JPS605794A - Controlling method of dc motor for vehicle - Google Patents

Controlling method of dc motor for vehicle

Info

Publication number
JPS605794A
JPS605794A JP11086483A JP11086483A JPS605794A JP S605794 A JPS605794 A JP S605794A JP 11086483 A JP11086483 A JP 11086483A JP 11086483 A JP11086483 A JP 11086483A JP S605794 A JPS605794 A JP S605794A
Authority
JP
Japan
Prior art keywords
voltage
command value
filter capacitor
armature current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11086483A
Other languages
Japanese (ja)
Inventor
Nobuo Watanabe
信夫 渡辺
Akihiko Ujiie
昭彦 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11086483A priority Critical patent/JPS605794A/en
Publication of JPS605794A publication Critical patent/JPS605794A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To enable to stably raise a regenerative brake irrespective of the magnitude of a regenerative load by integrating the difference voltage between the voltage of a filter capacitor and the maximum allowable voltage from the brake notch closing time as a command value of an armature current. CONSTITUTION:A function calculator 11 outputs a request current limit value IC0 from a brake force command value BF and a speed N. An integrator 14 obtains the difference voltage between the voltage EC of a filter capacitor 4 and the maximum allowable voltage EC2, integrates in synchronization with the input of a brake notch closing signal BN, and outputs the primary command value IC1 of an armature current as the control signal value of a chopper 8. A limiter 15 suppresses the primary command value IC1 of the armature current to the request current limit value IC0 or lower, and outputs a command value IC of the armature current as a control signal of the chopper 8.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は車両用直流電動機の制御方法に関し、特に直流
分巻界磁電動機をチョッパ制御して回生制動をかける場
合の制御技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for controlling a DC motor for a vehicle, and more particularly to a control technique for applying regenerative braking to a DC shunt field motor by chopper control.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

鉄道車両用直流電動機として使用されている直流分巻界
磁電動機をチョッパ装置により制御する場合、回生時に
は第1図に示すような主回路構成により行なわれている
。すなわち、第1図において、1は図示しない架線を介
して集電するパンタグラフ、2は同じく図示しないレー
ル及び車輪を介して集電する集電環、3+−を入力フィ
ルタリアクトル、4は入力フィルタコンデンサである。
When a DC shunt field motor used as a DC motor for a railway vehicle is controlled by a chopper device, a main circuit configuration as shown in FIG. 1 is used during regeneration. That is, in FIG. 1, 1 is a pantograph that collects current via an overhead wire (not shown), 2 is a current collection ring that collects current via rails and wheels (also not shown), 3+- is an input filter reactor, and 4 is an input filter capacitor. It is.

また5は電機子6および界磁省線7を備えた直流分巻界
磁電動機、8は前記電機子60両端子間に接続し電機子
電流を制御する電機子チョッパ、9は前記電機子6と直
列に接続し前記架線より流入する電流を阻止するダイオ
ードである。さらに10は前記直流分巻界磁電」自機5
の界磁巻線7に与える昇磁電流を制御する界磁チョッパ
である。
5 is a DC shunt field motor equipped with an armature 6 and a field saving wire 7; 8 is an armature chopper connected between both terminals of the armature 60 to control the armature current; This diode is connected in series with the overhead wire to block current flowing from the overhead wire. Furthermore, 10 is the DC shunt field electric machine's own machine 5
This is a field chopper that controls the magnetizing current given to the field winding 7 of the.

第2図な、第1図に示した主回路を制御する制御部のう
ち、電機子6の電流指令値ICを作成する部分をブロッ
ク図で示したもので、11は運転台からのブレーキ力指
令値BFと車両の速度Nから限流値ICoをめる関数演
算部、12はフィルタコツプ/す4の電圧ECの大きさ
によって限流値ICoを低減するリミッタ部、13は電
流指令値の動きをスムースにするだめの1次遅れ回路で
ある。
Figure 2 is a block diagram of the part that creates the current command value IC for the armature 6 in the control section that controls the main circuit shown in Figure 1, and 11 is the brake force from the driver's cab. A function calculation section calculates the current limit value ICo from the command value BF and the vehicle speed N. 12 is a limiter section that reduces the current limit value ICo according to the magnitude of the voltage EC of the filter tip 4. 13 is a limiter section for calculating the current limit value ICo. This is a first-order delay circuit that makes the movement smooth.

第2図Oτおいて、関数演算部11では所定のブレーキ
力指令値BFが得られるように必要なノツチ曲線上の限
流値■Coを関数計算によ2りめる。第3図に関数演算
部11での関数グラフを示す。すなわち所定のブレーキ
力を回生制動力のみで得るためにはIC=IC8にしな
ければならないが、回生負荷が少い場合はIC−工C8
で与えると、フィルタコンデンサ4の電圧ECが上昇し
て過電圧になってし捷う。そこで、これを防止するため
にリミッタ部12で第4図に示すようなフィルタコンデ
ンサ4の電圧ECによるリミッタを施す。すなわち、フ
ィルタコツプ/す4の電圧ECが第4図に示すリミッタ
値EC,以下の場合はIC1=IC8で出力されるがE
C,を越えると第4図に示す直線でIC1は低減されて
ゆき最大リミッタ値EC2でIc、=0になる。
In FIG. 2 Oτ, the function calculation unit 11 calculates the current limit value ■Co on the notch curve necessary to obtain a predetermined brake force command value BF. FIG. 3 shows a function graph in the function calculation section 11. In other words, in order to obtain the specified braking force only with regenerative braking force, IC must be set to IC8, but if the regenerative load is small, IC-C8 must be set.
If the voltage EC of the filter capacitor 4 is given as , the voltage EC of the filter capacitor 4 rises and becomes an overvoltage. Therefore, in order to prevent this, the limiter unit 12 applies a limiter using the voltage EC of the filter capacitor 4 as shown in FIG. In other words, if the voltage EC of the filter tip 4 is less than the limiter value EC shown in Fig. 4, the output will be IC1=IC8, but E
When C, is exceeded, IC1 is reduced along the straight line shown in FIG. 4, and becomes Ic=0 at the maximum limiter value EC2.

この作用により回生負荷が少い時のフィルタコンデンサ
4の電圧ECの過電圧は一応防止されるが、この制御方
法では次に述べるような問題がある。すなわち、回生負
荷が少ない時に回生制動を開始すると第5図に示すよう
に電流指令値ICが一度オーバーシュートしてからリミ
ッタによって低減されるので、このオーバーシュートに
より一過的に空気制動との調和がとれなくなり、安定な
ブレーキ立上りが行えない不具合があった。これを防止
するために1次遅れ回路130時定数T、を太きくする
方法が考えられるが、この方法では回生負荷が十分にあ
る場合でも回生制動の立上りが遅れてしまい、電機制動
と空気制動とのラップによる滑走とか、回生効率が低下
するなどの不具合が生じる。
Although this action prevents an overvoltage of the voltage EC of the filter capacitor 4 when the regenerative load is small, this control method has the following problems. In other words, when regenerative braking is started when the regenerative load is low, as shown in Figure 5, the current command value IC will overshoot once and then be reduced by the limiter, so this overshoot will temporarily reduce the harmonization with air braking. There was a problem in which the brake could not be braked stably. In order to prevent this, a method of increasing the time constant T of the first-order delay circuit 130 can be considered, but with this method, even if there is a sufficient regenerative load, the start-up of regenerative braking is delayed, and the electric braking and air braking Problems may occur such as sliding due to laps and reduced regeneration efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みなされたもので、直流分巻界磁
電動機をチョッパ制御して回生制動をかける場合に、回
生負荷の大小には関係なく、遅れがなく安定して回生制
動を立ち上げる車両用直流電動機の制御方法を提供する
The present invention has been made in view of the above points, and when applying regenerative braking to a DC shunt field motor using chopper control, the regenerative braking can be started stably without delay, regardless of the size of the regenerative load. The present invention provides a method for controlling a DC motor for a vehicle.

〔発明の概要〕[Summary of the invention]

本発明は、車両用主電動機に直流分巻界磁電動機を使用
し、フィルタコンデンサを設は前記直流分巻界磁電動機
の電機子電流をチョッパ制御して回生制動を行なう場合
に、前記フィルタコンデンサの電圧を測定し、この測定
したフィルタコンデンサの実電圧と予じめ定めたフィル
タコンデンサの許容最大電圧との差をめ、この差電圧を
ブレーキノツチ投入に同期してこの時点より積分して電
機子電流の指令値とし、この電機子電流の指令値をブレ
ーキカ指令f1ケと速度から所定の方法によりめだ要求
限流値を最大値としてリミットすることにより上記目的
を達成する。
The present invention uses a DC shunt field motor as a main motor for a vehicle, and when a filter capacitor is installed to chopper control the armature current of the DC shunt field motor to perform regenerative braking, the filter capacitor Measure the voltage of the filter capacitor, calculate the difference between the measured actual voltage of the filter capacitor and the predetermined maximum allowable voltage of the filter capacitor, integrate this voltage difference from this point in synchronization with the application of the brake notch, and calculate the voltage of the electric motor. The above object is achieved by setting the command value of the armature current as the command value of the armature current and limiting the required current limit value to the maximum value using a predetermined method from the brake force command f1 and the speed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について図面を参照しなから1明
する。
An embodiment of the present invention will be explained below with reference to the drawings.

第6図は本発明の一実施例を図示した制御ブロック図で
、第2図に示した制御ブロック図のうちリミッタ部12
と1次遅れ回路13のかわりに積分器14及びリミッタ
15を設けたものである。
FIG. 6 is a control block diagram illustrating an embodiment of the present invention, in which the limiter section 12 in the control block diagram shown in FIG.
In this example, an integrator 14 and a limiter 15 are provided in place of the first-order delay circuit 13.

第6図で関数演算器11は第2図に示した制御ブロック
図の関数演算器と全く同一であり、ブレーキ力指令値B
Fと速度Nから第3図に示した所定の方法により関数演
算を行ってめた要求限流値ICoを出力する。
In FIG. 6, the function calculator 11 is exactly the same as the function calculator in the control block diagram shown in FIG.
A required current limit value ICo is output by performing functional calculations from F and speed N using a predetermined method shown in FIG.

積分器]4では、第1図に示したフィルタコンデンサ4
の電圧ECを入力し、予じめ定めて記憶したフィルタコ
ンデンサの許容最大重、圧EC2に対する差電圧をめ、
ブレーキノツチ投入信号BHの入力と同期踵次式(1)
に示した積分計締を行ない、第1図に示した電機子6の
電流を制御するナヨッパ装篩8の制御信号とする電機子
電流の一次指令値IC,を出力する。このIC1の制御
が開始されるlでの初期値は零である。
Integrator] 4, the filter capacitor 4 shown in FIG.
Input the voltage EC, find the predetermined and memorized maximum allowable weight of the filter capacitor, and calculate the differential voltage with respect to the pressure EC2.
Brake notch input signal BH input and synchronization formula (1)
The integral meter is tightened as shown in FIG. 1, and the primary command value IC of the armature current is outputted as a control signal for the Nayopper sieve 8 that controls the current in the armature 6 shown in FIG. The initial value of l at which control of IC1 is started is zero.

但しKは定数、tは時間である。However, K is a constant and t is time.

リミッタ15は上記によシ積分器14でめて出方した電
機子電流の一次指令値IC,を前記関数演算器11から
の要求限流値IC8以下に抑制するリミッタで、チョッ
パ装置8の制御信号として電機子電流の指令値ICを出
力する。
The limiter 15 is a limiter that suppresses the primary command value IC of the armature current outputted by the above-mentioned integrator 14 to below the required current limit value IC8 from the function calculator 11, and controls the chopper device 8. Outputs the armature current command value IC as a signal.

本発明の制御方法における回生制動開始時のフィルタコ
ンデンサ4の電圧E ’C及び電機子電流の指令値IC
の状態を第7図及び第8図に示す。第7図は回生負荷が
少い場合であり、第8図は回生負荷が十分にある場合で
ある。
Voltage E'C of filter capacitor 4 and armature current command value IC at the start of regenerative braking in the control method of the present invention
The state is shown in FIGS. 7 and 8. FIG. 7 shows a case where the regenerative load is small, and FIG. 8 shows a case where there is a sufficient regenerative load.

第7図では回生負荷が少いので、回生制電を開始して積
分器14による作用で電機子電流の指令値ICがOから
増力口するとともに、フィルタコンデンサ4の電圧EC
も増加する。従って積分器14の計算式(1)式より明
らかなように、電機子電流の指令値ICの増加のしかた
は除々に小さくなる。
In FIG. 7, since the regenerative load is small, regenerative power suppression is started and the command value IC of the armature current increases from O due to the action of the integrator 14, and the voltage EC of the filter capacitor 4 increases.
will also increase. Therefore, as is clear from the calculation formula (1) of the integrator 14, the manner in which the command value IC of the armature current increases gradually becomes smaller.

そしてフィルタコンデンサ4の電圧ECが許容最大電圧
EC2に対しE C= EC2になると、積分器14の
出力は変化しなくなる。この作用により電1機子電、流
の指令値ICは第5図のようにオーバーシュートするこ
となく、EC−EC2になるような、すなわち許容でき
る範囲で最も回生効率のよい回生制動が行なわれる。
Then, when the voltage EC of the filter capacitor 4 becomes E C=EC2 with respect to the maximum allowable voltage EC2, the output of the integrator 14 stops changing. Due to this action, the command value IC of the electric current and electric current does not overshoot as shown in Fig. 5, and becomes EC-EC2, that is, regenerative braking is performed with the highest regenerative efficiency within the allowable range. .

途中で回生負荷が増加した場合はフィルタコンデンサ4
の電圧ECが下がるので、υ分g614は再び出力を増
加させてゆき、上記同様E C= E C2になった時
点で電機子電流の指令値ICをホールドする。回生負荷
が減少した場合は反対にフィルタコンデンサ4の電圧E
Cが上がるので、EC)EC2になって積分器14は出
力を減少させてゆき、EC=gc2になった時点で出力
をホールドする。
If the regenerative load increases on the way, filter capacitor 4
Since the voltage EC decreases, the υ minute g614 increases the output again, and holds the command value IC of the armature current when E C=E C2 as described above. Conversely, when the regenerative load decreases, the voltage E of filter capacitor 4
Since C increases, the integrator 14 decreases its output until it becomes EC2, and holds the output when EC=gc2.

第8図では回生負荷が十分にあるので、回生制動を開始
して積分器111による作用で電機子直流の指令値IC
が零から増加しても、フィルタコンデンサ4の電圧EC
はあま、り上昇しない。従って積分器14はどんどん出
力を増加させ■C1−工C0に達する。ここでリミッタ
150作用によりIC−■c。
In Fig. 8, since there is sufficient regenerative load, regenerative braking is started and the command value IC of the armature DC is calculated by the action of the integrator 111.
Even if increases from zero, the voltage EC of the filter capacitor 4
It doesn't rise too much. Therefore, the integrator 14 gradually increases its output until it reaches C1-C0. Here, due to the action of the limiter 150, IC-■c.

にクランプされその状態で回生制動が行なわれる。is clamped, and regenerative braking is performed in that state.

〔総合的な効果〕[Overall effect]

以上説明したように本発明1cよれは直流分巻電動機の
回生制動の立上りを回生負荷の犬lドにかかわりなく安
定に行えるとともに、回生負荷が少い時には常にフィル
タコンデンサ電圧を許容値に一致させて制御するので最
も効率のよい回生を行うことができる。
As explained above, the present invention 1c allows the regenerative braking of the DC shunt motor to start up stably regardless of the regenerative load, and also allows the filter capacitor voltage to always match the allowable value when the regenerative load is small. The most efficient regeneration can be achieved by controlling the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流分巻界磁電動機をチョッパ制御する回生時
の主回路構成を示した図、第2図は従来の電機子電流の
指令値を演算する制御ブロック図、第3図乃至第5図は
第2図の動作説明図、第6図は本発明の一実施例の電機
予電、流の指令値を演算する制御ブロック図、第7図及
び第8図は第6図の動作説明のだめの図である。 5・・・直流分巻界磁電動機 6・・・直流分巻界磁型、動機の電機子8・・・チョッ
パー装置 11・・・関数演算部 14・・・積分器 15・・・リミッタ (7317) 代理人 弁理士 則 近 憲 佑 (ほ
か1名)第3図 IC/ 第4図
Figure 1 is a diagram showing the main circuit configuration during regeneration for chopper control of a DC shunt field motor, Figure 2 is a control block diagram for calculating the conventional armature current command value, and Figures 3 to 5. The figure is an explanatory diagram of the operation of Figure 2, Figure 6 is a control block diagram for calculating command values for electric machine pre-current and current according to an embodiment of the present invention, and Figures 7 and 8 are explanations of the operation of Figure 6. This is a diagram of Nodame. 5... DC shunt field motor 6... DC shunt field type, motor armature 8... Chopper device 11... Function calculation section 14... Integrator 15... Limiter ( 7317) Agent Patent Attorney Noriyuki Chika (and 1 other person) Figure 3 IC/ Figure 4

Claims (1)

【特許請求の範囲】[Claims] フィルターコンデンサを設は直流分巻界磁電動機の電機
子電流をチョッパ制御して回生制動をする車両用直流電
動機の制御方法において、前記フィルタコンデンサの電
圧を測定し、この測定したフィルタコンデンサの実電圧
と予じめ定めたフィルタコンデンサの許容最大電圧との
差をめ、この差電圧をブレーキノツチ投入時点より積分
して前記電機子官、流の指令値とし、この電機子電流の
指令値をブレーキ力指令値と速度から所定の方法により
めた要求限流値を最大値としてリミットすることを特徴
とする車両用直流電動機の制御方法。
In a control method for a vehicle DC motor in which a filter capacitor is installed and the armature current of a DC shunt field motor is chopper-controlled to perform regenerative braking, the voltage of the filter capacitor is measured, and the measured actual voltage of the filter capacitor is Calculate the difference between the voltage and the predetermined maximum allowable voltage of the filter capacitor, integrate this voltage difference from the time when the brake notch is applied, and use it as the armature current command value, and use this armature current command value as the brake 1. A method for controlling a direct current motor for a vehicle, characterized in that the maximum value is a required current limit value determined from a force command value and a speed using a predetermined method.
JP11086483A 1983-06-22 1983-06-22 Controlling method of dc motor for vehicle Pending JPS605794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086483A JPS605794A (en) 1983-06-22 1983-06-22 Controlling method of dc motor for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086483A JPS605794A (en) 1983-06-22 1983-06-22 Controlling method of dc motor for vehicle

Publications (1)

Publication Number Publication Date
JPS605794A true JPS605794A (en) 1985-01-12

Family

ID=14546610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086483A Pending JPS605794A (en) 1983-06-22 1983-06-22 Controlling method of dc motor for vehicle

Country Status (1)

Country Link
JP (1) JPS605794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317184U (en) * 1989-06-28 1991-02-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317184U (en) * 1989-06-28 1991-02-20

Similar Documents

Publication Publication Date Title
CN106301130A (en) The control method of a kind of automatic load shedding of motor-driven dynamic overload and system
JP4153753B2 (en) Electric vehicle control device
US4282466A (en) Transit vehicle motor effort control apparatus and method
JPS605794A (en) Controlling method of dc motor for vehicle
JP3186281B2 (en) AC electric vehicle control device
JP2672911B2 (en) Blackout detection method for AC electric vehicles
JP2579751B2 (en) Control device for AC elevator
JPS59159602A (en) Thyristor firing angle controller for ac electric rolling stock
JPS5935573A (en) Constant margin angle control system for multistage cascade thyristor converter
JP3144848B2 (en) Power converter for electric vehicles
JPS6335103A (en) Controlling device for electric train
KR100758979B1 (en) Regenerative inverter system for DC railway system and method thereof
JP2672885B2 (en) Power failure detection device for AC electric vehicles
JPS6332002B2 (en)
JP2549582B2 (en) Crane regenerative braking control circuit
JP2811817B2 (en) Electric car control device
JPH11289767A (en) Power failure detector for power converter
JPS5910101A (en) Controlling method of brake force of electric motor vehicle
JPH04322107A (en) Controller for ac electric vehicle
JPS59106888A (en) Controlling method for induction motor
JPS5915243B2 (en) Chip control device for electric vehicles
JPH025624Y2 (en)
JPS59181902A (en) Brake controller of electric railcar
JPS59201608A (en) Controller of induction motor type electric railcar
JPH01283079A (en) Braking device for induction motor