JPS6057304A - Reinforced optical fiber unit - Google Patents

Reinforced optical fiber unit

Info

Publication number
JPS6057304A
JPS6057304A JP58165736A JP16573683A JPS6057304A JP S6057304 A JPS6057304 A JP S6057304A JP 58165736 A JP58165736 A JP 58165736A JP 16573683 A JP16573683 A JP 16573683A JP S6057304 A JPS6057304 A JP S6057304A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
layer
reinforced
protective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58165736A
Other languages
Japanese (ja)
Other versions
JPH0130123B2 (en
Inventor
Kenichi Fuse
憲一 布施
Ario Shirasaka
白坂 有生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58165736A priority Critical patent/JPS6057304A/en
Publication of JPS6057304A publication Critical patent/JPS6057304A/en
Publication of JPH0130123B2 publication Critical patent/JPH0130123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a reinforced optical fiber unit having high strength and heat resistance by making the coefft. of linear expansion of a protective coating layer in the diametral direction almost equal to that of each protective buffer layer in the diametral direction. CONSTITUTION:A plurality of optical fiber cores 1 each having a buffer layer of silicone rubber as the outermost layer are bundled, and the bundle is coated with a protective buffer layer 2 of silicone rubber having 10-60 Shore hardness so as to provide a nearly circular cross-section. Such coated bundles are then coated with fiber reinforced plastics consisting of silicone rubber having 10-100 Shore hardness and about 62wt% glass fiber to form a protective coating layer 3. The coefft. of linear expansion of the layer 3 in the diametral direction is almost equal to that of the layers 2 in the diametral direction. Thus, a reinforced optical fiber unit is obtd.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光複合架空地線等に使用される高強度高耐熱性
を要求される光フアイバユニットにおいて、特に耐熱性
を大幅に改良する強化光フアイバユニットに関するもの
である。
[Detailed Description of the Invention] [Technical Field] The present invention relates to optical fiber units that are used in optical composite overhead ground wires and the like and which require high strength and high heat resistance, and in particular to a reinforced optical fiber unit that significantly improves the heat resistance. It is related to.

〔従来技術〕[Prior art]

近年、発電所と変電所間等の通信用として、電力送電線
用鉄塔間に架線される架空地線に、光ファイバを内蔵あ
るいは添架したいわゆる光複合架空地線が広く用いられ
るようになっている。このような光複合架空地線はその
使用上の性格から、特に雷の地絡時に発生ずる架空地線
の伸び、昇温に十分耐えるものでなければならない。こ
の場合架空地線の利質にもよるが5例えばアルモウェル
ドスチールを使用すると、地絡時の伸びは瞬時的に0.
5係以上にもなる。また送電線の送電容量によっても異
なるが送電線からの架空地線への電気的訪導により架空
地線は発熱し、例えば50万KV程度の送電線網に設置
されている架空地線は無風時に最大電流が流れると15
0℃になることもある。さらに、これに加えて雷が地絡
すると400℃以上になるといわれている。それ故、架
空地線に内蔵または添架される光ファイバにも前記0.
5係以上の伸びに耐え得る機械強度と、前記150℃に
耐える耐熱性と、さらに雷の地絡時、送電遮断機が作動
するまでの0.75秒秒間時温度約400℃という高温
に耐え得る耐熱性とが要求される。この要求に対して、
従来から複数の光フアイバ心線を集合したものに緩衝保
護層を一体的に被覆し、該緩衝保護層の外側に繊維強化
プラスチックよりなる保護被覆層を設けたものが知られ
ている。
In recent years, so-called optical composite overhead ground wires, in which optical fibers are built in or attached to overhead ground wires that are installed between power transmission towers, have become widely used for communication between power plants and substations. There is. Due to the nature of its use, such an optical composite overhead ground wire must be able to sufficiently withstand the elongation and temperature rise of the overhead ground wire that occurs particularly during lightning ground faults. In this case, depending on the quality of the overhead ground wire5, for example, if Almoweld steel is used, the elongation during a ground fault will be instantaneously 0.
There will be more than 5 sections. Although it also depends on the power transmission capacity of the transmission line, the overhead ground wire generates heat due to electrical conduction from the transmission line to the overhead ground wire. When the maximum current flows at 15
The temperature may drop to 0℃. Furthermore, it is said that when lightning causes a ground fault, temperatures can rise to over 400 degrees Celsius. Therefore, optical fibers built into or attached to the overhead ground wire also have the above 0.
It has mechanical strength that can withstand elongation of modulus 5 or higher, heat resistance that can withstand the above-mentioned 150°C, and can withstand high temperatures of approximately 400°C for 0.75 seconds until the power transmission breaker is activated in the event of a lightning ground fault. heat resistance is required. For this request,
BACKGROUND ART Conventionally, it has been known that a plurality of optical fiber core wires are integrally coated with a buffer protection layer, and a protective coating layer made of fiber-reinforced plastic is provided on the outside of the buffer protection layer.

ここで繊維強化プラスチックよりなる保護被覆層の下に
緩衝保護層を設ける理由は、前記繊維強化プラスチック
よりなる保護被覆層の被覆が引抜成形にて行われるため
である。すなわち前記緩衝保護層は、光ファイバが前記
引抜成形時に成形金型を通過する際受ける側圧がら該光
ファイバを保護するためにある。
The reason why the buffer protection layer is provided below the protective coating layer made of fiber-reinforced plastic is that the protective coating layer made of fiber-reinforced plastic is coated by pultrusion. That is, the buffer protection layer is provided to protect the optical fiber from the lateral pressure applied when the optical fiber passes through a mold during the pultrusion molding.

ところで前記繊維強化プラスチックからなる保護被覆層
は、前述の機械的強度を満たすために、例えばガラス繊
維の場合、体積含有率で60チ以上のガラス繊維を含有
している。この場合の母材を二股的に用いられているポ
リエステル樹脂やエポキシ樹脂とすると、前記保護被覆
層の径方向の線膨張係数は約1〜6 X 10−”/”
Cとなっている。一方この保護被覆層下の緩衝保護層の
径方向の線膨張係数は、例えば通常使用されるシリコー
ンゴムを用いたとすると、約1〜10×10/℃である
。ところが前記両者の径方向の線膨張係数の違いのため
次のような問題が生じている。
By the way, in order to satisfy the above-mentioned mechanical strength, the protective coating layer made of the fiber-reinforced plastic contains, for example, 60 or more glass fibers in terms of volume content in the case of glass fibers. If the base material in this case is a bifurcated polyester resin or epoxy resin, the linear expansion coefficient in the radial direction of the protective coating layer is about 1 to 6 x 10-"/"
It is C. On the other hand, the coefficient of linear expansion in the radial direction of the buffer protection layer under this protective coating layer is about 1 to 10 x 10/°C, for example, if commonly used silicone rubber is used. However, the following problem arises due to the difference in linear expansion coefficient in the radial direction between the two.

前述の如く雷が地絡すると光複合架空地線全体が瞬時的
に約4007Cもの高温になる。この時前記径方向の線
膨張係数の差により、線膨張係数の大きい内側の緩衝保
護層が膨張し外側の繊維強化プラスチックよりなる線膨
張係数の小さい保護被覆層に内側から圧力を加え、その
結果、前記保護被覆層のぜい弱部が繊維方向に割れ、そ
のため機械強度が著しく低下するという現象が起こる。
As mentioned above, when lightning causes a ground fault, the entire optical composite overhead ground wire instantly becomes as hot as about 4007C. At this time, due to the difference in coefficient of linear expansion in the radial direction, the inner buffer protection layer with a larger coefficient of linear expansion expands, and pressure is applied from the inside to the outer protective coating layer made of fiber reinforced plastic with a smaller coefficient of linear expansion. A phenomenon occurs in which the weak parts of the protective coating layer crack in the fiber direction, resulting in a significant decrease in mechanical strength.

このように従来の光複合架空地線に用いられている光フ
アイバ集合体にあっては、機械強度の面や無風かつ最大
電流時的150”Cと05温度には対応できるが瞬時約
400”Cという温度には対応できない。
In this way, the optical fiber aggregates used in conventional optical composite overhead ground wires have mechanical strength and can handle windless and maximum current temperatures of 150"C and 0.5C, but instantaneous temperatures of about 40"C. It cannot handle temperatures of C.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み、本発明の目的は、瞬時約400℃とい
う高温下にあっても、繊維強化プラスチックからなる保
護被覆層が割れることのない耐熱性に優れた強化光フア
イバユニットを提供することにある。
In view of the above-mentioned problems, an object of the present invention is to provide a reinforced optical fiber unit with excellent heat resistance, in which the protective coating layer made of fiber-reinforced plastic does not crack even under instantaneous high temperatures of about 400°C. be.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明の強化光フアイバユニット
は、最外層に緩衝層を有する光フアイバ心線を複数本集
合してなる集合体と、該集合体を断面はぼ円形状に一体
被覆してなる緩衝保護層と、該緩衝保護層の外側に設け
る繊維強化プラスチックよりなる保護被覆層とからなる
ものである。
In order to achieve the above-mentioned object, the reinforced optical fiber unit of the present invention includes an aggregate formed by a plurality of optical fiber cores having a buffer layer on the outermost layer, and an integrally coated aggregate with a roughly circular cross section. It consists of a buffer protection layer made of a material, and a protective coating layer made of a fiber-reinforced plastic provided outside the buffer protection layer.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図を参照して詳細に述べる。 Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.

第1図が示すように本発明の強化光フアイバユニットは
、最外層にシリコーンゴムよりなる緩衝層を有する光フ
アイバ心線1を複数本集合し、しかる後に前記集合体に
その断面がほぼ円形状になるようシリコーンゴム(ショ
ア硬度−10〜60)からなる緩衝保護層2を一体的に
被覆する。さらに前記緩衝保護層2の外側にシリコーン
ゴム(ショア硬度=10〜100)を母材とし、ガラス
繊維を体積含有率で約62チ含有し、前記緩衝保護層2
の径方向の線膨張係数とほぼ等しい径方向の線膨張係数
を有する繊維強化プラスチックを被覆し、保護被覆層3
とする。ここで光フアイバ心線1の最外層に設ける緩衝
層は前記光フアイバ心線lを複数本集合するときの側圧
や、この集合体に保護被覆層3を引抜成形により被覆す
るときの側圧を緩和する効果を有する。さてここで本発
明の特徴は前述のごとく前記保護被覆層3の径方向の線
膨張係数を前記緩衝保護層2の径方向の線膨張係数とほ
ぼ等しくしである点にある。因みに、本実施例では緩衝
保護層2の径方向の線膨張係数は1〜10X 1 o−
’、/”c、一方繊維強化プラスチックよりなる保護被
覆層3の径方向の線膨張係数は前記緩衝保護層2のそれ
とほぼ等しい約0.8〜3X10−4/℃である。この
ように構成した本発明の強化光フアイバユニットを約4
00℃の炉中に直線状にして投入し、数秒後取り出して
みても外観に割れ、ひび等の異常はなんら見られない。
As shown in FIG. 1, the reinforced optical fiber unit of the present invention collects a plurality of optical fiber core wires 1 having a buffer layer made of silicone rubber as the outermost layer, and then arranges the assembled optical fibers in a substantially circular cross section. A buffer protection layer 2 made of silicone rubber (Shore hardness -10 to 60) is integrally coated so as to have the following properties. Further, on the outside of the buffer protection layer 2, silicone rubber (Shore hardness = 10 to 100) is used as a base material, and glass fiber is contained in a volume content of about 62 cm, and the buffer protection layer 2
Protective coating layer 3
shall be. Here, the buffer layer provided on the outermost layer of the optical fiber core 1 relieves the lateral pressure when a plurality of the optical fiber cores 1 are assembled and the lateral pressure when the protective coating layer 3 is coated on this assembly by pultrusion molding. It has the effect of As mentioned above, the feature of the present invention is that the coefficient of linear expansion in the radial direction of the protective coating layer 3 is approximately equal to the coefficient of linear expansion in the radial direction of the buffer protection layer 2. Incidentally, in this example, the linear expansion coefficient in the radial direction of the buffer protection layer 2 is 1 to 10X 1 o-
', /'c, On the other hand, the coefficient of linear expansion in the radial direction of the protective coating layer 3 made of fiber-reinforced plastic is about 0.8 to 3X10-4/°C, which is approximately equal to that of the buffer protective layer 2. The reinforced optical fiber unit of the present invention is made of about 4
Even after putting it into a furnace at 00°C in a straight line and taking it out after a few seconds, there were no visible cracks or other abnormalities.

尚、前記実施例ではガラス繊維を含有する繊維強化プラ
スチックを用いたが、炭素繊維、アルミツド繊維、金属
線のいずれかでもよく、あるいはまたガラス繊維等前記
各繊維、金属線の複合体であってもよい。但し、各々の
含有率は母材を含めた機械強度及び線膨張係数を考慮し
て決定されねばならない。また前記繊維強化プラスチッ
クの被覆にあたっては引抜成形方法が用いられるが、こ
の方法においては母材となるプラスチックの粘度が引抜
加工性に大きく影響する。そこで最適引抜抵抗で引抜成
形を行うためには母材の粘度調整は重要である。この母
材の粘度調整用として予めアルミナ、タルク、炭酸カル
シウム、クレー、ゼオライト等の無機系微粒子を適量、
母材に配合しておくと前記引抜成形が容易となる。さら
に前記実施例では前記繊維強化プラスチックの母材とし
て、緩衝保護層2と同族のシリコーンゴムを用いている
が、前記母材は繊維強化プラスチックよりなる保護被覆
層3と緩衝保護層2の各径方向の線膨−張係数の関係さ
え満されておれば他の材料でもなんら問題ない。
Although fiber-reinforced plastic containing glass fibers was used in the above embodiments, it may also be carbon fibers, aluminum fibers, metal wires, or a composite of each of the above-mentioned fibers, such as glass fibers, and metal wires. Good too. However, each content must be determined by taking into consideration the mechanical strength and linear expansion coefficient of the base material. Further, a pultrusion method is used to coat the fiber-reinforced plastic, but in this method, the viscosity of the plastic base material greatly affects the pultrusion processability. Therefore, it is important to adjust the viscosity of the base material in order to perform pultrusion molding with optimal drawing resistance. To adjust the viscosity of this base material, add an appropriate amount of inorganic fine particles such as alumina, talc, calcium carbonate, clay, and zeolite in advance.
If it is blended into the base material, the above-mentioned pultrusion molding will be facilitated. Further, in the above embodiment, silicone rubber of the same family as the buffer protection layer 2 is used as the base material of the fiber reinforced plastic; There is no problem with other materials as long as the relationship between linear expansion coefficient in the direction is satisfied.

以上に述べたように本発明の強化光フアイバユニットに
おいては、保護被覆層3の径方向の線膨張係数を緩衝保
護層2の径方向の線膨張係数とほぼ等しくしであるので
、雷の地絡時にあって約400℃という高温にさらされ
ても、前記保護被覆層3がその繊維方向に割れたり、ひ
びが入ったりすることはない。しかもその機械強度はな
んら損われていない。
As described above, in the reinforced optical fiber unit of the present invention, the coefficient of linear expansion in the radial direction of the protective coating layer 3 is approximately equal to the coefficient of linear expansion in the radial direction of the buffer protective layer 2. Even when exposed to a high temperature of about 400° C. during tangling, the protective coating layer 3 will not break or crack in the fiber direction. Moreover, its mechanical strength is not impaired in any way.

〔発明の効果〕〔Effect of the invention〕

前記の如く、本発明の強化光フアイバユニットによれば
、瞬時約400℃という高温下にあっても、繊維強化プ
ラスチックからなる保護被覆層がその繊維方向にき裂を
生ずることはない。
As described above, according to the reinforced optical fiber unit of the present invention, the protective coating layer made of fiber-reinforced plastic does not crack in the direction of its fibers even under a high temperature of about 400° C. instantaneously.

それ故、高強度高耐熱性を必要とする光複合架空地線に
使用されても十分に対応でき得るものである。
Therefore, it can be satisfactorily used in optical composite overhead ground wires that require high strength and high heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す横断面図である。 ■・光フアイバ心線、2・・緩衝保護層、3・・保護被
覆層。 第1図
FIG. 1 is a cross-sectional view showing one embodiment of the present invention. ■・Optical fiber core wire, 2.・Buffer protection layer, 3.・Protective coating layer. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1) 最外層に緩衝層を有する光フアイバ心線を複数
本集合してなる集合体と、該集合体を断面はぼ円形状に
一体被覆してなる緩衝保護層と、該緩衝保護層の外側に
設ける繊維強化プラスチックよりなる保護被覆層とから
なる強化光フアイバユニット。
(1) An assembly made of a plurality of cored optical fibers having a buffer layer on the outermost layer, a buffer protection layer formed by integrally covering the assembly with a roughly circular cross section, and the buffer protection layer. A reinforced optical fiber unit consisting of a protective coating layer made of fiber-reinforced plastic provided on the outside.
(2)前記繊維強化プラスチックよりなる保護被覆層の
径方向の線膨張係数は、前記緩衝保護層の径方向の線膨
張係数とほぼ等しいことを特徴とする特許請求の範囲第
1項記載の強化光フアイバユニット。
(2) The reinforcement according to claim 1, wherein the radial linear expansion coefficient of the protective coating layer made of fiber-reinforced plastic is approximately equal to the radial linear expansion coefficient of the buffer protective layer. Fiber optic unit.
(3) 前記強化プラスチックはガラス繊維、炭素繊維
、アルミツド繊維、金属線のいずれかまたはこれらの複
合体を含む熱硬化性樹脂であることを特徴とする特許請
求の範囲第1項または第2項記載の強化光フアイバユニ
ット。
(3) The reinforced plastic is a thermosetting resin containing any one of glass fiber, carbon fiber, aluminum fiber, metal wire, or a composite thereof. Reinforced fiber optic unit as described.
JP58165736A 1983-09-08 1983-09-08 Reinforced optical fiber unit Granted JPS6057304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165736A JPS6057304A (en) 1983-09-08 1983-09-08 Reinforced optical fiber unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165736A JPS6057304A (en) 1983-09-08 1983-09-08 Reinforced optical fiber unit

Publications (2)

Publication Number Publication Date
JPS6057304A true JPS6057304A (en) 1985-04-03
JPH0130123B2 JPH0130123B2 (en) 1989-06-16

Family

ID=15818097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165736A Granted JPS6057304A (en) 1983-09-08 1983-09-08 Reinforced optical fiber unit

Country Status (1)

Country Link
JP (1) JPS6057304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015475A2 (en) * 2002-08-10 2004-02-19 Emtelle Uk Limited Optical cable for installation by blowing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811909A (en) * 1981-07-16 1983-01-22 Nippon Telegr & Teleph Corp <Ntt> Nonmetallic optical cable unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811909A (en) * 1981-07-16 1983-01-22 Nippon Telegr & Teleph Corp <Ntt> Nonmetallic optical cable unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015475A2 (en) * 2002-08-10 2004-02-19 Emtelle Uk Limited Optical cable for installation by blowing
WO2004015475A3 (en) * 2002-08-10 2004-09-23 Emtelle Uk Ltd Optical cable for installation by blowing
EP1600801A3 (en) * 2002-08-10 2006-05-31 Emtelle UK Limited Protective covering for optical fiber cable
US7136556B2 (en) 2002-08-10 2006-11-14 Emtelle Uk Limited Signal transmitting cable
EP1821124A1 (en) * 2002-08-10 2007-08-22 Emtelle UK Limited Signal transmitting cable
USRE41388E1 (en) 2002-08-10 2010-06-22 Emtelle Uk Limited Signal transmitting cable
EP1600801B1 (en) 2002-08-10 2016-04-13 Emtelle UK Limited Cable assembly with optical fibres for blowing installation
EP3073305A1 (en) * 2002-08-10 2016-09-28 Emtelle UK Limited Cable assembly for transmitting optical signals
EP3073305B1 (en) 2002-08-10 2017-08-02 Emtelle UK Limited Cable assembly for transmitting optical signals
EP3270203A1 (en) * 2002-08-10 2018-01-17 Emtelle UK Limited Signal transmitting cable

Also Published As

Publication number Publication date
JPH0130123B2 (en) 1989-06-16

Similar Documents

Publication Publication Date Title
AU2007200369B2 (en) An Electricity Transport Conductor for Overhead Lines
KR101477720B1 (en) Electrical conductor and core for an electrical conductor
CA2543111C (en) Aluminum conductor composite core reinforced cable and method of manufacture
US4763983A (en) Optical transmission cable with messenger
US10102941B2 (en) Flexible fiber and resin composite core overhead wire and production method thereof
JPS6057305A (en) Optical fiber cable
CN101404190A (en) Multifunctional composite core aluminum stranded wire and cable
CN105788738A (en) Energy efficient wire with reduced thermal knee points and the method of manufacture thereof
CN101707077A (en) Intelligent composite core for manufacturing overhead power transmission aluminum stranded wire
AU756745B2 (en) Fuse tube and method of manufacture thereof
CN106183893B (en) The manufacturing device and technique of whole compound inslation bracket applied to railway contact net
JP2001291429A (en) Overhead power line and optical fiber composite overhead earth-wire
CN1734874B (en) Equal diameter connector of power cable, and manufacturing process thereof
CN105702352A (en) High efficiency lead for reducing heat inflection point and manufacture method
KR101916231B1 (en) Central strength member for gap conductor and the method for manufacturing thereof
JPH10321047A (en) High tension wire material, and lightweight, low dip overhead wire using the same
JPS6057304A (en) Reinforced optical fiber unit
CN109346213B (en) A kind of general assembly cable and preparation method thereof
CN205428551U (en) Reduce high energy efficiency wire of hot flex point
CN112037974B (en) Composite material reinforced insulated wire and manufacturing method thereof
CN209374117U (en) A kind of high-strength weather-proof thermostatic type aerial insulated cable
JPS58100103A (en) Optical fiber composite aerial wire
JPS5836881B2 (en) optical cable
JPS61198113A (en) Optical fiber core
JPH10321051A (en) Lightweight, low dip overhead wire