JPS6057410A - Learning control method - Google Patents

Learning control method

Info

Publication number
JPS6057410A
JPS6057410A JP16626283A JP16626283A JPS6057410A JP S6057410 A JPS6057410 A JP S6057410A JP 16626283 A JP16626283 A JP 16626283A JP 16626283 A JP16626283 A JP 16626283A JP S6057410 A JPS6057410 A JP S6057410A
Authority
JP
Japan
Prior art keywords
value
delay time
deviation
time
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16626283A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shimizu
勝彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16626283A priority Critical patent/JPS6057410A/en
Publication of JPS6057410A publication Critical patent/JPS6057410A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41177Repetitive control, adaptive, previous error during actual positioning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To perform the accurate positioning with use of an inexpensive computer by varying the dynamic delay time to repeat the preliminary reproductions and calculating the integration value of a series of deviations to define the dynamic delay time with which the integration value is minimum as the delay time of a reproduction mode. CONSTITUTION:A deviation is calculated at the time (t+ntc) between a reproduction locus Y0 and the teaching value R0, and this deviation E(t+ntc) is added to the teaching value R0 which is earlier by the time ntc to obtain the target value R1(t). With this target value, the 1st preliminary reproduction is carried out. In this case, a preliminary reproduction locus Y1 is obtained. A deviation between the locus Y1 and the value R0 is detected between time ti and tj. The absolute values of those epsilon1. In the same way, the integration value epsilon2 is obtained. These values epsilon1 and epsilon2 are compared with each other. Hereafter the preliminary reproductions are repeated to obtain integration values epsilon3, epsilon4.... Then a delay time with which a series of these integration values are minimum is detected. This dynamic delay time is used to following operations of reproduction.

Description

【発明の詳細な説明】 本発明はプレイバンク形ロボット等のように繰り返し制
御を行う対象物の学習制御方法に係り、特にノイズ等の
影響を受けず、安価な装置で百件精度の向]−を図った
学習制御方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a learning control method for objects that are repeatedly controlled, such as playbank robots, etc., and is particularly unaffected by noise, etc., and achieves 100 accuracy using inexpensive equipment] This invention relates to a learning control method that aims at -.

一般に上記のような繰り返し制御を行う対象物の位置決
め制御を行う場合には、まず教示動作を行って対象物に
目標とする作業軌跡の位置データ(教示値)を覚え込ま
せ、この教示値に従って再生運転を行うと共に、」−記
教示値と運転軌跡との羞(偏差)を検出して、この偏差
を教示値に加えて次回の再生運転のための目標値とする
学習制御方法が採用されている。しかしこの場合、単に
教示値又は今回の目標値に偏差を加えたのみでは、動的
遅れによる制御偏差を解消することができず、又対象物
が複数の自由度を有する場合には、通電、自由度毎に動
的遅れ時間が異なり、又偏差の量も自由度毎に時々刻々
変化するものであるから、単にすべての自由度に同じ量
の偏差を加えたのでは制御対象物先端の合成された偏差
をある程度以下に小さくすることはできず、各自由度毎
にきめこまかな修止を加える必要がある。
Generally, when performing positioning control of an object that involves repeated control as described above, first perform a teaching operation to make the object memorize the position data (teaching value) of the target work trajectory, and then perform the teaching operation according to the teaching value. While performing regenerative operation, a learning control method is adopted in which a deviation between the taught value and the driving trajectory is detected, and this deviation is added to the taught value and used as a target value for the next regenerative operation. ing. However, in this case, simply adding the deviation to the taught value or the current target value cannot eliminate the control deviation due to dynamic delay, and if the object has multiple degrees of freedom, energization, The dynamic delay time differs for each degree of freedom, and the amount of deviation also changes from time to time for each degree of freedom. Therefore, simply adding the same amount of deviation to all degrees of freedom will result in poor synthesis of the tip of the controlled object. It is not possible to reduce the deviation below a certain level, and it is necessary to make detailed corrections for each degree of freedom.

そのため各自由度毎に動的遅れ時間を時々刻々測定し、
この変化する動的遅れ時間分だけ早めに偏差を教示値又
は目標値に加えて再生させる微視的な学習制御方法を本
発明者は開発した。この方法では極めてきめこまかに位
置決め制御を行うことができるので、制御精度は著しく
向−にするが、大きい記憶容量の記憶装置が必要で、仕
較的低価格のマイクロコンピュータは用いることができ
ないばかりか、あまりに微視的な制御を行うためノイズ
等の影響を強く受け、期待した稈には精度が向−ヒしな
いという欠点を有している。
Therefore, we measure the dynamic delay time moment by moment for each degree of freedom.
The present inventor has developed a microscopic learning control method in which the deviation is added to the taught value or the target value earlier by this changing dynamic delay time and reproduced. This method allows extremely fine-grained positioning control, which greatly improves control accuracy, but it requires a storage device with a large storage capacity, and not only can relatively low-cost microcomputers not be used. However, since the control is too microscopic, it is strongly influenced by noise, etc., and has the drawback that the accuracy does not reach the expected culm.

従って本発明の目的とする処は、測定されたりノ的遅れ
時間が適正なものであるか否か、即ち偏差を最小にする
ものであるか否かを巨視的に判断することによりノイズ
の影響を受りず、少ない記1念量で正確な位置決め制御
を行わんとする学習制御方法を提供することにあり、そ
の要旨と°]′る処が、複数の自由度を有する制御対象
物を教示イ直に従って再生運転させて教示値と再η:軌
跡との偏差を測定し、次回の再生運転時には!!iIJ
的遅れ時間に見合う時間分だけ早く教示値又は今回目標
軌跡に上記偏差を加えて再り1:運転する点にある学習
制御方法を提供するものである。
Therefore, the object of the present invention is to determine macroscopically whether or not the measured delay time is appropriate, that is, whether or not the deviation is minimized, thereby reducing the influence of noise. The purpose of this method is to provide a learning control method that performs accurate positioning control with a small amount of memory without being affected by Perform regenerative operation according to the teaching instructions, measure the deviation between the taught value and the re-trajectory, and then perform the next regenerative operation! ! iIJ
The present invention provides a learning control method in which the deviation is added to the teaching value or the current target trajectory as early as the time corresponding to the target delay time, and 1: driving is performed again.

続い°(添(=t した図面を参照しつつ、本発明を置
体化した実施例に付き説明し、本発明の理解に供する。
Next, with reference to the attached drawings, an embodiment of the present invention will be explained in order to provide an understanding of the present invention.

ここに第1図は本発明の実施に用いることの出来る制御
回路の信号伝達系統を示すブロック図、第2図は同制御
回路に用いる一時記憶装置RAMの内容を示す概念図、
第3図は本発明の一実施例である学習制御方法の処理手
順の一例を示ず〕U−チャー1・、第4し1は本発明の
詳細な説明するためのグラフである。
Here, FIG. 1 is a block diagram showing a signal transmission system of a control circuit that can be used to implement the present invention, and FIG. 2 is a conceptual diagram showing the contents of a temporary storage device RAM used in the control circuit.
FIG. 3 does not show an example of the processing procedure of the learning control method which is an embodiment of the present invention] U-charts 1 and 4 are graphs for explaining the present invention in detail.

以下の実施例においては油圧シリンダによって作すjさ
れるプレイバンク形ロボットの学習制御方法を例にとっ
て説明するが、本発明における学習制御方法はこのよう
な油圧シリンダを駆動源とするロボットのみならず、各
種電動モータを駆動源とするロボットや、その他種々の
白gJs機械に適用可能であることは言うまでもない。
In the following embodiments, a learning control method for a play bank type robot made using a hydraulic cylinder will be explained as an example, but the learning control method in the present invention can be applied not only to a robot using such a hydraulic cylinder as a drive source. Needless to say, the present invention is applicable to robots using various electric motors as drive sources, and various other white gJs machines.

第1図は、I−記のような油圧シリンダ駆動形のロボッ
トの一つの自由度についての制御系統のみを示し、他の
自由度については同様であるため省略したものであり、
又制御回路としてマイクロコンピュータを用いた場合に
ついて例示的に示しているが、これを他の周知の種々の
制御素子に置き換えることは当然可能である。
FIG. 1 shows only the control system for one degree of freedom of a hydraulic cylinder-driven robot as shown in I-, and the other degrees of freedom are omitted because they are the same.
Further, although the case where a microcomputer is used as the control circuit is shown as an example, it is of course possible to replace this with various other well-known control elements.

第1図におい′Cマイクロ=17ピユータ1は演算処理
を行う中央処理ユニットCPU2と、このCPU2の処
理プログラムを格納するR OM 3と、CPU2が4
奥算処理を行うために必要な種々の係数や変数を一時的
に記憶する一時記憶装置RAM4(第2図参照)等より
構成されるものであるが、更に当然に必要とされる人力
インターフェース回路や出力インターフェース回路その
他の変換手段等については、周知の要素であるためここ
では省略されている。
In Figure 1, the computer 1 has a central processing unit CPU2 that performs arithmetic processing, a ROM 3 that stores the processing program of this CPU2, and a
It consists of a temporary storage device RAM4 (see Figure 2) that temporarily stores various coefficients and variables necessary for performing depth calculation processing, but it also includes a human interface circuit that is naturally required. , output interface circuit, and other conversion means are well-known elements and are therefore omitted here.

上記CPU2にはD/A変換器5.比較器6゜アンブリ
ファイア7を介し”ζ油圧シリンダ9を作動さ−Uるサ
ーボ弁8が接続され、油圧シリンダ9にはアーム、旋回
台9手首機構等のロボ・ントノ可動要素10が連結され
、この油圧シリンダ9の伸縮量や可動要素10の回転量
は検出器11によって検出され、電気信号に変換された
後、比較器6及びCI) U 2にフィートバックされ
る。
The CPU 2 has a D/A converter 5. A servo valve 8 that operates a hydraulic cylinder 9 is connected through a comparator 6 and an amblifier 7, and a robot robot movable element 10 such as an arm, a swivel table 9, and a wrist mechanism is connected to the hydraulic cylinder 9. The amount of expansion and contraction of the hydraulic cylinder 9 and the amount of rotation of the movable element 10 are detected by the detector 11, converted into electrical signals, and then fed back to the comparator 6 and CI) U2.

ロボノ1−を位置決め制御するのにfν・要な目標(i
rtR&ま全てRA M 4に格納され、再生運転時に
はこの目標4A Rが制御周期毎にCPU2を経てD/
A変換器5に送出される。D/A変換器5はこの信号を
アナ1,1グ量に変換し、比較器6を経てアンブリファ
イア7で増幅した後、サーボ弁8を駆動する。
fν・Required target (i
rtR & all are stored in RAM 4, and during regeneration operation, this target 4A R is sent to D/R via CPU 2 every control cycle.
The signal is sent to the A converter 5. A D/A converter 5 converts this signal into an analog signal, passes through a comparator 6, amplifies it with an amplifier 7, and then drives a servo valve 8.

従って油圧シリンダ9は目標値Rの値に応じてサーボ弁
8によって駆動され、可動要素10の回転角度や油圧シ
リンダ9の伸縮量が検出器11によって検出され、その
値が再生軌跡Yとして比較器6にフィードバックされる
ことにより、油圧シリンダ9が目標値Rと再生II!I
L跡Yとの斧がOとなる方向に駆動され、位置決め後の
再生軌跡YがCI) U 2に伝達される。
Therefore, the hydraulic cylinder 9 is driven by the servo valve 8 in accordance with the target value R, the rotation angle of the movable element 10 and the amount of expansion and contraction of the hydraulic cylinder 9 are detected by the detector 11, and the value is detected as the regeneration trajectory Y by the comparator. 6, the hydraulic cylinder 9 reaches the target value R and regeneration II! I
The ax with the L trace Y is driven in the direction O, and the reproduced locus Y after positioning is transmitted to CI) U2.

本発明においてはこのような再生運転毎に動的遅れを変
化させ、且つ一連の偏差群の築稍値が最少となる動的遅
れ時間を見つけ出し、以後の再生運転にこの動的遅れ時
間を用いることにより正蒲な位置決め作業を行うもので
ある。
In the present invention, the dynamic delay is changed for each regeneration operation, and the dynamic delay time at which the constancy value of a series of deviation groups is minimized is found, and this dynamic delay time is used for subsequent regeneration operations. This allows accurate positioning work to be performed.

続いて第4図のグラフを参照し°C本名案の概略的構成
を説明する。第4図は時間(横軸)の経過に対応するあ
る自由度の可動要素の先端軌跡(縦軸)を示すもので太
実線が教示値R6を、この教示値R8に基づく再生軌跡
をY。で示ず。
Next, with reference to the graph of FIG. 4, the general structure of the °C real name proposal will be explained. FIG. 4 shows the tip trajectory (vertical axis) of a movable element with a certain degree of freedom corresponding to the passage of time (horizontal axis), where the thick solid line represents the taught value R6, and Y represents the playback trajectory based on this taught value R8. Not shown.

まずオペレータは教示作業を行い教示軌跡を教示値R8
とじてRAM4に記1へし、CI) U 2はこの教示
値R0を目標値として再生作業を行い、再生軌跡Y。を
制御周期Lc毎に取り込みRA M 4の領域M9に格
納する。
First, the operator performs teaching work and changes the teaching trajectory to the teaching value R8.
CI) U2 performs the regeneration operation using this taught value R0 as the target value, and the regeneration trajectory Y is obtained. is fetched every control cycle Lc and stored in area M9 of RAM4.

以下の説明は1個の自由度についてのデータ処理手順で
あるが、実際の制御に当たっては全ての自由度について
同様の処理を行う。
The following explanation is a data processing procedure for one degree of freedom, but in actual control, similar processing is performed for all degrees of freedom.

いま、動的遅れ時間を便宜的に制御周期Lcの整数倍と
して考え、制御の対象となっている自由度における予測
される動的遅れ時間よりも確実に早い(短い)遅れ時間
を想定し、これをntoとする。
Now, we consider the dynamic delay time as an integer multiple of the control period Lc for convenience, and assume a delay time that is definitely faster (shorter) than the predicted dynamic delay time in the degree of freedom that is the subject of control. Let this be nto.

十記の再生軌跡Y。と教示イ1riRo (RA M 
4の領域M8に格納されている)との時間t+ntcに
おレノる偏差をa1勢しIE (L +n Lc)とし
てRAM4の領L!NM4に格納する。そしてごの偏差
E(trntc)をI−記動的遅れ時間ntoの分だけ
〒い(さかのぼった)教示(ifIR8(1)に加え、
これを目標値R1(t)として第1回目の子備再!4:
を行う。このようにして図示のような第1の予備再生軌
跡¥1が得られ、この第1の予備再生軌跡Y1と教示値
R6との時間t1からt」までの偏差ε (tl、1)
〜ε (t、、1)を検出し口、、<nuC<J )、
それらの絶対値を積算して集積値 ε、−Σ1ε (t、1)lを演算し、RAM4の+J
 i 領域M5に記憶する。
The rebirth trajectory of the ten books Y. and teach i1riRo (RAM
(stored in area M8 of RAM 4) at time t + ntc is set as a1 and set as IE (L +n Lc) in area L of RAM 4! Store in NM4. Then, add the deviation E(trntc) by I-recording delay time nto (backward) teaching (ifIR8(1)),
Set this as the target value R1(t) and prepare for the first time! 4:
I do. In this way, the first preliminary reproduction trajectory ¥1 as shown in the figure is obtained, and the deviation ε (tl, 1) between this first preliminary reproduction trajectory Y1 and the taught value R6 from time t1 to t''
~ε (t,,1) is detected, ,<nuC<J),
The accumulated values ε, -Σ1ε (t, 1)l are calculated by integrating their absolute values, and +J of RAM4 is calculated.
i Store in area M5.

次にRAM4の領域M4から前記偏差E(trnu、)
を時間も毎に順次取り出し、教示値R8に(rl+1)
tc時間分だり早めに加え目標値R2(0を作製し、こ
れに従って第2回目の子備再/1:を行う。すると、図
示のような第2の予備再生i11を跡Y2が得られ、こ
の第2の予備再生軌跡Y2と教示値R0との時間tえが
ら1.までの偏差ε (t、、2)〜ε (t、、2)
の集積値ε2−Σ1a(t、2) l を演算すると共に、RAM4の領域M5に格納したε1
の値を領域M6ヘシフトさ−U、同時にε2の値をM5
へ格納する。
Next, the deviation E(trnu,) from the area M4 of RAM4
are taken out sequentially at each time and set to the teaching value R8 (rl+1).
Create a target value R2 (0) in addition to tc time or earlier, and perform the second preliminary reproduction /1: according to this. Then, the trace Y2 of the second preliminary reproduction i11 as shown in the figure is obtained, Deviation ε (t,, 2) to ε (t, , 2) between this second preliminary reproduction trajectory Y2 and the taught value R0 up to time 1.
ε2−Σ1a(t,2) l is calculated, and ε1 stored in area M5 of RAM4 is calculated.
Shift the value of ε2 to area M6 -U, and at the same time shift the value of ε2 to M5
Store it in

こうして得られたε1とε2の値を比較してその大小関
係を判別するが、ntcが予想される動的遅れ時間より
十分小さい時間に設定されているので通常ε2〈ε鵞と
なる。
The values of ε1 and ε2 obtained in this way are compared to determine their magnitude, but since ntc is set to a time sufficiently smaller than the expected dynamic delay time, usually ε2<ε.

こうして順次予備再生を繰り返して83、ε斗、・・・
をめ、第m−1回目と第m回目の予備再生で得られた集
積値εm−1とε、とを比較し、6m 28m−1 となった時にm −1回目の予備再生で採用した遅れ時
間(n4m−2)Lcをその自由度のti〜1、時間に
おける最適の遅れ時間と判断し、以後の実際の動特性を
考慮した再生運動において、再生運動によって得られた
教示値又は目標値に対する偏差をその時の目標値に」二
記(n4m−2)tc時間分だけ早めに加算して次回の
再生運動に用いる目標値とする通常の再生値を行うもの
である。
In this way, the preliminary playback is repeated sequentially, and 83, εto,...
Then, the integrated value εm-1 obtained in the m-1st and m-th preliminary reproduction was compared with ε, and when it became 6m28m-1, it was adopted in the m-1st preliminary reproduction. Determine the delay time (n4m-2)Lc as the optimal delay time in the degree of freedom ti~1, and then calculate the teaching value or target obtained by the regeneration movement in consideration of the actual dynamic characteristics. A normal reproduction value is performed by adding the deviation from the value to the target value at that time by 2 (n4m-2) tc time earlier and using it as the target value to be used for the next reproduction movement.

次いで第3図のフローチャートを参照して本発明方法を
マイクロコンピュータを用いて実施する場合の処理手順
につき、dqに詳しく説明する。なおSl、S2.・・
・はステップ番号を表ず。又このフローチャートは前記
のように1つの自由度についてのもので、実際にはその
他の自由度についても同様の処理を施す。
Next, with reference to the flowchart of FIG. 3, the processing procedure when implementing the method of the present invention using a microcomputer will be explained in detail. Note that Sl, S2.・・・
・Does not represent a step number. Furthermore, as described above, this flowchart concerns one degree of freedom, and in reality, similar processing is performed for other degrees of freedom.

まずステップS1において初期設定としてその自由度に
おける予測される動的遅れ時間よりも確実に短い遅れ時
間ntCを設定するためのnの値を適当に設定する。又
制御ずべき区間を示すも。
First, in step S1, as an initial setting, a value of n is appropriately set in order to set a delay time ntC that is reliably shorter than the predicted dynamic delay time in that degree of freedom. It also indicates the section that should be controlled.

、tr (tl <tJ)を任意の116に設定すると
共に、制御位;6(時間)を示ずEを0とし、RAM4
の領域MGの値を0にセットする。ロボット等では加減
速時や移動方向の切り換わるターン部等で特に制御精度
が低下するので、と記t□、tノの値はこのような制御
の難しい部分を選ぶことによって全作業軌跡にわたって
バランスのとれた位置決め精度を得ることができるが、
更に全作業軌跡を・・・(t□〜t+)、(t;+t〜
’b)、(t1m〜tり、・・・のように複数の区間に
分割して、それぞれについて制御を行ってもよい。
, tr (tl < tJ) is set to an arbitrary value of 116, the control position does not indicate 6 (time), E is set to 0, and RAM 4 is set.
Set the value of area MG to 0. In robots, etc., the control accuracy decreases especially during acceleration/deceleration or at turns where the direction of movement changes. Although it is possible to obtain accurate positioning accuracy,
Furthermore, the entire work trajectory...(t□~t+), (t;+t~
'b), (t1m to t,...), and control may be performed for each section.

以−l” t −1−n L 、のイ1装置におりる処
理について述べる。
Now, the processing carried out in the A1 device will be described.

CI) IJはS2に於い゛ζ1ン八M4の領域M7の
フラグの状態を検出してこれから行う再生が第1回目か
台かを判断゛4る。領域M7のフラグは第1回目の百4
時にのみcPUによりlにセットされる。
CI) In S2, IJ detects the state of the flag in area M7 of ζ18 M4 and determines whether the playback to be performed from now on is the first or second time. The flag in area M7 is 104 for the first time.
Only set to l by the cPU.

ここで第1回目の再d゛である場合にはS3におい゛ζ
ζ教示値セン(t+ntc)に基づく再/1゛制御を行
いilT、 !4:軌跡Y。(を十r口。)を(↓lる
と共に、S4においてその時点での偏差IE(t+nL
t)を E(t 4−n tc)=R,(t +n Lc)−Y
o (L +n tc ) により算出し、この値をRA M 4の領域M4に収納
し、且つ第1回目の予備再生のための目標値RI(1)
を算出するべ(ntc分だけ早めめ教示値Ro (t)
にE(t+nt1)を加え、これをM3の記4dlf、
(4域に格納する。
If this is the first re-d゛, then in S3
The re/1゛ control is performed based on the ζ teaching value sen (t+ntc) and ilT, ! 4: Locus Y. (10 r mouth.) and (↓l), and in S4, the deviation IE (t+nL
t) as E(t 4-n tc)=R, (t +n Lc)-Y
o (L + n tc ), this value is stored in the area M4 of RAM 4, and the target value RI (1) for the first preliminary reproduction is calculated.
should be calculated (taught value Ro (t) earlier by ntc
Add E(t+nt1) to 4dlf of M3,
(Stored in area 4.

Iマ+ (L ) −R8(t) +lE (t +n
 tc)S2において1回目の百仕でない場合、即ち、
例えば第n111jl L−、、Iの−r備i1iノ1
.0)場合にはm−1回目O)Yイ、4iii++ノ1
でi!lられた目標イli’j RmJ ニ基づく予備
再ノ1−をS5におい°C11い、その山/1−軌跡Y
INと教示イll’l、 Ro との偏y′ε (L、
II1)を9出し、続いてS6にjンい゛(その(1ン
:i′?におりる偏j’+′IE (L ir+ L 
、 )を9出し、これをntoの遅れ時間分だけ早めに
Y(示軌跡に加えて次回の予備再η゛のための目標値R
mを作成(更新)し、記jQ fiji I−父M3に
格納する。
Ima+ (L) -R8(t) +lE (t +n
tc) If it is not the first 100 moves in S2, that is,
For example, the n111jl L-,,I-rbii1i-1
.. 0) if m-1st time O)Yi, 4iii++ノ1
Dei! The preliminary rerun 1- based on the set target Ili'j RmJ is sent to S5 °C11, and its peak/1-trajectory Y
The bias y'ε (L,
II1) is rolled for 9, and then goes to S6.
, ) is given 9, and this is set earlier by the delay time of nto to Y (in addition to the indicated trajectory, the target value R for the next preliminary re-renewal η゛
m is created (updated) and stored in the record jQ fiji I-father M3.

次にCII UはS7の処理に進み、現在の制御位;行
りが1.とt」の間にあるか否かを判断し、Yesの場
合にはS8においてtlから現在位置tまでのε (t
、m)の集8V値を積算し、Noの場合ニハS 8の処
理を迂回してS9に進む。
Next, the CII U proceeds to processing in S7, where the current control position; and t'', and if Yes, in S8, ε (t
, m) are integrated, and if No, the process bypasses S8 and proceeds to S9.

S9は最終作業位置まで到着したが否かを判断するステ
ップで、ここでNoの場合には次の制御(作業)位置へ
移るべくSIOにおいてtの値(M。
S9 is a step of determining whether or not the final work position has been reached. If the answer is No, the value of t (M) is determined at SIO in order to move to the next control (work) position.

)に1+1cを代入してS2に戻る。Yesの場合t、
m)lとを比較して今回の集積値の方が未だに大きい場
合には、更にl1iJI的遅れ時間を延長する余地があ
るものとして312において遅れ時間ntCを決定する
nの値に1を加算すると共に、初期位置へ戻るベクトル
t=QとなしS2の処理へ戻る。
) is substituted with 1+1c and the process returns to S2. If Yes, t,
m) If the current integrated value is still larger than l, 1 is added to the value of n that determines the delay time ntC in step 312, assuming that there is room to further extend the l1iJI delay time. At the same time, the vector t=Q returns to the initial position, and the process returns to step S2.

又Sllにおいて今回の集積値が前回の集積値を上回っ
た場合には前回の動的遅れ時間の設定が最適であること
を意味するので、S13においてn −1を選定し、以
後の実際の再生運転においCは(n−1)toを動的遅
れ時間として一貫して使用する。
In addition, if the current integrated value exceeds the previous integrated value in Sll, it means that the previous dynamic delay time setting is optimal, so n -1 is selected in S13 and the subsequent actual playback is performed. In operation, C consistently uses (n-1)to as the dynamic delay time.

面前記積算回数tえ〜1.の区切り方が悪い場合は遅れ
時間の選定に誤りを生じるIAれがあるので、必要に応
じてt□〜(’i +t+ )/2. (tz +t+
)/2〜1.,1.〜(1,+1k)/2. (tl 
+tk )/2〜t1等のようにサンプル領域を変化さ
せて選定したqtlj的遅れ時間が適切が否かの検8・
Iを行うことが望ましい。
The cumulative number of times t~1. If the separation is incorrect, there is an IA error that may cause an error in selecting the delay time, so if necessary, set t□ to ('i + t+)/2. (tz +t+
)/2~1. ,1. ~(1,+1k)/2. (tl
+tk)/2~t1, etc., to determine whether the selected qtlj delay time is appropriate.8.
It is desirable to do I.

本発明は以上述べた如く、複数の自由度を有する制御対
象物を教示値に従って再生運転させて教示値と再生軌跡
との偏差を測定し、次回の再生運転時には動的遅れ時間
に見合う時間分だけ早く教示値又は今回目標軌跡に、上
記偏差を加えて再生運転する学習制御方法において、各
自由度毎に動的遅れ時間を変化させて数次の予備再生を
繰り返し、各予備再々:時に一連の偏差の集積値を演算
し、」−記集積値が最少となる動的遅れ時間を上記再生
時のり」的遅れ時間として採用することを特徴とする学
習制御方法であるから、比較的低価格のマイクロコンピ
ュータを使用してノイズに惑わされない止硫な位置決め
制御を行うことができるものである。
As described above, the present invention causes a controlled object having multiple degrees of freedom to perform regenerative operation according to a taught value, measures the deviation between the taught value and the regenerated trajectory, and then performs a regenerative operation for a period of time corresponding to the dynamic delay time during the next regenerative operation. In a learning control method in which regeneration operation is performed by adding the above deviation to the teaching value or the current target trajectory as quickly as possible, the dynamic delay time is changed for each degree of freedom and several orders of preliminary regeneration are repeated. This learning control method is characterized by calculating the accumulated value of the deviation of ``-'' and employing the dynamic delay time at which the accumulated value of Using a microcomputer, it is possible to perform positioning control that is unaffected by noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いることの出来る制御回路の
信号伝達系統を示すブロック図、第2図は同制御回路に
用いる−・時記憶装WRAMの内容を示すJolt念図
、第3図は本発明の一実施例である学習制御力法の処理
手順の一例を示すフローチャート、第4図は本発明の詳
細な説明するだめのグラフである。 (符号の説明) 1・・・マイクロコピュータ 2・・・CPU3・・・
ROM 4・・・RAM 10・・・可動要素 M1〜M!1・・・記1.a領域 31 .32.・・・313・・・ステツプW−・」R
・・・目標値(教示値) Y・・・iri/−L軌跡。 出1頭人 株式会社 神戸M鋼所 代理人 弁理士 本庄 武男
Fig. 1 is a block diagram showing the signal transmission system of a control circuit that can be used to implement the present invention, Fig. 2 is a Jolt diagram showing the contents of the time memory device WRAM used in the control circuit, and Fig. 3 4 is a flowchart showing an example of the processing procedure of the learning control force method, which is an embodiment of the present invention, and FIG. 4 is a graph for explaining the present invention in detail. (Explanation of symbols) 1...Microcomputer 2...CPU3...
ROM 4...RAM 10...Movable elements M1-M! 1...Note 1. a area 31. 32. ...313...Step W-"R
...Target value (taught value) Y...iri/-L trajectory. One person: Kobe M Steel Co., Ltd. Patent attorney Takeo Honjo

Claims (1)

【特許請求の範囲】 複数の自由度を有する制御対象物を教示値に従って再生
運転させて教示値と再生卵【跡との偏差を測定し、次回
の再生運転時には動的遅れ時間に見合う時間分だけ早く
教示値又は今回目標軌跡に上記偏差を加えて再生運転す
る学習制御方法において、各自由度毎に動的遅れ時間を
変化させて数次の予備再生を繰り返し、各予備再生時に
一連の偏差の集積値を演算し、上記集積値が最少となる
動的遅れ時間を上記再生時の動的遅れ時間として採用す
ることを特徴とする学習制御方法。
[Claims] A controlled object having multiple degrees of freedom is regenerated according to the taught value, and the deviation between the taught value and the trace of the regenerated egg is measured, and the next time the regenerated operation is performed, the time corresponding to the dynamic delay time is In a learning control method that performs regenerative operation by adding the above deviation to the taught value or current target trajectory as quickly as possible, the dynamic delay time is changed for each degree of freedom and several orders of preliminary regeneration are repeated, and a series of deviations are calculated at each preliminary regeneration. A learning control method characterized in that the integrated value of is calculated, and the dynamic delay time at which the integrated value is the minimum is adopted as the dynamic delay time during playback.
JP16626283A 1983-09-08 1983-09-08 Learning control method Pending JPS6057410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16626283A JPS6057410A (en) 1983-09-08 1983-09-08 Learning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16626283A JPS6057410A (en) 1983-09-08 1983-09-08 Learning control method

Publications (1)

Publication Number Publication Date
JPS6057410A true JPS6057410A (en) 1985-04-03

Family

ID=15828116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16626283A Pending JPS6057410A (en) 1983-09-08 1983-09-08 Learning control method

Country Status (1)

Country Link
JP (1) JPS6057410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221006A (en) * 1986-03-24 1987-09-29 Canon Inc Positioning controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221006A (en) * 1986-03-24 1987-09-29 Canon Inc Positioning controller

Similar Documents

Publication Publication Date Title
WO2019064916A1 (en) Robot simulator
JP2874238B2 (en) Control method of articulated robot
US3870941A (en) Method and circuit for sampling position data
JPWO2019064917A1 (en) Robot simulator
JPS6140602A (en) Control optimization for machine tool driver
JPS63106011A (en) Robot controller
JPS6057410A (en) Learning control method
JPS59163614A (en) Driving of industrial robot in coordinate system alien to robot dynamic motion
JP3362379B2 (en) Method of detecting force in force control device
JPH10291182A (en) Arm driving device
JPH06503436A (en) How to obtain preliminary control parameters for position control
JPH0782382B2 (en) Learning control method
JPH0193805A (en) Method for generating teaching data of robot
JP7024742B2 (en) Controls, model creation methods and control programs
JPH0823761B2 (en) Learning control method
JPS6144326B2 (en)
JP3194395B2 (en) Path function sequential generation method
JP2541163B2 (en) A control method that optimally follows the periodic target value.
Bortoff et al. A discrete-time observer for flexible-joint manipulators
JP2555787Y2 (en) Digital storage oscilloscope
JPS62118406A (en) Control system using information of future target value, past manipulated variable and deviation at time of trial
Speagle et al. Robust tracking control of a permanent magnet stepper motor driving a mechanical load
JP2761090B2 (en) Expert System Reasoning Method
JPH0833762B2 (en) Learning control method for industrial robots
JPH02137674A (en) Automatic welding system