JPS6057609A - Manufacture of resin-molded coil - Google Patents

Manufacture of resin-molded coil

Info

Publication number
JPS6057609A
JPS6057609A JP58165471A JP16547183A JPS6057609A JP S6057609 A JPS6057609 A JP S6057609A JP 58165471 A JP58165471 A JP 58165471A JP 16547183 A JP16547183 A JP 16547183A JP S6057609 A JPS6057609 A JP S6057609A
Authority
JP
Japan
Prior art keywords
coil
insulator
resin
tape
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58165471A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ito
善博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58165471A priority Critical patent/JPS6057609A/en
Publication of JPS6057609A publication Critical patent/JPS6057609A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/122Insulating between turns or between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To prevent the leakage of impregnated resin and to increase heat resistance and insulating properties by impregnating the resin while applying a cure accelerator to a tape-form insulator only when the insulator forms the insulator of a lower-end or of a periphery of a coil. CONSTITUTION:A coil conductor 11 and a tape-form insulator 12 are wound on a periphery of an insulation cylinder 10 to form a multiplex winding coil 23. The conductor 11 is wound in order to n times. After the insulator 12 is wound repeatedly to form an upper-end insulator 13a, it is wound on a periphery of winding layers of the conductor 11 with lapping and it is wound on a conductor 11n at n times to form an interlayer insulator 15a, and a lower-end insulator 14a subsequently. After completing the predetermined coil winding, the insulator 12 forms a peripheral insulator 16. When the insulators 14 and 16 are formed, a roller 18 is pressed down to apply a cure accelerator 20 to the insulator 12. Next, resin is impregnated in the coil 23 and it is taken out when a sealed layer is formed by the insulators 14 and 16 and an insulation cylinder 10 followed by heating to cure the resin. Thus, the leakage of resin can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はモールド形乾式変圧器、リアクトルなどに使用
される多重巻構成の樹脂モールドコイルの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a resin molded coil having a multi-turn structure used in molded dry type transformers, reactors, and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

乾式変圧器には、コイルに樹脂を含浸して硬化させた樹
脂モールドコイルを用いたものがある。この樹脂モール
ドコイルは樹脂でコイル全体を覆うために、機械的強度
が大きい、対湿性に優れている、対アースに対する絶縁
性が良いなどの特徴があり、数多く使用され出してきた
Some dry type transformers use resin molded coils in which the coils are impregnated with resin and hardened. Since the entire coil is covered with resin, this resin molded coil has characteristics such as high mechanical strength, excellent moisture resistance, and good insulation against earth, and has been used in large numbers.

樹脂モールドコイルの製造方法には、金型方式と、金型
を使用しないで)イルに樹脂を含浸させるとともに含浸
樹脂をコイルから流出させないようにして硬化させる金
型レス方式があり、後者の金型レス方式は設計の自由度
が太きいなどの利点があるため広く行なわれている。そ
して、金型レス方式において、コイルからの含浸樹脂の
流出を防止する方法として、コイル外周部の絶縁層に予
め硬化促進剤を付着させ、v74脂含浸工程中で絶縁層
を硬化させて樹脂を保持する方法があり、この方法は硬
化促進剤が含浸樹脂と反応して樹脂のゲル化を促進させ
、絶縁層にシール層を形成することにより、含浸工程終
了後にコイルをそのまま加熱炉内で硬化させることがで
き、付帯作業と付帯設備を少なくできる利点がある。
There are two methods for manufacturing resin molded coils: the mold method, and the moldless method, which involves impregnating a coil with resin (without using a mold) and curing it without letting the impregnated resin flow out of the coil. The moldless method is widely used because it has advantages such as a greater degree of freedom in design. In the moldless method, as a method to prevent the impregnated resin from flowing out from the coil, a curing accelerator is attached in advance to the insulating layer on the outer periphery of the coil, and the insulating layer is cured during the V74 resin impregnation process to make the resin. In this method, the curing accelerator reacts with the impregnating resin to promote gelation of the resin, forming a sealing layer on the insulating layer, and then the coil can be hardened in a heating oven after the impregnation process is completed. This has the advantage of reducing incidental work and equipment.

一方、変圧器コイルとしてコイル導体とテープ状絶縁物
を組合せて多層に巻回する多重巻コイルを使用すること
が検討されるようになってきた。この多重巻コイルは、
コイル導体を巻回して巻回層を形成すると同時に、テー
プ状絶縁物を巻回層端部に巻回して端部絶縁物を形成す
るとともにテープ状絶縁物を巻回層外周面に巻回して層
間絶縁物と最外周の外周絶縁物を形成することにより製
作するものである。このため多重巻コイルは、コイル巻
全体の作業が連続して自動巻が可能になるとともに、コ
イルに絶縁物を挿入する特別な工程が不要になり、さら
に層間絶縁物に数機糎共通のテープ状絶縁物を使用でき
るとともに、特別な端部絶縁を作る必要がないなどの利
点がある。
On the other hand, studies have begun to consider the use of multi-wound coils, in which a coil conductor and a tape-shaped insulator are combined and wound in multiple layers, as transformer coils. This multi-turn coil is
At the same time, a coil conductor is wound to form a wound layer, a tape-shaped insulating material is wound around the end of the wound layer to form an end insulator, and the tape-like insulating material is wound around the outer peripheral surface of the wound layer. It is manufactured by forming an interlayer insulator and an outermost peripheral insulator. For this reason, multi-wound coils allow automatic winding, in which the entire coil winding process is continuous, and there is no need for a special process for inserting the insulator into the coil. It has the advantage that it is possible to use a shaped insulator and there is no need to create special end insulation.

そこで、多重巻コイルを金型レス方式における硬化促進
剤を用いる製造方法lこより樹脂モールドコイルとして
製作することが考えられる。
Therefore, it is conceivable to manufacture the multi-wound coil as a resin molded coil using a moldless manufacturing method using a curing accelerator.

しかし、単に硬化促進剤を付着したテープ状絶縁物を使
用し、1封脂含浸・3行なっただけでは。
However, simply using a tape-shaped insulator coated with a curing accelerator and impregnating it with sealant once and performing three steps is not enough.

コイル品質の面で次の様な問題がある1、すなわち、多
重巻コイルではコイル上下端部、層間絶縁部およびコイ
ル外周部が全゛C硬化促進剤を有する絶縁・債になるた
めに、コイル内部における含浸田賭の硬化速度がコイル
導体近傍部と10間絶縁部とでは異なり全体として不均
−Jどなる。
In terms of coil quality, there are the following problems: 1. In multi-wound coils, the upper and lower ends of the coil, the interlayer insulation, and the outer circumference of the coil are all insulated and bonded with a C hardening accelerator. The curing speed of the impregnated paste inside the coil conductor is different from that in the vicinity of the coil conductor and in the insulation part between the coils, resulting in an uneven hardening rate as a whole.

このようにコイルの各部におけるat脂の硬化が不均一
になると、硬化収縮によりひげを生じたり、残留応力に
より樹脂剥離を生じたりして多くの絶縁欠陥が生じるこ
とになり、部分放電の発生や絶縁破壊電圧の低下をきた
すことがある。
If the attenuated resin hardens unevenly in each part of the coil, curing shrinkage can cause whiskers, residual stress can cause resin peeling, and many insulation defects can occur, leading to partial discharges and other problems. This may cause a decrease in dielectric breakdown voltage.

また、含浸樹脂をコイルから洩らさないようにするため
にテープ状絶縁物に処理した硬化促進剤は、その量が多
い程耐熱性が悪い。第1図はテープ状絶縁物に付着させ
た硬化促進剤に娠+17るーαの温度特性を示している
。この実験において、テープ状絶縁物にはガラステープ
を用い、硬化促進剤はIB2MZ (1ベンジル2メチ
ルイミダゾール)をアルコールで希釈し、この溶液中に
ガラステープを浸漬した後に風乾し、コイルを製作した
。第1図で示すように硬化促進剤が多い程耐熱性は悪い
。しかし、硬化促進剤がないと含浸樹脂が硬化時点で洩
れてしまう。従って、耐熱性を犠牲にして硬化促進剤を
使用ぜねばならず、この場合には発熱を少なくするため
にコイル導体の断面積を大きくするのでコイルが大きく
なる。
Furthermore, in order to prevent the impregnated resin from leaking from the coil, the tape-shaped insulator is treated with a curing accelerator, and the larger the amount, the worse the heat resistance. FIG. 1 shows the temperature characteristics of a curing accelerator attached to a tape-shaped insulator at a temperature of +17 - α. In this experiment, a glass tape was used as the tape-shaped insulator, and the curing accelerator was IB2MZ (1-benzyl-2-methylimidazole) diluted with alcohol. The glass tape was immersed in this solution and then air-dried to produce a coil. . As shown in FIG. 1, the more the curing accelerator is added, the worse the heat resistance is. However, without a curing accelerator, the impregnated resin will leak during curing. Therefore, a curing accelerator must be used at the expense of heat resistance, and in this case, the cross-sectional area of the coil conductor is increased to reduce heat generation, resulting in a larger coil.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので。 The present invention has been made in view of the above circumstances.

テープ状絶縁物を用いた多重巻コイルであって、絶縁欠
陥が少なく且つ耐熱性に問題がない樹脂モールドコイル
の製造方法を提供するものである。
The present invention provides a method for manufacturing a resin-molded coil that is a multi-wound coil using a tape-shaped insulator and has few insulation defects and no problems in heat resistance.

〔発明の概要〕[Summary of the invention]

本発明の樹脂モールドフィルの製造方法は。 The method for manufacturing the resin mold fill of the present invention is as follows.

導体とテープ状絶縁物を巻回して多重巻コイルを形成す
るとともに、テープ状絶縁物が下端部絶縁物および外周
絶縁物を巻回している時にのみテープ状絶縁物に硬化促
進剤を付着し、その後にコイルに樹脂を含浸するととも
にテープ状絶縁物の硬化促進剤を付着した部分にソール
層が形成された時点でコイルを取出し、その後にコイル
を加熱硬化するものである。すなわち、コイルを形成す
る過程でコイルの出来るだけ少ない絶縁物部分に硬化促
進剤を施してシール層を形成することにより、コイルに
含浸した樹脂の漏れを防止し、テープ状絶縁物に硬化促
進剤処理することにょる含浸樹脂硬化速度の不均一と耐
熱性の低下を抑制するものである。
A conductor and a tape-shaped insulator are wound to form a multi-wound coil, and a curing accelerator is attached to the tape-shaped insulator only when the tape-shaped insulator is winding the lower end insulator and the outer peripheral insulator, Thereafter, the coil is impregnated with resin, and when the sole layer is formed on the part of the tape-shaped insulating material to which the curing accelerator is attached, the coil is taken out, and then the coil is heated and cured. In other words, in the process of forming the coil, a curing accelerator is applied to as few insulating parts of the coil as possible to form a sealing layer, thereby preventing the resin impregnated into the coil from leaking, and applying the curing accelerator to the tape-shaped insulator. This suppresses uneven curing speed of the impregnated resin and decrease in heat resistance due to processing.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す一実施例について説明する。 An embodiment of the present invention illustrated in the drawings will be described below.

まず、第2図で示すようにコイル導体11とテープ状絶
縁物12を絶縁筒10の外周部に巻回して多重巻コイル
を形成する。コイル導体11は例えば平角絶縁電線を用
いる。テープ状絶縁物12は例えばガラステープを用い
る。このテープ状絶縁物I2には硬化促進剤を付着させ
ない。そして、例えばエポキソガラスからなる絶縁@1
01こコイル導体11を巻始め部1ノ。
First, as shown in FIG. 2, a coil conductor 11 and a tape-shaped insulator 12 are wound around the outer periphery of an insulating tube 10 to form a multi-wound coil. For the coil conductor 11, for example, a rectangular insulated wire is used. For example, a glass tape is used as the tape-shaped insulator 12. No curing accelerator is attached to this tape-shaped insulator I2. And, for example, insulation made of epoxo glass @1
01 This is the beginning of winding the coil conductor 11.

から順次軸方向に沿って巻回する。一方、テープ状絶縁
物12も同時に絶縁筒10の端部にコイル半径方向に積
層巻回して上端部絶縁物I3aを形成する。そして、n
0回巻回後に導体1ノは11n、の位置まで進んでおり
、テープ状絶縁物12は上端部絶縁物13aの形成を終
了している。次いで、コイル導体11は順次n回まで巻
回してIlnの位置まで進行して第1の巻回層を形成し
、テープ状絶縁物12はコイル導体11の第1の巻回層
の外周部に幅方向にラップさせながら巻回して0回後に
は導体11n上を巻回し第1の層間絶縁物158を形成
する。次にコイル導体11を第1の巻回層の巻終り部1
1nから第2の巻回層に移行し、Z1n+Iの位置から
第2の眉間絶縁物15aの外周面上を順次巻回し112
oの位置まで進行して第2の巻回層を形成する。その間
テープ状絶縁物12はf端部絶縁物14aを潰IA杉成
した後に、第2r碩のiFx rll @練物15bの
形成に移る。ここで、上端部絶縁物14aを形成してい
る間にテープ状絶縁物12にな浸耐館と反応する硬化促
進剤を付着させる。コイル導体1zf+(zz2□の位
置に達すると同時に、テープ状妨)染0112も卒2の
巻回層の導体11の外周面を巻回し゛C埴2層間絶縁物
15bの形成を終rする1、以lVやコイル導体11と
テープ状絶縁物12を回1?舟なIiA序で巻回して閉
:3の巻回1i以降のコイル詣きを行なう。この]過程
で、、l′til音目とン狂2(列目の上端部絶縁物1
4aを形成する場合と同様に、上端部絶縁物を形成する
時にのみテープ状絶縁物12に硬[ヒ促進剤を付着する
It is wound sequentially along the axial direction from the beginning. On the other hand, the tape-shaped insulator 12 is also simultaneously wound around the end of the insulating tube 10 in a layered manner in the radial direction of the coil to form the upper end insulator I3a. And n
After winding 0 times, the conductor 1 has advanced to the position 11n, and the tape-shaped insulator 12 has completed the formation of the upper end insulator 13a. Next, the coil conductor 11 is sequentially wound up to n times and advances to the position Iln to form a first winding layer, and the tape-shaped insulator 12 is wound around the outer periphery of the first winding layer of the coil conductor 11. It is wound while being wrapped in the width direction, and after 0 turns, it is wound over the conductor 11n to form the first interlayer insulator 158. Next, the coil conductor 11 is connected to the winding end portion 1 of the first winding layer.
1n to the second winding layer, and sequentially winding 112 on the outer peripheral surface of the second glabellar insulator 15a from the position Z1n+I.
Proceed to position o to form the second winding layer. In the meantime, the tape-shaped insulator 12 is formed by crushing the f-end insulator 14a, and then the process moves on to forming the second r-shaped iFx rll@kneaded material 15b. Here, while forming the upper end insulator 14a, a curing accelerator that reacts with the immersion building is attached to the tape-shaped insulator 12. At the same time as the coil conductor 1zf+(zz2□) is reached, the tape-like interference 0112 also wraps around the outer circumferential surface of the conductor 11 in the second winding layer. , or the coil conductor 11 and the tape-shaped insulator 12 are turned 1? Wind it in the order of Funa IiA and close it: Perform the coil pilgrimage after winding 1i of 3. In this] process, the l'til note and the insulator 2 (the upper end of the row
Similar to the case of forming 4a, a hardening agent is applied to the tape-shaped insulator 12 only when forming the upper end insulator.

このコイル巻きおよび硬化促進剤付着の工程は例えば第
3図で示す方法により行なう。巻軸17により絶′#+
筒lOを矢印方間に回転させてコイル導体11とテープ
状絶呟物12を前述の方法で巻取る。そして、テープ状
絶縁1勿12が上端部絶縁物13aおよび層間絶縁物1
5aを形成している間は、硬化促進剤2oが付着しない
ように押えローラ18を上げておく。テープ状絶縁物1
2が上端部絶縁物14aを形成する時にのみ押えローラ
18を下降してテープ状絶縁物12を押下げ、槽19に
入れられた硬化促進剤20を付着ローラ21により付着
させる。
The steps of coil winding and hardening accelerator deposition are carried out, for example, by the method shown in FIG. The winding shaft 17 makes it impossible to
The tube 10 is rotated in the direction of the arrow and the coil conductor 11 and tape-like material 12 are wound up in the manner described above. Then, the tape-shaped insulating material 12 is connected to the upper end insulating material 13a and the interlayer insulating material 1.
While forming 5a, the presser roller 18 is kept raised so that the curing accelerator 2o does not adhere. Tape-shaped insulator 1
Only when the tape-shaped insulator 2 forms the upper end insulator 14a, the presser roller 18 is lowered to press down the tape-shaped insulator 12, and the curing accelerator 20 placed in the tank 19 is adhered by the adhesion roller 21.

なお、図中22は絞りローラである。このようにテープ
状絶縁物12がコイル下端部絶縁物を形成している時の
みに押えローラI6を下げて。
Note that 22 in the figure is a squeeze roller. Lower the presser roller I6 only when the tape-shaped insulator 12 forms the lower end insulator of the coil.

テープ状絶縁物12に硬化促進剤2oを付着させながら
所定のコイルを形成する。
A predetermined coil is formed while adhering the curing accelerator 2o to the tape-shaped insulator 12.

そして、所定のコイル巻きが終了した時点でテープ状絶
縁物12をコイル最外周部に巻回して外周絶縁物16を
形成する。この外周絶縁物16を形成する場合も上端部
絶縁物を形成する場合と同様に、テープ状絶縁物12に
前記の方法により硬化促進剤20f付着させる。
Then, when a predetermined coil winding is completed, the tape-shaped insulating material 12 is wound around the outermost portion of the coil to form an outer peripheral insulating material 16. When forming the outer peripheral insulator 16, the curing accelerator 20f is applied to the tape-shaped insulator 12 by the method described above, similarly to the case of forming the upper end insulator.

第4図はこのように形成した多重巻コイルの断面を示す
概念図である。図中23は多重巻コイルであり、13は
テープ状絶縁物12により形成された上端部絶縁物、1
4は同じく上端部絶縁物、16は同じく外周絶縁物であ
る。上端部絶縁物14と外周絶縁物16は硬化促進剤を
塗布しであるのでハツチングを付している。
FIG. 4 is a conceptual diagram showing a cross section of the multi-wound coil formed in this manner. In the figure, 23 is a multi-turn coil, 13 is an upper end insulator formed of the tape-shaped insulator 12, and 1
4 is an upper end insulator, and 16 is an outer periphery insulator. The upper end insulator 14 and the outer periphery insulator 16 are coated with a curing accelerator and are therefore provided with hatching.

10は絶縁筒である。10 is an insulating cylinder.

次いで、第5図で示すように成形したコイル23を真空
加圧タンク24内の樹脂槽25内に入れ、コイル23に
脱泡処理した樹脂26を真空加圧含浸させる。図中27
は樹脂注入口である。この場合、樹脂26の温度はコイ
ル23の上端部絶縁物I4と外周絶縁物I6に付着した
硬化促進剤が反応しやすい温度に設定する。一定時間経
過後に、コイル23の上端部絶縁物14と外周絶縁物1
6を形成しているテープ状絶縁物12に付着した硬化促
進剤が早く樹脂と反応してシール層を形成する。なお、
コイル23の内周部は非含浸性の絶縁筒1oを設けてあ
り、それ自体がシール層となっている。このようにコイ
ル23の上端部絶縁物14と外周絶綴物16にシール層
が形成され、絶縁筒10のシール層と合ぜてコイル23
内に含浸された樹脂がコイル23の外部に漏れることを
防止できる。そして、含浸樹脂が漏れなくなった時点で
コイル23を樹脂槽25から取り出す。
Next, the coil 23 formed as shown in FIG. 5 is placed in a resin bath 25 in a vacuum pressure tank 24, and the coil 23 is impregnated with a defoamed resin 26 under vacuum pressure. 27 in the diagram
is the resin inlet. In this case, the temperature of the resin 26 is set to a temperature at which the curing accelerator attached to the upper end insulator I4 and the outer peripheral insulator I6 of the coil 23 easily reacts. After a certain period of time has passed, the upper end insulator 14 of the coil 23 and the outer peripheral insulator 1
The curing accelerator attached to the tape-shaped insulator 12 forming the seal 6 quickly reacts with the resin to form a sealing layer. In addition,
The inner peripheral portion of the coil 23 is provided with a non-impregnable insulating cylinder 1o, which itself serves as a sealing layer. In this way, a sealing layer is formed on the upper end insulator 14 and the outer circumferential seal 16 of the coil 23, and together with the sealing layer of the insulating cylinder 10, the coil 23
The resin impregnated inside can be prevented from leaking to the outside of the coil 23. Then, when the impregnated resin stops leaking, the coil 23 is taken out from the resin tank 25.

最後lこコイル23を乾燥炉に入れて加熱し、コイル2
3に含浸した樹脂を硬化させる。
Finally, put the coil 23 into a drying oven and heat it.
The resin impregnated in Step 3 is cured.

この樹脂モールドコイルを製造する場合の具体例につい
て述べる。硬化促進剤に四国化成製のIB2MZを使用
し、テープ状絶縁物12に付着させる時にはエチルアル
コールで10%溶液まで希釈して用いた。この時、テー
プ状絶縁物12に多量の硬化促進剤溶液が付着されるの
で、第4図で示すように絞りローラ22で絞り、コイル
巻回後tとアルコールを蒸発させるために90℃で乾燥
するようにした。また、含浸樹脂は主剤として東芝ケミ
カル製αVB−2703A液を用い、硬化剤として酸無
水物硬化剤B−570(大日本インキ製)を用い、80
〜90℃の温度でコイル23に含浸し、1〜2時間放置
後にコイル23を樹脂槽25より取り出し加熱硬化した
。その結果、コイル23の層間絶縁部の−δ一温度特性
は第1図のθ俤と略同じ傾向を示し、コロナ消滅温度は
2 聞/ y以上であり、A、C,B、D、Vは20 
KV / rus以上と良好な樹脂モールドコイルが得
られた。
A specific example of manufacturing this resin molded coil will be described. IB2MZ manufactured by Shikoku Kasei Co., Ltd. was used as a curing accelerator, and when it was attached to the tape-shaped insulator 12, it was diluted with ethyl alcohol to a 10% solution. At this time, a large amount of curing accelerator solution is attached to the tape-shaped insulator 12, so it is squeezed with a squeezing roller 22 as shown in FIG. I decided to do so. For the impregnated resin, Toshiba Chemical's αVB-2703A liquid was used as the main ingredient, and acid anhydride curing agent B-570 (manufactured by Dainippon Ink) was used as the curing agent.
The coil 23 was impregnated at a temperature of ~90°C, and after being left for 1 to 2 hours, the coil 23 was taken out from the resin bath 25 and cured by heating. As a result, the -δ temperature characteristic of the interlayer insulation part of the coil 23 shows almost the same tendency as the θ curve shown in FIG. is 20
A good resin molded coil with a KV/rus or higher was obtained.

しかして、この樹脂モールドコイルの製造方法によれば
、コイル23のの内周部は非含浸性の絶縁筒10を用い
て含浸樹脂の漏れをなくしており、コイル23の下端部
と外周部の絶縁物14.16は硬化促進剤を付着しであ
るため、含浸樹脂と早く反応してゲル化しシール層とな
る。このため、樹脂含浸後にコイル23から樹脂が漏れ
ることを防止できる。そして、コイル23を乾燥炉に入
れて加熱硬化する時には−、コイル23の下端部と外周
部のみしか硬化促進剤と樹脂との反応が発生せず、コイ
ル23内部の層間絶縁物15は硬化促進剤が付着してい
ないので反応が生じない。このために、コイル23内に
おける樹脂の硬化速度に不均一が生じるのは一部であり
、樹脂の硬化収縮にょるひけや残留応力ことよる剥離が
殆んどなくPJ縁大欠陥発生を大幅に減少できる。また
、硬化促進剤が付着した絶縁物14.16は樹脂との反
応が進んでシール層となるまでは樹脂を含浸するので、
コイル23の下部および外周部からもコイル23内部に
樹脂が入りボイドなどの欠陥部をなくすたとができる。
According to this resin molded coil manufacturing method, the non-impregnated insulating cylinder 10 is used at the inner circumference of the coil 23 to prevent leakage of the impregnated resin, and the lower end and outer circumference of the coil 23 are Since the insulators 14 and 16 are coated with a curing accelerator, they quickly react with the impregnated resin and become gelled, forming a sealing layer. Therefore, it is possible to prevent resin from leaking from the coil 23 after resin impregnation. When the coil 23 is placed in a drying oven and cured by heating, the reaction between the curing accelerator and the resin occurs only at the lower end and outer periphery of the coil 23, and the interlayer insulator 15 inside the coil 23 accelerates curing. Since no agent is attached, no reaction occurs. For this reason, the curing speed of the resin within the coil 23 is partially uneven, and there is almost no peeling due to curing shrinkage or residual stress of the resin, which greatly reduces the occurrence of large PJ edge defects. Can be reduced. In addition, the insulator 14.16 to which the curing accelerator is attached remains impregnated with resin until the reaction with the resin progresses and it becomes a sealing layer.
The resin enters the inside of the coil 23 from the lower part and the outer circumference of the coil 23, thereby eliminating defects such as voids.

さらに、コイル23の熱的な問題については、コイル2
3内の温度が高くなる層間絶縁物15に硬化促進剤が付
着していないので、この部分は第1図に示した硬化促進
剤激変0チの耐熱性の良い温度特性が得られ、コイル導
体11の電流密度を上げることができるので、コイル2
3を小さくできる。なお、硬化促進剤処理したコイル2
3の下端部絶縁物Z4と外周絶縁物16は層間絶縁物1
5より耐熱性が劣ることになるが、本発明のような多重
巻コイルではコイルの大きさによって異なるがコイル上
下端やコイル内外で20〜50 degC程度の温度勾
配があるためにコイル下端部やコイル最外周の耐熱性が
悪くても機器の耐熱性としては支障がない。
Furthermore, regarding the thermal problem of the coil 23,
Since the curing accelerator is not attached to the interlayer insulator 15, where the temperature inside the coil conductor 3 becomes high, this part has good temperature characteristics with good heat resistance as shown in Fig. 1 where the curing accelerator changes drastically. Since the current density of coil 2 can be increased, the current density of coil 2 can be increased.
3 can be made smaller. In addition, the coil 2 treated with a curing accelerator
3, the lower end insulator Z4 and the outer peripheral insulator 16 are interlayer insulator 1
Although the heat resistance is inferior to No. 5, the multi-wound coil of the present invention has a temperature gradient of about 20 to 50 degC between the upper and lower ends of the coil and inside and outside the coil, depending on the size of the coil. Even if the heat resistance of the outermost periphery of the coil is poor, there is no problem with the heat resistance of the device.

なお、前述した実施例では第3図に示すようにテープ状
絶縁物12に硬化促進剤を付着させるために押えローラ
18を上げ下げして絶縁物12を移動させているので、
マイクロコンピュータを用いて押えローラ18の動作を
自動的に制御することも可能である。このため、テープ
状絶縁物12に硬化促進剤を付着させるためにコイル巻
きとは別な段階で特別に工程を用意する必要がなく、簡
単にコイル巻き時点c行t、xえ工程が簡略化できる。
In addition, in the above-mentioned embodiment, as shown in FIG. 3, in order to adhere the curing accelerator to the tape-shaped insulator 12, the presser roller 18 is raised and lowered to move the insulator 12.
It is also possible to automatically control the operation of the presser roller 18 using a microcomputer. Therefore, there is no need to prepare a special process for attaching the curing accelerator to the tape-shaped insulator 12 at a stage other than coil winding, and the coil winding steps c, t, and x can be easily simplified. can.

本実施例では硬化促進剤を付着するのに付着ローラ21
を用いているが、テープ状絶縁物12を槽19の硬化促
進剤2oの中に浸漬させても良い。
In this embodiment, the adhesion roller 21 is used to apply the curing accelerator.
However, the tape-shaped insulator 12 may be immersed in the curing accelerator 2o in the tank 19.

硬化促進剤としては液状のイミタゾールに限らず、樹脂
と反応する硬化促進剤や重合触媒なら粉末状のものでも
同様の方法で用いることができる。
The curing accelerator is not limited to liquid imitazole, but powdered curing accelerators and polymerization catalysts that react with the resin can also be used in the same manner.

できる。can.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の樹月旨モールドコイルの製
造方法によれば、コイルの上端部絶縁物と外周絶縁物の
みに硬化促進剤を付着してシール層を形成することによ
り、含浸樹脂の漏れを確実に防止できるとともに、耐熱
性と絶縁特性に優れた樹脂モールドコイルを得ることが
できる。
As explained above, according to the method of manufacturing a Jitsukiji molded coil of the present invention, by attaching a curing accelerator only to the upper end insulator and the outer circumferential insulator to form a sealing layer, the impregnated resin is A resin molded coil that can reliably prevent leakage and has excellent heat resistance and insulation properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテープ状絶縁物に処理した硬化促進剤の濃度と
tanδの温度特性との関係を示す線図、第2図ないし
第5図は本発明の製造方法の一実施例を示し、第2図は
本発明の製造方法により製造する多重巻コイルを示す縦
断面図、第3図はコイル巻き工程および硬化促進剤付着
工程を示す説明図、第4図はソール層を示すためのコイ
ル断面の概念図、第5図は樹脂含浸工程を示す説明図で
ある。 10・・・絶縁筒、II・・・コイル導体、12・・・
テープ状絶縁物、Z 、? 、 Z 3 a・・・上端
部絶縁物、14 、14 a−・・上端部絶縁物、15
,15a・・・層間絶縁物、16・・・外周絶縁物、1
8・・・押えローラ、2o・・・硬化促進剤、21・・
・付着ローラ、22・・・絞りローラ、23.・・コイ
ル 24・・・真空加圧タンク、25・・・[脂槽、2
6・・・樹脂。 出願人代理人 弁理士 鈴 江 武 彦矛3 J’71 11 10
FIG. 1 is a diagram showing the relationship between the concentration of a curing accelerator treated in a tape-shaped insulator and the temperature characteristics of tan δ, and FIGS. 2 to 5 show an example of the manufacturing method of the present invention. Fig. 2 is a vertical cross-sectional view showing a multi-wound coil manufactured by the manufacturing method of the present invention, Fig. 3 is an explanatory view showing the coil winding process and the hardening accelerator adhesion process, and Fig. 4 is a coil cross section showing the sole layer. FIG. 5 is an explanatory diagram showing the resin impregnation step. 10... Insulating cylinder, II... Coil conductor, 12...
Tape-shaped insulator, Z? , Z 3 a...Top end insulator, 14, 14 a-...Top end insulator, 15
, 15a... Interlayer insulator, 16... Peripheral insulator, 1
8... Presser roller, 2o... Curing accelerator, 21...
- Adhesion roller, 22... Squeezing roller, 23. ... Coil 24 ... Vacuum pressure tank, 25 ... [Fat tank, 2
6...Resin. Applicant's agent Patent attorney Takeshi Suzue Hikoyoko 3 J'71 11 10

Claims (1)

【特許請求の範囲】[Claims] 非含浸性の絶縁筒に導体を巻回するとともに層間絶縁物
、端部絶@吻および外周冶縁物を栂沢するテープ状4!
3縁物を巻回して多重巻コイルを形成する工程と、前記
テープ状絶縁物が前記コイルの下端部絶縁物および外周
絶嫌物を形成している時にのみに前記テープ状絶縁物に
硬化促進剤を付着させる工場と、前記コイルに樹脂を含
浸し前記テープ状絶縁−命の前記硬化促進剤を付着した
部分にシール喘が形成された時点で前記コイルを取出す
工程と、前記コイルを加熱して含浸された前記樹脂を硬
化する工程とからなる樹脂モールドコイルの製造方法。
Tape-shaped 4 that wraps the conductor around a non-impregnable insulating cylinder and also wraps the interlayer insulation, end insulation, and peripheral edge.
The step of winding three edges to form a multi-wound coil, and the step of hardening the tape-shaped insulating material only when the tape-shaped insulating material forms the lower end insulating material and the outer circumferential material of the coil. a factory for attaching the agent; a step of impregnating the coil with resin and removing the coil when a seal is formed on the part of the tape-shaped insulation layer to which the curing accelerator is attached; and a step of heating the coil. and curing the impregnated resin.
JP58165471A 1983-09-08 1983-09-08 Manufacture of resin-molded coil Pending JPS6057609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165471A JPS6057609A (en) 1983-09-08 1983-09-08 Manufacture of resin-molded coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165471A JPS6057609A (en) 1983-09-08 1983-09-08 Manufacture of resin-molded coil

Publications (1)

Publication Number Publication Date
JPS6057609A true JPS6057609A (en) 1985-04-03

Family

ID=15813039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165471A Pending JPS6057609A (en) 1983-09-08 1983-09-08 Manufacture of resin-molded coil

Country Status (1)

Country Link
JP (1) JPS6057609A (en)

Similar Documents

Publication Publication Date Title
JPS6057609A (en) Manufacture of resin-molded coil
JPH0723008Y2 (en) High voltage rotating machine winding
JPS59217316A (en) Manufacture of resin-molded coil
JPS59129414A (en) Manufacture of resin molded coil
JPH0147886B2 (en)
JPS5870516A (en) Manufacture of resin mold coil
JPS59219914A (en) Manufacture of resin-impregnatedly molded coil
JPS607117A (en) Manufacture of resin impregnated mold coil
JPS6262042B2 (en)
JPH0650695B2 (en) Method for manufacturing resin mold coil
JPS59129412A (en) Manufacture of resin molded coil
JPS6059725A (en) Method for producing resin mold coil
JPS6265313A (en) Manufacture of resin molded coil
JPS636130B2 (en)
JPH0281406A (en) Manufacture of superconducting coil
JP3415312B2 (en) Insulated conductor
JPS5897816A (en) Manufacture of dry transformer coil
JPH0650696B2 (en) Method for manufacturing resin mold coil
JPS6062856A (en) Insulating method of dc machine field winding
JPS63114546A (en) Insulating treating method for heat-resistant rotary electric machine coil
JPS59129415A (en) Manufacture of resin molded coil
JPS59113747A (en) Insulating method for coil of rotary electric machine
JPS6066652A (en) Coil insulating method of rotary electric machine
JPS59162744A (en) Insulation of coil
JPS58107616A (en) Preparation of insulating coil