JPS6057418B2 - Method and device for producing unidirectionally solidified material - Google Patents

Method and device for producing unidirectionally solidified material

Info

Publication number
JPS6057418B2
JPS6057418B2 JP13628778A JP13628778A JPS6057418B2 JP S6057418 B2 JPS6057418 B2 JP S6057418B2 JP 13628778 A JP13628778 A JP 13628778A JP 13628778 A JP13628778 A JP 13628778A JP S6057418 B2 JPS6057418 B2 JP S6057418B2
Authority
JP
Japan
Prior art keywords
molten metal
solidification
solidified material
unidirectionally solidified
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13628778A
Other languages
Japanese (ja)
Other versions
JPS5564957A (en
Inventor
昭三 佐藤
順一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13628778A priority Critical patent/JPS6057418B2/en
Publication of JPS5564957A publication Critical patent/JPS5564957A/en
Publication of JPS6057418B2 publication Critical patent/JPS6057418B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、炭素鋼、低合金鋼、合金鋼、耐熱合金等の一
方向凝固材の製造方法とその装置に関し、特に長さ方向
に変化した断面寸法形状を有する一方向凝固材を製造す
る方法と装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing unidirectionally solidified materials such as carbon steel, low alloy steel, alloy steel, and heat-resistant alloy, and particularly to a method and apparatus for producing unidirectionally solidified materials such as carbon steel, low alloy steel, alloy steel, and heat-resistant alloy. The present invention relates to a method and apparatus for producing directionally solidified materials.

炭素鋼、低合金鋼、合金鋼、耐熱合金等は、一方向凝固
させることにより、その機械的性質が特定方向に特に優
れたものとなるので、これを利用して特殊な用途に用い
られる。
Carbon steel, low-alloy steel, alloy steel, heat-resistant alloy, etc., are unidirectionally solidified to have particularly excellent mechanical properties in a specific direction, and are therefore used for special purposes.

一方向凝固材を得る冶金的必要条件としては、凝固時の
熱勾配〔凝固境界面付近における液相一固相方向の温度
勾配(温度差/距離)〕をてきるたけ大とし、凝固速度
〔凝固境界面の進行速度(距離/時間)〕を熱勾配に比
して適当に小さく制御することが挙げられる。
The metallurgical requirements for obtaining a unidirectionally solidified material are to make the thermal gradient during solidification as large as possible [temperature gradient (temperature difference/distance) in the liquid phase-solid phase direction near the solidification interface], and to increase the solidification rate [ An example of this is to control the advancing speed (distance/time) of the solidification interface to be appropriately smaller than the thermal gradient.

従来、一方向凝固材を得るには、一般に、鋳造法に加熱
コイル、チル板、急冷却用金属浴を付加するとにより上
記の冶金的必要条件を満足させて行なう方法が採用され
ているが、鋳造法は、溶湯をモールドに一度に充満させ
た後、高温液相から急速に凝固冷却することを部分的に
行なうため、原理的に至難、不利であり、装置的にも小
寸法材を得る実験室的規模のものと中寸法材を得る実用
炉では雰囲気チャンバーを必要とし、該チャンバーを介
しての操作とする等複雑なものとなつている。
Conventionally, in order to obtain a unidirectionally solidified material, a method has generally been adopted in which the above-mentioned metallurgical requirements are satisfied by adding a heating coil, a chill plate, and a metal bath for rapid cooling to the casting method. The casting method is extremely difficult and disadvantageous in principle, as it involves filling the mold with molten metal all at once and then rapidly solidifying and cooling the high-temperature liquid phase, and it is also difficult and disadvantageous in terms of equipment to obtain small-sized materials. Laboratory-scale furnaces and practical furnaces for producing medium-sized materials require an atmosphere chamber and are complicated to operate through the chamber.

ところで、通常のエレクトロスラグ再溶解法は、溶融金
属凝固成形用金属中の溶融金属溜りの下方で溶融金属が
凝固中も上方では常に電極から新しい高温の溶融金属が
供給されるため、前記した一方向凝固のための冶金的必
要条件である大熱勾配を得、凝固速度を制御することは
原理的に有利であり、これを応用すれば比較的簡単な装
置で実用大寸法の一方向凝固材の製造が容易に実施で1
きると考えられる。
By the way, in the normal electroslag remelting method, new high-temperature molten metal is always supplied from the electrode above the molten metal pool while the molten metal is solidifying below the molten metal pool in the metal for solidification and forming. It is theoretically advantageous to obtain a large thermal gradient and control the solidification rate, which are the metallurgical requirements for directional solidification, and if this is applied, it is possible to produce unidirectionally solidified materials of practical size using relatively simple equipment. 1. Easy to manufacture
It is thought that it can be done.

そこで本発明者らは、この通常のエレクトロスラグ再溶
融解法を応用して、通常の溶融金属凝固成形用の部分金
型を用い長さ方向に同一断面形状を有する長尺の一方向
凝固材を製造する方法とそ門れに適用する装置とを、別
途、開発した。
Therefore, the present inventors applied this ordinary electroslag remelting method to produce a long unidirectionally solidified material having the same cross-sectional shape in the length direction using a partial mold for ordinary molten metal solidification forming. We have separately developed a manufacturing method and equipment for use in the gate.

ところが、この方法と装置とによつては、長さ方向に断
面寸法形状の変化する一方向凝固材を製造することはで
きない。本発明者らは更に研究を進めた結果、通常の総
形金型を用いる通常のエレクトロスラグ再溶解法に電磁
誘導加熱コイルによる溶融金属凝固境界面形状の制御と
熱勾配の増大を付加すれば、有利に複数断面形状の小〜
中尺の一方向凝固材を製造することができるという知見
を得て本発明方法を開発するに至つた。
However, with this method and apparatus, it is not possible to produce a unidirectionally solidified material whose cross-sectional size and shape change in the length direction. As a result of further research, the present inventors found that by adding control of the molten metal solidification interface shape and increase of the thermal gradient using an electromagnetic induction heating coil to the conventional electroslag remelting method using a conventional full-form mold. , advantageously small to multiple cross-sectional shapes
Having obtained the knowledge that a medium-sized unidirectionally solidified material can be produced, the method of the present invention was developed.

すなわち本発明方法は、通常の溶融金属凝固成形用総形
金型を用いる通葉のエレクトロスラグ再溶解法において
、電磁誘導加電コイルにより溶融金属溜りの外周囲層を
横方向から加熱することにより、溶融金属凝固境界面形
状を平坦とし、かつ凝固時の熱勾配を大として、長さ方
向に変化した断面寸法形状を有する一方向凝固材を製造
するものである。
That is, the method of the present invention is performed by heating the outer peripheral layer of the molten metal pool from the lateral direction using an electromagnetic induction coil in the conventional electroslag remelting method using a general mold for solidifying and forming molten metal. In this method, a unidirectionally solidified material having a cross-sectional dimension and shape that changes in the length direction is produced by making the molten metal solidification boundary surface flat and increasing the thermal gradient during solidification.

第1図は、通常の溶融金属凝固成形用総形金型(以下、
総形金型という)を用いて行なう通常のエレクトロスラ
グ再溶解法を示す概略断面図である。
Figure 1 shows a general mold for solidifying and forming molten metal (hereinafter referred to as
1 is a schematic cross-sectional view showing a conventional electroslag remelting method performed using a full-form mold.

第1図において、製品と同一化学成分の電極材1を電極
供給装置2によりスラグ浴3中に送り、電源4により通
電すると、電極材1はエレクトロスラグ溶解現象により
溶滴5となつて溶融金属溜り6に滴下し、凝固境界面を
境として凝固したエレクトロスラグ再溶解製材料8がス
タート用台板9の上から始めて順次水冷銅製総形金型1
0の内部に蓄積されて製造されて行く。
In FIG. 1, when an electrode material 1 having the same chemical composition as the product is fed into a slag bath 3 by an electrode supply device 2 and energized by a power source 4, the electrode material 1 becomes a droplet 5 due to the electroslag melting phenomenon and becomes a molten metal. The electroslag remelted material 8 dropped into the reservoir 6 and solidified along the solidification interface is sequentially moved into the water-cooled copper mold 1 starting from the starting base plate 9.
It is accumulated inside the 0 and manufactured.

なお、ライン20は該水冷銅製総形金型10の冷却水の
流入出ラインを示す。ところで、第1図における水冷銅
製総形金型10は、既凝固エレクトロスラグ再溶解製材
料8のみならず溶融金属溜り6をも同じように冷却する
ため、溶融金属溜り6の溶融金属は、下方の既凝固エレ
クトロスラグ再溶解製材料8を伝つてスタート用台板9
への伝熱と横方向の水冷銅製金型10への伝熱との2方
向の伝熱により冷却されることになり、その結果、凝固
境界面7の形状は図示するようにV字形となる。
Note that the line 20 indicates an inflow/outflow line for cooling water of the water-cooled copper mold 10. By the way, the water-cooled copper mold 10 shown in FIG. 1 cools not only the solidified electroslag remelted material 8 but also the molten metal pool 6, so that the molten metal in the molten metal pool 6 flows downward. The solidified electroslag remelted material 8 is passed through to the starting base plate 9.
It is cooled by heat transfer in two directions: heat transfer to and lateral heat transfer to the water-cooled copper mold 10, and as a result, the shape of the solidification interface 7 becomes V-shaped as shown in the figure. .

一方、凝固材の結晶方向は一般に凝固境界面に対して垂
直である。従つて、第1図に示す通常の総形金型を用い
た通常の・エレクトロスラグ再溶解法では、図中15で
示す方向に結晶してしまい一方向凝固材を得ることはで
きない。そこで本発明では、通常の総形金型(すなわち
、第1図の水冷銅製総形金型10に相当)に接して電磁
誘導加熱コイルを設け、該コイルの一巻き毎に通電接続
端子を配し、更に該通電接続端子を摺動する通電ブラシ
を設けることにより、既凝固エレクトロスラグ再溶解製
材料部分は加熱せす、溶融金属溜り部分のみの外周囲層
を横方向から加熱するようにして、凝固境界面形状を平
坦とし、かつ凝固時の熱勾配を大として、長さ方向に変
化した断面寸法形状を有する一方向凝固材の製ノ造装置
を開発したものである。
On the other hand, the crystallographic direction of the solidified material is generally perpendicular to the solidified interface. Therefore, in the conventional electroslag remelting method using the general mold shown in FIG. 1, crystallization occurs in the direction indicated by 15 in the figure, making it impossible to obtain a unidirectionally solidified material. Therefore, in the present invention, an electromagnetic induction heating coil is provided in contact with a general mold (that is, equivalent to the water-cooled copper mold 10 in FIG. 1), and a current-carrying connection terminal is arranged for each turn of the coil. Furthermore, by providing a current-carrying brush that slides on the current-carrying connection terminal, the part of the solidified electroslag remelted material is heated, and the outer peripheral layer of only the molten metal pool part is heated from the lateral direction. , we have developed an apparatus for manufacturing a unidirectionally solidified material having a flat solidification interface shape, a large thermal gradient during solidification, and a cross-sectional shape that changes in the length direction.

第2図は、本発明装置の一実施例態様例とこれを用いて
実施する場合の本発明方法の態様を示す概略断面図であ
る。
FIG. 2 is a schematic sectional view showing an example of an embodiment of the apparatus of the present invention and an aspect of the method of the present invention when carried out using the apparatus.

第2図において、第1図と同一符号は第1図と同一物を
示し、11は水冷銅製総形金型10の中に設けられた電
磁誘導加熱コイルで、該コイルの一巻き毎に通電接続端
子12が配され、更に該通電接続端子12にはエレクト
ロスラグ再溶解プロセスの進行に合わせて順次上方へ摺
動する通電ブ゜ラシ13が設けられており、電磁誘導加
熱用電源14からの加熱電流は該通電ブラシ13が接し
ている部分の電磁誘導加熱コイル11のみに通じるよう
になつている。
In FIG. 2, the same reference numerals as in FIG. 1 indicate the same parts as in FIG. A connecting terminal 12 is disposed, and the energizing connecting terminal 12 is further provided with an energizing brush 13 that sequentially slides upward as the electroslag remelting process progresses. The heating current is communicated only to the portion of the electromagnetic induction heating coil 11 that is in contact with the current-carrying brush 13.

第2図においては、溶融金属溜り6の横方向に隣接する
部分の電磁誘導加熱コイル11だけが適当な周波数の電
磁誘導加熱用電源14により通電作動して溶融金属溜り
6の外周囲層を加熱するので、溶融金属溜り6の溶融金
属は、下方の既凝固エレクトロスラグ再演解製材料8を
伝つてスタート用台9への伝熱と、一部やはり下方の水
冷銅製総形金型10への伝熱とにより、冷却されるが、
それでもなお凝固境界面7の形状は図示するように平坦
となり、凝固材の結晶方向は一般に凝固境界面に対して
垂直となるので、図中15で示す凝固方向に結晶する。
In FIG. 2, only the electromagnetic induction heating coils 11 in the horizontally adjacent portions of the molten metal pool 6 are energized by the electromagnetic induction heating power supply 14 of an appropriate frequency to heat the outer peripheral layer of the molten metal pool 6. Therefore, the heat of the molten metal in the molten metal reservoir 6 is transferred to the starting table 9 through the solidified electroslag reprocessed material 8 below, and a portion is also transferred to the water-cooled copper mold 10 below. Although it is cooled by heat transfer,
Nevertheless, the shape of the solidification boundary surface 7 is flat as shown in the figure, and the crystallization direction of the solidified material is generally perpendicular to the solidification boundary surface, so that the solidification material crystallizes in the solidification direction indicated by 15 in the figure.

このように、溶融金属溜り6は、電源4からのエネルギ
ーが電極材1を通して土部に入熱されるばかりでなく、
電磁誘導加熱コイル11によつても加熱されるため、高
温に保持され、従つて、凝固境界面7付近における熱勾
配は大となり、理想的な一方向凝固材が得られる。これ
は、第1図の凝固境界面7付近では既凝固材8が三角形
状に熱容量の小さい小塊となつて形成され、従つてその
温度は溶融金属溜り6の熱を受けて高温となり、熱的に
漸移層となり熱勾配が小さくなるのと対象的である。以
上説明した本発明方法および装置によつて製造される炭
素鋼、低合金鋼、合金鋼、耐熱合金の一方向凝固材は、
ガスタービンの静翼と動翼、蒸気タービン翼、蒸気ター
ビンケーシング用テンションボルト等に使用される。
In this way, the molten metal reservoir 6 is not only heated by the energy from the power source 4 through the electrode material 1, but also
Since it is also heated by the electromagnetic induction heating coil 11, it is maintained at a high temperature, and therefore the thermal gradient near the solidification interface 7 becomes large, resulting in an ideal unidirectionally solidified material. This is because the solidified material 8 is formed as a small triangular lump with a small heat capacity near the solidification interface 7 in FIG. This is in contrast to the case where the thermal gradient becomes smaller. The directionally solidified materials of carbon steel, low alloy steel, alloy steel, and heat-resistant alloy produced by the method and apparatus of the present invention explained above are as follows:
Used for gas turbine stationary blades and moving blades, steam turbine blades, tension bolts for steam turbine casings, etc.

実施例本発明を次の要領てガスタービン翼材料に適用し
た。
EXAMPLE The present invention was applied to a gas turbine blade material in the following manner.

材質 士SUS3O4 凝固材寸法 :板幅7c)Tlrln×厚さ10〜2h×長
さ 300Tn1n(ガスタービン翼部想定)
(試験は金型製作容易化のため長さ 方向一
定断面形状とした)金 型 :水冷
銅製総形金型エレクトロスラグ再溶解条件
:溶解電力ニ約500A×45V(弱塩基性スラ
グ) 凝固速度;約25〜50m/Min電磁誘
導加熱条件 :4.8K圧、約100A×300■
(全効率約20%)上記要領で得られた一方向凝
固材の断面組織状況は第4図の写真に示す通りであり、
結局方向が第2図中15で示すようにほぼ凝固方向を成
していることが判る。
Material: SUS3O4 Solidified material dimensions: Plate width 7c) Tlrln x thickness 10~2h x length 300Tn1n (gas turbine blade section assumption)
(The test was conducted with a constant cross-sectional shape in the length direction to facilitate mold production.) Mold: Water-cooled copper general mold Electroslag remelting conditions
: Melting power: approx. 500A x 45V (weakly basic slag) Solidification rate: approx. 25-50m/Min Electromagnetic induction heating conditions: 4.8K pressure, approx. 100A x 300cm
(Total efficiency approximately 20%) The cross-sectional structure of the unidirectionally solidified material obtained in the above manner is as shown in the photograph in Figure 4.
As a result, it can be seen that the direction is approximately the solidification direction as shown by 15 in FIG.

なお、第4図は第3図中斜線で示す部分の断面組織面を
示すもので、第4図Aは凝固速度約25Tfn/Min
、第4図Bは凝固速度約30W!&/Minl第4図C
は凝固速度約50m/Minで行つた結果である。
Note that FIG. 4 shows the cross-sectional structure of the shaded area in FIG. 3, and FIG. 4A shows a solidification rate of approximately 25Tfn/Min.
, Figure 4B shows a solidification rate of about 30W! &/MinlFigure 4C
These are the results obtained at a solidification rate of about 50 m/min.

また、参考のために、SUS3O柑を上記と同程度の凝
固速度の約30mm/Minで、通常のエレクトロスラ
グ再溶解法により製造した。
Further, for reference, SUS3O was manufactured by a conventional electroslag remelting method at a solidification rate of about 30 mm/min, which is similar to the above.

この結果は、”第5図の断面組織状況写真に示す通りで
あり、結晶方向が第1図中15で示すように凝固方向に
約45向を成していることが判る。なお、第5図は第3
図中斜線で示す部分の断面組織面を示すものである。・
図面の簡単な説明 第1図は通常の総形金型を用いて行なう通常のエレクト
ロスラグ再溶解法を示す概略断面図、第2図は本発明装
置の一実施態様例とこれを用いて実施する場合の本発明
方法の態様を示す概略断面)図である。
This result is as shown in the photograph of the cross-sectional structure in FIG. The figure is the third
This figure shows a cross-sectional tissue surface of the shaded area in the figure.・
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic sectional view showing a normal electroslag remelting method carried out using a general mold, and Fig. 2 shows an example of an embodiment of the device of the present invention and an example of the method carried out using the same. FIG. 2 is a schematic cross-sectional view showing an embodiment of the method of the present invention when

Claims (1)

【特許請求の範囲】 1 通常の溶融金属凝固成形用総形金型を用いる通常の
エレクトロスラグ再溶解法において、電磁誘導加熱コイ
ルにより溶融金属溜りの外周囲層を横方向から加熱する
ことを特徴とする一方向凝固材の製造方法。 2 通常のエレクトロスラグ再溶解法に用いられる通常
の溶融金属凝固成形用総形金型に接して電磁誘導加熱コ
イルを設け、該コイルの一巻き毎に通電接続端子を配し
、更に該通電接続端子を摺動する通電ブラシを設けたこ
とを特徴とする一方向凝固材の製造装置。
[Claims] 1. In the ordinary electroslag remelting method using a general mold for solidifying and forming molten metal, the outer circumferential layer of the molten metal pool is laterally heated by an electromagnetic induction heating coil. A method for producing a unidirectionally solidified material. 2. An electromagnetic induction heating coil is provided in contact with a general mold for solidifying and forming molten metal used in the ordinary electroslag remelting method, and a current-carrying connection terminal is arranged for each turn of the coil, and the current-carrying connection terminal is arranged for each turn of the coil. A device for producing a unidirectional solidifying material, characterized in that it is provided with an energized brush that slides on a terminal.
JP13628778A 1978-11-07 1978-11-07 Method and device for producing unidirectionally solidified material Expired JPS6057418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13628778A JPS6057418B2 (en) 1978-11-07 1978-11-07 Method and device for producing unidirectionally solidified material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13628778A JPS6057418B2 (en) 1978-11-07 1978-11-07 Method and device for producing unidirectionally solidified material

Publications (2)

Publication Number Publication Date
JPS5564957A JPS5564957A (en) 1980-05-16
JPS6057418B2 true JPS6057418B2 (en) 1985-12-14

Family

ID=15171637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13628778A Expired JPS6057418B2 (en) 1978-11-07 1978-11-07 Method and device for producing unidirectionally solidified material

Country Status (1)

Country Link
JP (1) JPS6057418B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127964A (en) * 1983-01-07 1984-07-23 Kubota Ltd Method and device for stationary casting of roll
JPS60158970A (en) * 1984-01-27 1985-08-20 Kawachi Alum Kogyo Kk Pouring device for casting
EP2440347B1 (en) 2009-06-12 2015-10-14 ALD Vacuum Technologies GmbH Method and apparatus for remelting of metal in an elecric furnace

Also Published As

Publication number Publication date
JPS5564957A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
CN102935507B (en) Titanium aluminum alloy blade blank continuous cold crucible directional solidification casting device
US7682472B2 (en) Method for casting polycrystalline silicon
CN101624657B (en) Method for magnetic control electroslag remelting and high-efficiency refining high temperature alloy and device therefor
JPH0255650A (en) Manufacture of thixotropic metallic product through continuous casting
KR100564770B1 (en) apparatus for continuously casting an low electroconductive material by induction
CN103526038B (en) A kind of high-strength high-plasticity TWIP steel esr production method
US4202400A (en) Directional solidification furnace
US3754592A (en) Method for producing directionally solidified cast alloy articles
JPS6057418B2 (en) Method and device for producing unidirectionally solidified material
CN100406161C (en) Oriented freezing cast method
US2779073A (en) Receptacle for molten metal
CN108655375A (en) The method and its device for directionally solidifying of functionally graded material are prepared using axial homogeneous magnetic field
CN202398799U (en) Casting device applying composite electromagnetic field for high temperature alloy fine grains
CN104903024A (en) Continuous casting method for ingot produced from titanium or titanium alloy
JPH10101319A (en) Silicon casting method
JPH0422562A (en) Precision casting method for ti, ti alloy and precision casting device
JP7157295B2 (en) Unidirectional solidification apparatus and method
JPH0335865A (en) Method and apparatus for precision casting
JPS63235062A (en) Production of orientated solidified cast ingot by electro slag remelting
JP2000343204A (en) Orientation solidification device of rotation in horizontal axial direction, and its method
Mehta et al. Laboratory-Scale Development of Lead-Lithium Eutectic Alloy by Magnetohydrodynamic Stirring Technique
JP2006289431A (en) Method for casting molten alloy
JPH0123228B2 (en)
JPH03297551A (en) Production of unidirectional solidified material
JP5579314B1 (en) High purity ingot melting continuous casting apparatus and high purity ingot melting continuous casting method