合わせて示す
。(以下、各フラックス成分、ワイヤ成分の%はワイヤ
全体に対する重量%をあられす。)※1 ヒユームの発
生量はハイボリウムエアサンプラーで発生ヒユームを全
量補集して、その質量を測定し単位時間当りの発生量(
Mg/分)を求めた。
Since sulfides and oxides with low melting points are generally considered to have low boiling points, Table 4 also shows the amount of fume generated in order to investigate the amount of fume generated by sulfides and oxides with low melting points. (Hereinafter, the percentage of each flux component and wire component refers to the weight percentage of the entire wire.) *1 The amount of fume generated is determined by collecting the entire amount of fume with a high volume air sampler and measuring its mass per unit time. Amount generated per hit (
Mg/min) was determined.

※2。*2.

:非常に良好O:良好Δ:やや不良×:不良上記結果よ
り明らかなように、スラグの剥離性が良好になるにつれ
てヒユーム発生量が増大しており溶接作業環境が悪くな
つているので、ヒユーム発生量を増加させない低融点硫
化物、酸化物を選定すべく沸点の高い化合物を検討した
: Very good O: Good Δ: Slightly bad We investigated compounds with high boiling points in order to select low-melting sulfides and oxides that would not increase the amount generated.

酸化バナジウムは、沸点が17印℃以上と高いので、フ
ラックス中に酸化バナジウムを添加してスラグの剥離性
およびヒユームの発生量におよぼす影響を調べるために
、第1表に示す金属鞘に、第5表に示すフラックスをワ
イヤ全重量に対して15重量%充填した直径1.2w1
の溶接用ワイヤを用いて鋼種JISG3lO6SM−5
0A)板厚12Tfgnのすみ肉継手及び板厚1gm!
l)50゜V開先の突合わせ継手の試験板を第3表に示
す溶接条件で溶接し、その結果を第6表に示す。第6表
には溶着金属の2wr!NVノツチシヤルピ衝撃値(K
9f.m)0℃も合わせて示す。※1 ヒユーム発生量
の測定は第4表と同じ。※20℃での溶着金属の2Wr
!FtVノツチシヤルピ衝撃値を示す。試験片採取位置
は溶着金属及び板厚の中央部※3 スラグの剥離性の評
価方法は第4表と同じ第6表より、酸化バナジウムを添
加するとスラグの剥離性は向上しており、しかもヒユー
ムの発生量は比較的少ない。
Vanadium oxide has a high boiling point of 17 degrees Celsius or higher, so in order to investigate the effect of adding vanadium oxide to the flux on slag removability and the amount of fume generation, vanadium oxide was added to the metal sheath shown in Table 1. Diameter 1.2w1 filled with 15% by weight of the flux shown in Table 5 based on the total weight of the wire
Steel type JIS G3lO6SM-5 using welding wire of
0A) Fillet joint with plate thickness 12Tfgn and plate thickness 1gm!
l) Test plates of butt joints with a 50°V groove were welded under the welding conditions shown in Table 3, and the results are shown in Table 6. Table 6 shows 2wr of weld metal! NV Notsuchi Yarupi Impact Value (K
9f. m) 0°C is also shown. *1 The measurement of the amount of fume generated is the same as in Table 4. *2Wr of weld metal at 20℃
! Indicates the FtV notch shock value. The test pieces were collected at the center of the weld metal and the thickness of the plate.*3 The evaluation method for slag releasability is the same as Table 4, as shown in Table 6, adding vanadium oxide improves slag releasability. The amount generated is relatively small.

しかし、酸化バナジウムの添加量を増してもスラグの剥
離性の向上には限界があり、また、衝撃値も悪くなつて
いる。そこで、さらにスラグの剥離性の向上をはかるた
めに、第5表のフラックスに、他の低融点化合物を添加
した第7表に示すフラックスを第1表の金属鞘にワイヤ
全重量に対して15重量%充填した直径1.2Wr!f
lの溶接用ワイヤを用いて鋼種JISG3lO6SM−
50A板厚1gw)50゜V開先の突合わせ継手の試験
板を第3表bに示す溶接条件で溶接し、その結果を第8
表に示す。
However, even if the amount of vanadium oxide added is increased, there is a limit to the improvement in slag releasability, and the impact value is also poor. Therefore, in order to further improve the slag releasability, the flux shown in Table 7, in which other low melting point compounds were added to the flux shown in Table 5, was added to the metal sheath shown in Table 1 at a rate of 15% based on the total weight of the wire. Diameter 1.2Wr filled by weight%! f
Steel type JIS G3lO6SM- using welding wire of l.
A test plate of a butt joint with a 50°V groove (50A plate thickness 1gw) was welded under the welding conditions shown in Table 3b, and the results were shown in Table 8.
Shown in the table.

※1 ヒユーム発生量の測定は第4表と同じ※2衝撃値
の測定は第6表と同じ第8表よりフラックス中に酸化バ
ナジウムと他の低融点化合物とを複合添加することによ
り立向上進姿勢の突合わせ溶接においても非常に良好な
スラグ剥離性を示している。
*1 The measurement of the amount of fume generation is the same as in Table 4. *2 The measurement of the impact value is the same as Table 6. From Table 8, the start-up is improved by adding vanadium oxide and other low melting point compounds to the flux in combination. It shows very good slag removability even in postural butt welding.

以下にフラックスの各成分の限定理由について述べる。The reason for limiting each component of the flux will be described below.

酸化チタンニ4.5〜8.5重量%酸化チタンの融点(
二酸化チタンの場合約1855℃)は鋼の融点(約15
39℃)よりもかなり高融点であり、しかも酸化チタン
はスラグの粘性を増すものである。
Titanium oxide 4.5-8.5% by weight Titanium oxide melting point (
In the case of titanium dioxide, the melting point of steel (approximately 15
39° C.), and titanium oxide increases the viscosity of the slag.

フラックス中に酸化チタンを含有していれば立向上進姿
勢や上向姿勢で溶接を行なつても、フラックスをアーク
熱で溶融して形成されたスラグの粘性が高く、しかも凝
固し難いために、溶融金属の垂れ落ちを防止でき、ビー
ド形状を整えることができ、またアークを安定にするこ
ともできる。しかし酸化チタンが4.5重量%未満では
、上述の効果を期待することができず、また、8.5重
量%を越えるとスラグの粘性が高くなりすぎて、特に下
向姿勢で溶接を行なう場合ビード外観、ビード形状が悪
化し、さらに溶接金属中に過剰の還元チタンや酸化チタ
ンが歩留つて機械的性質特に切欠靭性が低下する。なお
、酸化チタンとしては、二酸化チタン、三二酸化チタン
、一酸化チタン、三酸化チタン等があり、主は二酸化チ
タンである。
If the flux contains titanium oxide, even if welding is performed in a standing or upward position, the slag formed by melting the flux with arc heat is highly viscous and difficult to solidify. , it is possible to prevent the molten metal from dripping, it is possible to adjust the bead shape, and it is also possible to stabilize the arc. However, if titanium oxide is less than 4.5% by weight, the above-mentioned effects cannot be expected, and if it exceeds 8.5% by weight, the viscosity of the slag becomes too high, making it particularly difficult to weld in a downward position. In this case, the bead appearance and bead shape deteriorate, and furthermore, excessive reduced titanium and titanium oxide remain in the weld metal, resulting in a decrease in mechanical properties, particularly notch toughness. Note that titanium oxide includes titanium dioxide, titanium sesquioxide, titanium monoxide, titanium trioxide, etc., and titanium dioxide is the main type.

酸化バナジウムニ0.01〜0.0踵量%酸化バナジウ
ムは、融点が690℃と低く、しかも沸点が1750℃
以上と高いので、ヒユーム発生量を増加させることなく
スラグの剥離性を向上させることができるが、そのワイ
ヤ全重量に対する重量%が0.01%未満であるとスラ
グの剥離性向上の効果がなく、0.07%を越えると溶
接金属中に過剰の還元バナジウムや酸化バナジウムが歩
留つて機械的性質、特に切欠靭性が低下する。
Vanadium oxide 0.01-0.0% vanadium oxide has a low melting point of 690°C and a boiling point of 1750°C.
Since the above is high, it is possible to improve the slag releasability without increasing the amount of fume generated, but if the weight % of the total weight of the wire is less than 0.01%, there is no effect of improving the slag releasability. If it exceeds 0.07%, excessive reduced vanadium or vanadium oxide will remain in the weld metal, resulting in a decrease in mechanical properties, especially notch toughness.

酸化バナジウムを除く融点が500〜1300℃の硫化
物、酸化物の1種以上の合計:0.01〜0.15重量
%酸化バナジウムの添加だけではスラグの剥離性を十分
に向上させることができないが、さらに他の低融点の硫
化物、酸化物を添加すればスラグの剥離性が飛躍的に向
上するのてある。
Total of one or more sulfides and oxides with a melting point of 500 to 1300°C excluding vanadium oxide: 0.01 to 0.15% by weight Addition of vanadium oxide alone cannot sufficiently improve slag releasability. However, if other low melting point sulfides and oxides are added, the slag removability can be dramatically improved.

融点が500℃未満であるとスラグとしての歩留りが悪
すぎ、1300′Cを越えると鋼の融点に近づきすぎる
ためにスラグの剥離性を向上させる効果がなくなるので
、添加する硫化物、酸化物として融点が500〜130
0℃のものから選択しなければなら゛ない。
If the melting point is less than 500°C, the yield as slag will be too low, and if it exceeds 1300'C, it will be too close to the melting point of steel and will not have the effect of improving the removability of slag. Melting point is 500-130
You must choose from those at 0°C.

これらの硫化物、酸化物をワイヤ全重量に対して合計で
0.01%以上添加しなければ、スラグの剥離性の効果
を十分に発揮できず、0.15%を越えるとヒユーム発
生量が多くなるだけでなく、溶着金属にこれらの硫化物
や酸化物等が過剰歩留つて溶接割れを引きおこす恐れが
ある。なお、融点が500〜1300℃の硫化物、酸化
物としては、硫化錫、硫化ゲルマニウム、硫化鉛、硫化
ビスマス、硫化アンチモン、硫化銅、硫化鉄、酸化錫、
酸化ゲルマニウム、酸化鉛、酸化ビスマス、酸化アンチ
モンおよび酸化銅などがある。
If these sulfides and oxides are not added in a total amount of 0.01% or more based on the total weight of the wire, the slag removal effect cannot be fully exhibited, and if it exceeds 0.15%, the amount of fume generation increases. Not only will the amount increase, but there is also a risk that these sulfides, oxides, etc. will remain in excess in the weld metal and cause weld cracking. In addition, examples of sulfides and oxides with a melting point of 500 to 1300°C include tin sulfide, germanium sulfide, lead sulfide, bismuth sulfide, antimony sulfide, copper sulfide, iron sulfide, tin oxide,
These include germanium oxide, lead oxide, bismuth oxide, antimony oxide, and copper oxide.

次に、ワイヤ全重量に対すフラックスの割合を10〜3
鍾量%にするのは、1鍾量%未満では、充分なフラック
ス、即ち、金属粉およびスラグ形成剤を含有させること
ができず、3唾量%を越えるとワイヤの金属鞘として用
いる軟鋼板の厚さを薄くして内部の容積を拡張しなけれ
ばならず、金属鞘が薄くなるとワイヤが柔かくなり、通
電性が悪くなつてアークが不安定になるので、アンダー
カットが生じ易く、さらに大人熱溶接が行なえなくなる
からである。さらに、上記成分以外で本発明ワイヤの用
途及び特性を一段と高めることのできる配合成分につい
て説明する。
Next, the ratio of flux to the total weight of the wire is 10 to 3.
If the weight is less than 1%, sufficient flux, that is, metal powder and slag forming agent cannot be contained, and if the weight is more than 3%, the mild steel plate used as the metal sheath of the wire will not be able to be contained. The thickness of the metal sheath must be reduced to expand the internal volume, and as the metal sheath becomes thinner, the wire becomes softer, resulting in poor conductivity and an unstable arc, making undercuts more likely to occur. This is because heat welding cannot be performed. Furthermore, ingredients other than the above-mentioned ingredients that can further enhance the uses and properties of the wire of the present invention will be explained.

立向下進姿勢の溶接を入熱7KJ/C77!以上の高入
熱で行なうと、溶融スラグおよび溶融金属の垂れ落ちが
生じやすくなる。この垂れ落ちを防止するには、融点が
2050℃と高い酸化アルミニウムをフラックス中に添
加すと効果があるが、アルミニウム量に換算して0.0
踵量%未満では添加の効果が−十分に発揮されず、0.
75重量%を越えるとスラグの剥離性が著しく低下する
ので、立向下進姿勢の溶接においては、酸化アルミニウ
ムおよび/またはアルミニウムをアルミニウム量に換算
して0.02〜0.75重量%添加すべきである。被溶
接鋼板には、錆鋼板、プライマー塗布鋼板(ウォッシュ
プライマー、無機ジンク系等)等の鋼板もあり、これら
の鋼板の溶接を行なう場合は、ビットが発生しやすくな
る。
Heat input 7KJ/C77 for vertical downward welding! If the heat input is higher than that, molten slag and molten metal are likely to drip down. To prevent this dripping, it is effective to add aluminum oxide, which has a high melting point of 2050°C, to the flux, but it is effective when converted to the amount of aluminum.
If the heel weight is less than %, the effect of the addition will not be sufficiently exerted, and 0.
If the content exceeds 75% by weight, the removability of the slag will be significantly reduced, so when welding in a vertical downward position, aluminum oxide and/or aluminum should be added in an amount of 0.02 to 0.75% by weight in terms of aluminum content. Should. Steel plates to be welded include rusted steel plates, steel plates coated with primer (wash primer, inorganic zinc, etc.), and when these steel plates are welded, bits are likely to occur.

この原因は、溶接をした際に、錆あるいはプライマー等
より発生!する水素が溶着金属に歩留るためだと考えら
れており、この水素を除去するには、フラックスの塩基
度の上昇と金属弗化物の添加が効果があることがわかつ
た。フラックスの塩基度を上昇させるには、酸性酸化物
を減少させて、塩基性酸化物を添加すれはよく、二酸化
シリコンの酸化チタンに対する重量%の比が0.05を
越えたり、酸化カルシウムの全酸化物に対する重量%の
比が0.005未満では、耐ビット性の改善効果が十分
に得られない、また、金属弗化物が0.05重量%未満
の場合も耐ビット性の改善効果が十分に得られない。
This is caused by rust or primer when welding! It is thought that this is due to the hydrogen remaining in the deposited metal, and it has been found that increasing the basicity of the flux and adding metal fluoride are effective ways to remove this hydrogen. In order to increase the basicity of the flux, it is recommended to reduce the acidic oxide and add a basic oxide. If the weight percent ratio to the oxide is less than 0.005, the effect of improving bit resistance will not be sufficiently obtained, and if the metal fluoride is less than 0.05 weight percent, the effect of improving bit resistance will not be sufficient. I can't get it.

なお、酸化カルシウ・ムおよび金属弗化物は、スラグの
流動性を良好にするものであるから、酸化カルシウムの
全酸化物に対する重量%の比が0.050を越えたり、
金属弗化物が0.5唾量%を越えるとスラグの流動性が
過剰になつてスパッタの増大およびビード形状の悪化を
招く恐れがある。なお、酸化カルシウムの代わりに炭酸
カルシウム(CaCO3)も使用できる。
Note that calcium oxide and metal fluoride improve the fluidity of the slag, so the ratio of calcium oxide to total oxides by weight may exceed 0.050,
When the amount of metal fluoride exceeds 0.5%, the fluidity of the slag becomes excessive, which may lead to increased spatter and deterioration of bead shape. Note that calcium carbonate (CaCO3) can also be used instead of calcium oxide.

炭酸カルシウムはアーク熱により解離し、酸化カルシウ
ムと炭酸ガスに分解するからである。しかし、炭酸カル
シウムは量が多くなると、炭酸ガス発生の分圧が高まり
、スパッタ量が増える。したがつて、スパッタ発生の影
響を小さくするには、炭酸カルシウムの添加量をワイヤ
全重量に対して0.15重量%以下にする必要がある。
従つて、錆鋼板やプライマー塗装鋼板を溶接する場合は
、ビット発生の防止から、金属弗化物を0.05〜0.
50重量%添加し、二酸化シリコンの酸化チタンに対す
る重量%の比を0.05以下、酸化カルシウムの全酸化
物に対する重量%の比を0.005〜0.050になる
ようにすべきである。
This is because calcium carbonate is dissociated by arc heat and decomposed into calcium oxide and carbon dioxide gas. However, when the amount of calcium carbonate increases, the partial pressure of carbon dioxide gas generation increases and the amount of spatter increases. Therefore, in order to reduce the influence of spatter generation, the amount of calcium carbonate added must be 0.15% by weight or less based on the total weight of the wire.
Therefore, when welding rusted steel plates or primer-coated steel plates, 0.05 to 0.0 of metal fluoride should be added to prevent bit formation.
The ratio of silicon dioxide to titanium oxide should be 0.05 or less, and the ratio of calcium oxide to total oxide should be 0.005 to 0.050.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

第1表に示す金属鞘に、第9表に示すフラックスをワイ
ヤ全重量に対して15重量%充填した直径1.27mの
溶接用ワイヤを用いて無機ジンクプライマーを膜厚20
μ塗布した鋼種JISG3lO6SM−50氏板厚12
TnInの試験板を第1咳に示す溶接条件で溶接し、そ
の結果を第11表に示す。
Using a welding wire with a diameter of 1.27 m filled with the flux shown in Table 9 at 15% by weight based on the total weight of the wire, an inorganic zinc primer was applied to the metal sheath shown in Table 1 to a film thickness of 20.
μ coated steel type JIS G3lO6SM-50 plate thickness 12
TnIn test plates were welded under the welding conditions shown in No. 1, and the results are shown in Table 11.

Claims (1)

【特許請求の範囲】 1 金属鞘にフラックスを充填してなるフラックス入り
ワイヤにおいて、フラックス中にワイヤ全重量に対して
、酸化チタン4.5〜8.5重量%、酸化バナジウム0
.01〜0.07重量%を含有し、さらに酸化バナジウ
ムを除く融点が500〜1300℃の硫化物、酸化物の
1種以上を合計で0.01〜0.15重量%含有すると
共に、ワイヤ全重量に対するフラックスの重量%を10
〜30重量%としてなることを特徴とするガスシールド
アーク溶接用フラックス入りワイヤ。 2 金属鞘にフラックスを充填してなるフラックス入り
ワイヤにおいて、フラックス中にワイヤ全重量に対して
、酸化チタン4.5〜8.5重量%、酸化バナジウム0
.01〜0.07重量%を含有し、さらに酸化バナジウ
ムを除く融点が500〜1300℃の硫化物、酸化物の
1種以上を合計で0.01〜0.15重量%、及びアル
ミニウムおよび/または酸化アルミニウム換算で0.0
2〜0.75重量%含有すると共に、ワイヤ全重量に対
するフラックスの重量%を10〜30重量%としてなる
ことを特徴とするガスシールドアーク溶接用フラックス
入りワイヤ。 3 金属鞘にフラックスを充填してなるフラックス入り
ワイヤにおいて、フラックス中にワイヤ全重量に対して
、酸化チタン4.5〜8.5重量%、酸化バナジウム0
.01〜0.07重量%を含有し、さらに酸化バナジウ
ムを除く融点が500〜1300℃の硫化物、酸化物の
1種以上を合計で0.01〜0.15重量%、及び金属
弗化物を0.05〜0.50重量%含有する他、二酸化
シリコンを酸化チタンの重量%の0.05以下になる様
に含有すると共に、酸化カルシウムを全酸化物の重量%
の0.005〜0.050になる様に含有し、且つワイ
ヤ全重量に対するフラックスの重量%を10〜30重量
%としてなることを特徴とするガスシールドアーク溶接
用フラックス入りワイヤ。 4 金属鞘にフラックスを充填してなるフラックス入り
ワイヤにおいて、フラックス中にワイヤ全重量に対して
酸化チタン4.5〜8.5重量%、酸化バナジウム0.
01〜0.07重量%を含有し、さらに酸化バナジウム
を除く融点が500〜1300℃の硫化物、酸化物の1
種以上を合計で0.01〜0.15重量%、アルミニウ
ムおよび/または酸化アルミニウム換算で0.02〜0
.75重量%、及び金属弗化物を0.05〜0.50重
量%含有する他、二酸化シリコンを酸化チタンの重量%
の0.05以下になる様に含有すると共に、酸化カルシ
ウムを全酸化物の重量%の0.005〜0.050にな
る様に含有し、且つワイヤ全重量に対するフラックスの
重量%を10〜30重量%としてなることを特徴とする
ガスシールドアーク溶接用フラックス入りワイヤ。
[Claims] 1. A flux-cored wire formed by filling a metal sheath with flux, in which the flux contains 4.5 to 8.5% by weight of titanium oxide and 0 vanadium oxide based on the total weight of the wire.
.. 0.01 to 0.07% by weight, and further contains a total of 0.01 to 0.15% by weight of one or more sulfides and oxides with a melting point of 500 to 1300°C, excluding vanadium oxide. The weight% of flux to the weight is 10
A flux-cored wire for gas-shielded arc welding, characterized in that the concentration is 30% by weight. 2. In a flux-cored wire formed by filling a metal sheath with flux, the flux contains 4.5 to 8.5% by weight of titanium oxide and 0 vanadium oxide based on the total weight of the wire.
.. 0.01 to 0.07% by weight, and a total of 0.01 to 0.15% by weight of one or more sulfides and oxides with a melting point of 500 to 1300°C excluding vanadium oxide, and aluminum and/or 0.0 in terms of aluminum oxide
A flux-cored wire for gas-shielded arc welding, characterized in that the flux-cored wire contains 2 to 0.75% by weight, and the flux content is 10 to 30% by weight based on the total weight of the wire. 3. In a flux-cored wire formed by filling a metal sheath with flux, the flux contains 4.5 to 8.5% by weight of titanium oxide and 0 vanadium oxide based on the total weight of the wire.
.. 0.01 to 0.07% by weight, and a total of 0.01 to 0.15% by weight of one or more sulfides and oxides with a melting point of 500 to 1300°C, excluding vanadium oxide, and metal fluorides. In addition to containing 0.05 to 0.50% by weight, silicon dioxide is contained in an amount of 0.05 or less of the weight% of titanium oxide, and calcium oxide is contained in an amount of 0.05% by weight or less of the total oxide.
1. A flux-cored wire for gas-shielded arc welding, characterized in that the flux-cored wire contains 0.005 to 0.050 of flux, and the weight percent of the flux is 10 to 30 percent by weight based on the total weight of the wire. 4. In a flux-cored wire formed by filling a metal sheath with flux, the flux contains 4.5 to 8.5% by weight of titanium oxide and 0.5% by weight of vanadium oxide based on the total weight of the wire.
01 to 0.07% by weight, and further contains 1 of sulfides and oxides with a melting point of 500 to 1300°C, excluding vanadium oxide.
0.01 to 0.15% by weight in total of species or more, 0.02 to 0 in terms of aluminum and/or aluminum oxide
.. 75% by weight, and 0.05 to 0.50% by weight of metal fluoride, and silicon dioxide by weight% of titanium oxide.
It contains calcium oxide in an amount of 0.05 to 0.050 of the total weight of the oxide, and contains 10 to 30 percent of the flux based on the total weight of the wire. A flux-cored wire for gas-shielded arc welding, characterized in that the weight percentage is as follows.
JP56056497A 1981-04-14 1981-04-14 Flux-cored wire for gas shield arc welding Expired JPS6057956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56056497A JPS6057956B2 (en) 1981-04-14 1981-04-14 Flux-cored wire for gas shield arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56056497A JPS6057956B2 (en) 1981-04-14 1981-04-14 Flux-cored wire for gas shield arc welding

Publications (2)

Publication Number Publication Date
JPS57190798A JPS57190798A (en) 1982-11-24
JPS6057956B2 true JPS6057956B2 (en) 1985-12-17

Family

ID=13028731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56056497A Expired JPS6057956B2 (en) 1981-04-14 1981-04-14 Flux-cored wire for gas shield arc welding

Country Status (1)

Country Link
JP (1) JPS6057956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198489A (en) * 1992-10-30 1994-07-19 Lincoln Electric Co:The Flux core arc welding electrode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104291A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPS59212192A (en) * 1983-05-16 1984-12-01 Nippon Steel Corp Flux cored stainless steel wire
JPH09262693A (en) * 1996-03-28 1997-10-07 Kobe Steel Ltd Flux cored wire for arc welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499443A (en) * 1972-05-25 1974-01-28
JPS4915653A (en) * 1972-03-30 1974-02-12
JPS50116351A (en) * 1974-02-27 1975-09-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915653A (en) * 1972-03-30 1974-02-12
JPS499443A (en) * 1972-05-25 1974-01-28
JPS50116351A (en) * 1974-02-27 1975-09-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198489A (en) * 1992-10-30 1994-07-19 Lincoln Electric Co:The Flux core arc welding electrode

Also Published As

Publication number Publication date
JPS57190798A (en) 1982-11-24

Similar Documents

Publication Publication Date Title
US4149063A (en) Flux cored wire for welding Ni-Cr-Fe alloys
JP5198481B2 (en) Ni-based alloy flux cored wire
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP2588440B2 (en) Electrode with basic metal core
JP6809533B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
KR20060106617A (en) Modified flux system in cored electrode
JP3804802B2 (en) Metal-based flux-cored wire for gas shielded arc welding and gas shielded arc welding method
JP5662086B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
JPWO2019186811A1 (en) Flux-cored wire manufacturing method, flux-cored wire, and welding joint manufacturing method
JPS6057956B2 (en) Flux-cored wire for gas shield arc welding
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2711077B2 (en) Flux-cored wire for gas shielded arc welding
JP2614967B2 (en) Gas shielded arc welding metal flux cored wire
JP3889897B2 (en) Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
JPH0521677B2 (en)
JPS6216747B2 (en)
JP2005088039A (en) Titania-based flux cored wire
JP6463234B2 (en) Flux-cored wire for two-electrode horizontal fillet gas shielded arc welding of crude oil tank steel
JP2795992B2 (en) Flux-cored wire for gas shielded arc welding
JP3828088B2 (en) Flux-cored wire for fillet welding
JP2001205482A (en) Flux-containing wire for gas shield arc welding
JP3877843B2 (en) Single-sided welding method without backing material
JPH0214158B2 (en)