JPH10321051A - Lightweight, low dip overhead wire - Google Patents

Lightweight, low dip overhead wire

Info

Publication number
JPH10321051A
JPH10321051A JP12738197A JP12738197A JPH10321051A JP H10321051 A JPH10321051 A JP H10321051A JP 12738197 A JP12738197 A JP 12738197A JP 12738197 A JP12738197 A JP 12738197A JP H10321051 A JPH10321051 A JP H10321051A
Authority
JP
Japan
Prior art keywords
wire
lightweight
overhead
resin layer
tension member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12738197A
Other languages
Japanese (ja)
Inventor
Jiro Hiroishi
治郎 廣石
Atsushi Higashiura
厚 東浦
Hideo Tomose
秀夫 伴瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12738197A priority Critical patent/JPH10321051A/en
Publication of JPH10321051A publication Critical patent/JPH10321051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight, low dip overhead wire by arranging a plurality of conductors on the outside of a tension member, formed by twisting a plurality of organic tensile strength wire materials in which the surfaces of polyparaphenylene benzobisoxazole fibers are covered with a heat resistant resin layer. SOLUTION: An organic tensile strength wire material A1 has a core made of polyparaphenylene benzobisoxazole(PBO) fibers, and the surface is covered with a heat resistance resin layer 2. A tension member is formed by twisting a plurality of organic tensile strength wire materials, and a plurality of conductors are arranged on the outside. Since the organic tensile strength wire material A1 is formed by covering the surface of the PBO fibers 1 with the heat resistant resin layer 2, light is shut off with the resin layer 2, deterioration due to light of the PBO fibers 1 is prevented, and mechanical damages are hardly received. Since the whole of the tension member is made of the organic material, it is markedly lightweight compared with a steel core, and since the PBO fibers having negative coefficient of linear expansion are used, a low dip overhead wire is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は軽量低弛度架空電線
に関し、更に詳しくは、全てが有機質材料で構成されて
いるので軽量であり、高温下に曝されても熱膨張して伸
長することはなく、更には耐候性にも優れている有機質
抗張力線材をテンションメンバとして用いることによ
り、高温下における優れた弛度抑制効果を発揮する軽量
低弛度架空電線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-weight, low-sagging overhead electric wire, and more particularly, to a light-weight and low-strength overhead electric wire, which is made of an organic material, and is thermally expanded even when exposed to high temperatures. In addition, the present invention relates to a lightweight low-slack overhead electric wire which exhibits an excellent effect of suppressing sag at high temperatures by using an organic tensile wire having excellent weather resistance as a tension member.

【0002】[0002]

【従来の技術】従来から多用されている架空送電線は、
複数本の鋼線を撚り合わせた鋼心をテンションメンバと
し、その外側に例えばAlやAl合金から成る送電線を
撚り合わせて配置した構造になっている。そして全体を
鉄塔間に高張力で張り渡して送電線路が形成される。と
ころで、架空送電線の場合、負荷電流を増大させること
により送電容量は増加する。したがって、送電容量を増
加させるためには、架空送電線に大電流を送電すること
が必要になってくる。
2. Description of the Related Art Conventionally used overhead power transmission lines are:
A steel core obtained by twisting a plurality of steel wires is used as a tension member, and a transmission line made of, for example, Al or an Al alloy is twisted and arranged outside the tension member. Then, the whole is stretched between the steel towers with high tension to form a transmission line. By the way, in the case of an overhead transmission line, the transmission capacity is increased by increasing the load current. Therefore, it is necessary to transmit a large current to the overhead transmission line in order to increase the transmission capacity.

【0003】しかしながら、上記した鋼心Al撚線の場
合、鋼心の線膨張係数は正の値であるので、負荷電流の
増加に伴う電線温度の上昇や、気候や気象条件の変動に
基づく温度上昇などにより、鋼心は熱膨張して線長が長
くなり、架空送電線の垂れ下がりが引き起こされる。し
かも、鋼心の重量は大きいので、鋼心Al撚線それ自体
が垂れ下がりやすいものになっている。
However, in the case of the above-described steel core Al stranded wire, since the linear expansion coefficient of the steel core is a positive value, the temperature of the wire is increased due to an increase in load current, and the temperature is changed based on a change in climate or weather conditions. As a result of the rise, the steel core thermally expands, the wire length becomes longer, and the overhead transmission line sags. Moreover, since the weight of the steel core is large, the steel core Al stranded wire itself tends to hang down.

【0004】このようなことから、鋼心Al撚線の場
合、架線時に、温度上昇に伴う弛度増加分を予め見込ん
で架線作業を行うか、または充分に高い鉄塔を建設する
などの処置を施すことが必要になり、そのため、その架
線・建設コストが上昇するという問題が起こってくる。
上記した鋼心に変えて、例えば、炭素繊維を強化材と
し、各種の樹脂をマトリックスとして成るFRP線材を
テンションメンバに使用した電線が知られている。
[0004] For this reason, in the case of the steel core Al stranded wire, when the wire is laid, a work such as carrying out the wire laying work in anticipation of the increase in the sag due to the temperature rise or constructing a sufficiently high steel tower is taken. It is necessary to carry out the application, which raises a problem that the overhead wire and the construction cost increase.
In place of the above-mentioned steel core, for example, there is known an electric wire in which a carbon fiber is used as a reinforcing material and an FRP wire made of various resins as a matrix is used as a tension member.

【0005】一般に上記したようなFRP線材は軽量
で、線膨張係数はさほど大きくなく、また高張力特性を
備えた素材である。しかしながら、このようなFRP線
材をテンションメンバにしても、得られた架空送電線全
体の線膨張係数は18×10-6/℃程度の値を示し、電
線温度が上昇するにつれて弛度は大きくなってくる。
[0005] Generally, the above-mentioned FRP wire is a material having a light weight, a small coefficient of linear expansion, and high tensile strength. However, even if such an FRP wire is used as a tension member, the obtained overhead transmission line has a coefficient of linear expansion of about 18 × 10 −6 / ° C., and the sag increases as the wire temperature increases. Come.

【0006】また、分担張力がテンションメンバに10
0%移行する遷移点温度以上に温度上昇したときであっ
ても、FRP線材(テンションメンバ)の伸びが生ずる
ので、温度上昇に伴って架空送電線の弛度は大きくなっ
ている。
[0006] Further, when the shared tension is applied to the tension member by 10%.
Even when the temperature rises to or above the transition point temperature at which 0% shift occurs, the FRP wire (tension member) elongates, and the sag of the overhead transmission line increases with the temperature rise.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来のテンシ
ョンメンバにおける上記した問題を解決し、高張力特性
を備え、材料全体が有機質材料で構成されるため軽量で
あり、また高温環境下においても熱膨張に基づく伸長は
起こらず、かつ変質もしない有機質抗張力線材の複数本
を撚り合わせたものをテンションメンバとする軽量低弛
度架空電線の提供を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the conventional tension member, has high tensile strength, is lightweight because the whole material is made of an organic material, and can be used in a high-temperature environment. It is an object of the present invention to provide a lightweight low-slack overhead electric wire having a tension member formed by twisting a plurality of organic tensile strength wires that do not undergo elongation due to thermal expansion and do not deteriorate.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、ポリパラフェニレンベンゾ
ビスオキサゾール繊維の表面が耐熱樹脂層で被覆された
有機質抗張力線材を複数本撚り合わせて成るテンション
メンバの外側に複数本の導体を配置したことを特徴とす
る軽量低弛度架空電線が提供される。
In order to achieve the above-mentioned object, in the present invention, a polyparaphenylene benzobisoxazole fiber is formed by twisting a plurality of organic tensile strength wires each having a surface coated with a heat-resistant resin layer. A light-weight, low-sagging overhead electric wire is provided, in which a plurality of conductors are arranged outside a tension member.

【0009】[0009]

【発明の実施の形態】まず、有機質抗張力線材について
説明する。この抗張力線材A1は、図1で示したよう
に、芯部がポリパラフェニレンベンゾビスオキサゾール
繊維(poly(p-phenylene-2,6-benzobisoxazol)fiber 、
以下、PBO繊維という)1で構成され、その表面は、
後述する耐熱樹脂層2で被覆されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an organic tensile wire will be described. The tensile strength wire A 1, as shown in FIG. 1, the core portion is polyparaphenylene benzobisoxazole fiber (poly (p-phenylene-2,6 -benzobisoxazol) fiber,
(Hereinafter referred to as PBO fiber) 1 and its surface is
It is covered with a heat-resistant resin layer 2 described later.

【0010】このPBO繊維は、次式:The PBO fiber has the following formula:

【0011】[0011]

【化1】 Embedded image

【0012】を繰り返し単位とするポリパラフェニレン
ベンゾビスオキサゾールを液晶紡糸した繊維である。こ
のPBO繊維は、引張強度(Ts)が5〜6GPa、弾
性率(E)が260〜300GPa、融点が600〜6
50℃、酸素指数が50〜55、密度(ρ)が1.5〜1.
6g/cm3、線膨張係数(α)が−6×10-6/℃程
度であって、高強度、高弾性であり、耐熱性と難燃性が
優れ、しかも軽量である。そして、線膨張係数は負の値
であるため、温度上昇に伴い熱収縮するという性質を備
えている。
Is a fiber obtained by spinning liquid crystal of polyparaphenylene benzobisoxazole having a repeating unit of This PBO fiber has a tensile strength (Ts) of 5 to 6 GPa, an elastic modulus (E) of 260 to 300 GPa, and a melting point of 600 to 6 GPa.
50 ° C., oxygen index 50-55, density (ρ) 1.5-1.5.
6 g / cm 3 , a coefficient of linear expansion (α) of about −6 × 10 −6 / ° C., high strength, high elasticity, excellent heat resistance and flame retardancy, and light weight. Since the coefficient of linear expansion is a negative value, it has a property that it contracts with increasing temperature.

【0013】しかし、このPBO繊維は、紫外線照射を
受けると、強度特性、とりわけ引張強度が経時的に低下
して抗張力性が損なわれる。このPBO繊維の弱点を克
服するため、本発明で用いる抗張力線材は、PBO繊維
の表面が耐熱樹脂層で被覆されることにより、当該樹脂
層で光を遮断してPBO繊維の光劣化を防止している。
また、耐熱樹脂層を設けることにより、例えば、何らか
の外力を受けた場合でも、その外力によってPBO繊維
が機械的な損傷を受けることを防止している。
However, when the PBO fiber is irradiated with ultraviolet rays, its strength properties, especially its tensile strength, decrease with time, and its tensile strength is impaired. In order to overcome the weaknesses of the PBO fiber, the tensile strength wire used in the present invention has the surface of the PBO fiber covered with a heat-resistant resin layer, thereby blocking light with the resin layer and preventing light deterioration of the PBO fiber. ing.
Further, the provision of the heat-resistant resin layer prevents the PBO fiber from being mechanically damaged by the external force, for example, even if it receives some external force.

【0014】このような保護層として機能する樹脂層に
は、例えば電線温度が200℃程度に上昇した場合であ
っても熱溶融や熱分解することなく、その強度特性を維
持するような耐熱樹脂が用いられる。例えば、ポリイミ
ド樹脂やポリアミドイミド樹脂のような熱硬化性樹脂を
あげることができ、また、熱可塑性ポリイミド樹脂、ポ
リエーテルエーテルケトン、ポリフェンニレンスルフィ
ド、ポリエーテルケトン、ポリテトラフルオロエチレ
ン、ポリパーフルオロエチレン、エチレンテトラフルオ
ロエチレン共重合体のような熱可塑性耐熱樹脂をあげる
ことができる。
The resin layer functioning as such a protective layer includes a heat-resistant resin which maintains its strength characteristics without being melted or thermally decomposed even when the electric wire temperature rises to about 200 ° C. Is used. For example, a thermosetting resin such as a polyimide resin or a polyamide imide resin can be given, and a thermoplastic polyimide resin, polyether ether ketone, polyphenylene sulfide, polyether ketone, polytetrafluoroethylene, polyperfluoro Thermoplastic heat-resistant resins such as ethylene and ethylene tetrafluoroethylene copolymer can be given.

【0015】前者の熱硬化性の耐熱樹脂で樹脂層を形成
する場合には、まず、未硬化の状態にある耐熱樹脂の樹
脂液を用意し、その樹脂液の中にPBO繊維を浸漬また
は連続走行させることによりPBO繊維の表面を樹脂液
で被覆する。また、未硬化の樹脂をPBO繊維に塗布し
て被覆してもよい。その後、全体を所定温度に加熱する
ことにより、樹脂液の乾燥を進めたのち前記耐熱樹脂を
熱硬化させる。その結果、PBO繊維の表面には、熱硬
化した耐熱樹脂が焼付られ、両者は一体化する。
In the case of forming the resin layer with the former thermosetting heat-resistant resin, first, a resin liquid of an uncured heat-resistant resin is prepared, and the PBO fiber is immersed or continuously immersed in the resin liquid. By running, the surface of the PBO fiber is covered with a resin liquid. Further, an uncured resin may be applied to the PBO fiber to cover it. Thereafter, by heating the whole to a predetermined temperature, the drying of the resin liquid is advanced, and the heat-resistant resin is thermally cured. As a result, the thermosetting heat-resistant resin is baked on the surface of the PBO fiber, and the two are integrated.

【0016】また、後者の熱可塑性耐熱樹脂で樹脂層を
形成する場合には、電線の製造分野では導体被覆に適用
されている押出し被覆法を適用することにより、耐熱樹
脂をPBO繊維の外周に押出被覆すればよい。すなわ
ち、耐熱樹脂を所定温度に加熱して軟化させ、通常の押
出成形機からPBO繊維とともに耐熱樹脂を連続的に押
し出して前記PBO繊維を被覆すればよい。
When the resin layer is formed of the latter thermoplastic heat-resistant resin, the heat-resistant resin is applied to the outer periphery of the PBO fiber by applying the extrusion coating method applied to the conductor coating in the field of electric wire production. Extrusion coating may be applied. That is, the heat-resistant resin may be heated to a predetermined temperature to soften the resin, and the heat-resistant resin may be continuously extruded together with the PBO fiber from an ordinary extruder to cover the PBO fiber.

【0017】このようにして形成する樹脂層の厚みは格
別限定されるものではないが、それが厚すぎると、高温
環境下においてPBO繊維は熱収縮し、樹脂層は一般に
熱膨張するので、両者の界面に熱応力が発生しはじめて
両者間の剥離現象や樹脂層への微小クラックの発生など
の現象が起こりやすくなり、また薄すぎると、上記した
問題は起こりづらくなるが、他方では保護層としての機
能低下を招き、PBO繊維の光劣化や機械的損傷を招き
やすくなる。そのため、樹脂層の厚みは100μm〜2.
5mm程度にすることが好ましい。また、この耐熱樹脂
層に紫外線吸収材を混入して、光劣化防止効果をより高
めるようにしてもよい。
The thickness of the resin layer thus formed is not particularly limited, but if it is too thick, the PBO fiber thermally contracts in a high-temperature environment, and the resin layer generally expands thermally. Thermal stress begins to occur at the interface of the resin and phenomena such as peeling between them and the occurrence of microcracks in the resin layer are likely to occur.If the thickness is too thin, the above-mentioned problems are unlikely to occur, but on the other hand, as a protective layer Of the PBO fiber, and light deterioration and mechanical damage of the PBO fiber are easily caused. Therefore, the thickness of the resin layer is 100 μm to 2.
Preferably, it is about 5 mm. Further, an ultraviolet absorber may be mixed into the heat-resistant resin layer to further enhance the effect of preventing light deterioration.

【0018】なお、本発明で用いる抗張力線材は、1本
1本のPBO繊維の外周を被覆して上記したような厚み
の樹脂層を形成してもよいが、図2で示したように、複
数本のPBO繊維1を集束し、その集束体1’の全体を
例えば耐熱樹脂の樹脂液に浸漬して各繊維1,1’の間
に樹脂を含浸することにより各繊維の表面を樹脂で被覆
して、いわゆる当該樹脂2をマトリックスとし、PBO
繊維束1’を強化材とする複合体(コンポジット)構造
2にしてもよい。
The tensile strength wire used in the present invention may cover the outer periphery of each single PBO fiber to form a resin layer having the above-mentioned thickness. However, as shown in FIG. A plurality of PBO fibers 1 are bundled, and the whole bundle 1 'is immersed in, for example, a resin solution of a heat-resistant resin to impregnate the resin between the fibers 1 and 1' so that the surface of each fiber is made of resin. Coating, so-called resin 2 as a matrix, PBO
Complex to reinforcement fiber bundles 1 '(composite) may be a structure A 2.

【0019】つぎに、本発明で用いるテンションメンバ
Bは、図3で示したように、有機質抗張力線材A1また
はA2の複数本(図では7本)を撚り合わせることによ
って製造される。このテンションメンバは、全体が有機
質材料で構成されているので従来の鋼心に比べれば著し
く軽量であり、しかも線膨張係数が負の値を示すPBO
繊維を用いているので、高温環境下に置かれても熱伸長
を起こさず弛度増加をしない。しかも、PBO繊維の外
側には耐熱樹脂から成る樹脂層が保護層として形成され
ているので、電線温度が上昇しても当該樹脂の熱劣化は
ほとんど起こらず、PBO繊維の光劣化や機械的損傷は
有効に阻止され、もって長期に亘ってテンションメンバ
として機能することができる。
Next, as shown in FIG. 3, the tension member B used in the present invention is manufactured by twisting a plurality (seven in the figure) of the organic tensile wire A 1 or A 2 . Since this tension member is entirely made of an organic material, it is significantly lighter than a conventional steel core, and has a negative linear expansion coefficient PBO.
Since the fibers are used, they do not undergo thermal expansion and do not increase in sag even when placed in a high-temperature environment. Moreover, since a resin layer made of a heat-resistant resin is formed as a protective layer on the outside of the PBO fiber, even if the temperature of the electric wire increases, the resin hardly deteriorates, and the PBO fiber deteriorates due to light and mechanical damage. Is effectively prevented, and thus can function as a tension member for a long time.

【0020】上記したテンションメンバBを心材とし、
その外側に複数本の導体を配置することにより、本発明
の軽量低弛度架空電線が得られる。導体としては、従来
から架空送電線の導体として用いられているものであれ
ば何であってもよく、例えばアルミニウム導体やアルミ
ニウム合金の導体などを好適なものとしてあげることが
できる。
The above-mentioned tension member B is used as a core material,
By arranging a plurality of conductors on the outside, the lightweight low-loose overhead wire of the present invention can be obtained. As the conductor, any conductor may be used as long as it has been conventionally used as a conductor of an overhead transmission line. For example, an aluminum conductor or a conductor of an aluminum alloy can be used as a suitable conductor.

【0021】この電線の場合、テンションメンバBは前
記したように軽量でかつ高温環境下における弛度増加を
起こしづらいので、従来の鋼心Al撚線に比べて著しく
軽量であり、かつ大きな負荷電流を流して電線温度が上
昇した場合であっても、大きな弛度増加を招かない。こ
の軽量低弛度架空電線としては、例えば図4(a)およ
び図4(b)で示したように、図3で示したテンション
メンバBを芯材とし、その外側に複数本の導体3を撚り
合わせて配置した構造のものC1,C2をあげることがで
きる。
In the case of this electric wire, the tension member B is lightweight as described above and is unlikely to cause an increase in the sag in a high-temperature environment. Does not cause a large increase in the sag. As shown in FIG. 4 (a) and FIG. 4 (b), for example, as shown in FIG. 4 (a) and FIG. 4 (b), the tension member B shown in FIG. C 1 and C 2 having a structure of being twisted and arranged can be given.

【0022】また、この軽量低弛度架空電線の場合、図
5で示したように、前記したテンションメンバBと導体
3とを、それらが互いに接触しないように平行に配列
し、テンションメンバBの全体表面と導体3の表面の双
方をポリ塩化ビニルやポリエチレンのような樹脂で被覆
して被覆層4を形成することにより両者を一体化した構
造のものC3であってもよい。
Further, in the case of this lightweight low-relaxation overhead electric wire, as shown in FIG. 5, the tension member B and the conductor 3 are arranged in parallel so that they do not come into contact with each other. it may be a C 3 ones are integrated both structures by both whole surface and the surface of the conductor 3 to form a resin coated covering layer 4, such as polyvinyl chloride or polyethylene.

【0023】この電線C3の場合、負荷電流が増加して
導体3の温度上昇が起こっても、テンションメンバBへ
の熱伝達は被覆層4によってある程度緩和されるので、
テンションメンバBへの熱負荷が軽減されることにな
り、弛度抑制硬化は更に良好となる。
In the case of the electric wire C 3 , even if the load current increases and the temperature of the conductor 3 increases, the heat transfer to the tension member B is moderated to some extent by the coating layer 4.
The heat load on the tension member B is reduced, and the sag suppression hardening is further improved.

【0024】[0024]

【実施例】【Example】

(1)有機質抗張力線 東洋紡(株)製のPBO繊維(線膨張係数:−6×10
-6/℃)を2000本程度集束して太さ0.79mm程度
の集束体とし、この集束体を未硬化ポリイミド樹脂の中
に連続走行させたのちダイスに通して余着樹脂を除去
し、更に加熱炉に導入してポリイミド樹脂の熱硬化を行
い、図2で示した複合体構造の線材A2とした。線材の
線径は0.85mm程度であった。これを線材1とする。
(1) Organic tensile strength line Toyobo Co., Ltd. PBO fiber (linear expansion coefficient: -6 × 10
-6 / ° C.) to form a bundle having a thickness of about 0.79 mm, which is continuously run through an uncured polyimide resin, and then passed through a die to remove excess resin. by thermal curing of the polyimide resin by introducing further heating furnace, and a wire a 2 of the composite structure shown in FIG. The wire diameter of the wire was about 0.85 mm. This is referred to as wire 1.

【0025】乾燥後、線材1の一部をばらして各PBO
繊維の表面を観察したところ、各PBO繊維の間には熱
硬化したポリイミド樹脂が介在した状態になっており、
PBO繊維の表面はいずれもポリイミド樹脂で被覆され
ていることが確認された。得られた線材1につき、線膨
張係数,引張強度,弾性係数,単位長さ当りの重量を測
定した。
After drying, a part of the wire 1 is separated and each PBO
When observing the surface of the fibers, a thermoset polyimide resin was interposed between each PBO fiber,
It was confirmed that the surfaces of the PBO fibers were all covered with the polyimide resin. With respect to the obtained wire 1, the coefficient of linear expansion, tensile strength, elastic modulus, and weight per unit length were measured.

【0026】また、次のようにして線材1の光劣化を調
べた。すなわち、紫外線照射試験を行い、紫外線照射時
間と線材1の引張強度との関係を測定し光劣化の経時変
化を調べた。以上の結果を表1に示した。表中の引張強
度は紫外線照射前の引張強度を100としたときの相対
値で示してある。
The light deterioration of the wire 1 was examined as follows. That is, an ultraviolet irradiation test was performed, the relationship between the ultraviolet irradiation time and the tensile strength of the wire 1 was measured, and the change over time of light deterioration was examined. Table 1 shows the above results. The tensile strength in the table is shown as a relative value when the tensile strength before ultraviolet irradiation is set to 100.

【0027】線材1の製造に用いたPBO繊維の集束体
に対し、エチレンテトラフルオロエチレン共重合体の押
出被覆を行って、線径1.1mmの線材を製造した。この
場合も線材をばらしてPBO繊維の表面を観察したとこ
ろ、表層部のPBO繊維は上記共重合体で被覆されてい
る状態になっていた。これを線材2とする。この線材2
についても、線材1の場合と同様に諸特性と光劣化の状
態とを調べた。その結果を表1に示した。
The bundle of PBO fibers used in the production of the wire 1 was extrusion-coated with an ethylene tetrafluoroethylene copolymer to produce a wire having a diameter of 1.1 mm. Also in this case, when the surface of the PBO fiber was observed by separating the wire, the PBO fiber in the surface layer was in a state of being covered with the copolymer. This is referred to as wire 2. This wire 2
As for the wire rod 1, various characteristics and the state of light deterioration were examined as in the case of the wire rod 1. The results are shown in Table 1.

【0028】なお、比較のために、線材1の製造に用い
たPBO繊維の集束体それ自体についても、諸特性と光
劣化の状態とを調べ、その結果を比較例線材として表1
に示した。
For comparison, various characteristics and the state of light deterioration of the bundle of PBO fibers used in the production of the wire 1 were also examined, and the results were used as a comparative example wire as shown in Table 1.
It was shown to.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、本発明の線材
1,2は、線膨張係数は著しく小さく高温環境下で熱伸
長しない材料である。そして、単位長さ当りの質量も著
しく小さく、極めて軽量であることがわかる。これは、
強化材がPBO繊維から成るためである。また、これら
の線材1,2では、上記PBO繊維が樹脂層で保護され
ているので、光劣化は抑制され、充分に屋外で使用する
抗張力線材として長期に亘って実働可能であることがわ
かる。
As is apparent from Table 1, the wires 1 and 2 of the present invention are materials having a remarkably low coefficient of linear expansion and not thermally elongating under a high temperature environment. Further, it can be seen that the mass per unit length is extremely small, and the weight is extremely light. this is,
This is because the reinforcement is made of PBO fibers. Further, in these wires 1 and 2, since the PBO fiber is protected by the resin layer, light deterioration is suppressed, and it can be seen that the wire can be sufficiently used as a tensile wire used outdoors for a long period of time.

【0031】線材1,2をそれぞれ7本撚り合わせ、そ
の外周をエチレンテトラフルオロエチレン共重合体で被
覆して線径4.3mm程度の線材とし、それぞれの線材を
更に7本撚り合わせて芯材とし、その周囲に線径4.5m
m相当のアルミニウム導体を26本配置してそれらを撚
り合わせて、図4で示したような架空電線C2にした。
Seven wires 1 and 2 are twisted, and the outer periphery thereof is covered with an ethylene tetrafluoroethylene copolymer to obtain a wire having a wire diameter of about 4.3 mm. And a wire diameter of 4.5 m around it
The m equivalent aluminum conductors arranged 26 present by twisting them, and the overhead conductors C 2 as shown in FIG.

【0032】得られた2本の架空電線につき、下記の架
線設計条件下において、径間長(S)を表2のように変
化させ、電線温度が20℃、200℃になったときの弛
度を計算した。 架線設計条件:最大使用張力25.5GPa、高温季の温
度15℃、風圧10.2MPa、低温季−15℃、風圧5.
1MPa、被氷6mm、比重0.9。
The span length (S) of the obtained two overhead electric wires was changed as shown in Table 2 under the following overhead wire design conditions, and the slack when the electric wire temperature became 20 ° C. and 200 ° C. The degree was calculated. Overhead wire design conditions: Maximum operating tension 25.5 GPa, high temperature season temperature 15 ° C, wind pressure 10.2MPa, low temperature season -15 ° C, wind pressure 5.
1 MPa, ice coverage 6 mm, specific gravity 0.9.

【0033】比較のために、断面構造は同じである従来
のインバ芯アルミニウム撚線についても同様の計算を行
った。以上の結果を一括して表2に示した。
For comparison, the same calculation was performed for a conventional invar core aluminum stranded wire having the same sectional structure. The above results are shown in Table 2 collectively.

【0034】[0034]

【表2】 [Table 2]

【0035】表2から明らかなように、本発明の架空電
線は、電線温度が高くなっても弛度増加は抑制されてい
る。例えば、径間長が500mの場合、同じ条件でイン
バ電線と比較しても、温度200℃のときには3.0mの
弛度差が発生している。
As is clear from Table 2, the overhead wire according to the present invention suppresses the increase in the sag even when the wire temperature increases. For example, when the span length is 500 m, a sag difference of 3.0 m occurs at a temperature of 200 ° C. even when compared with an Invar electric wire under the same conditions.

【0036】[0036]

【発明の効果】以上の説明で明らかなように、本発明で
用いる有機質抗張力線材は、線膨張係数が負の値を示す
PBO繊維を強化材としているので、高温環境下におけ
る弛度抑制効果が良好であり、架空送電線のテンション
メンバとして有用である。そして、このPBO繊維の表
面は耐熱樹脂の層で被覆されているので、光劣化や機械
的損傷からも守られている。
As is apparent from the above description, since the organic tensile strength wire used in the present invention uses PBO fiber having a negative linear expansion coefficient as a reinforcing material, the effect of suppressing the sag in a high temperature environment is obtained. Good and useful as a tension member for overhead transmission lines. Since the surface of the PBO fiber is covered with a layer of heat-resistant resin, it is protected from light deterioration and mechanical damage.

【0037】したがって、この抗張力線材の複数本を撚
り合わせてテンションメンバとした本発明の架空電線
は、軽量であり、かつ負荷電流の増加による電線温度の
上昇が起こっても弛度増加は少ない。そのため、その架
空送電線は鉄塔への負担を軽減することができ、しかも
鉄塔を低く建設することもできる。すなわち、逆にいえ
ば、既設の鉄塔に本発明の軽量低弛度架空電線を架線し
ても、当該電線に従来よりも大きな負荷電流を流して送
電容量を高めることができる。
Therefore, the overhead electric wire of the present invention, which is a tension member formed by twisting a plurality of the tensile strength wires, is lightweight, and has a small increase in sag even if the wire temperature increases due to an increase in load current. Therefore, the overhead power transmission line can reduce the load on the tower, and can also lower the tower. In other words, conversely, even if the light-weight, low-sagging overhead electric wire of the present invention is installed in an existing steel tower, a larger load current can be applied to the electric wire than in the past to increase the power transmission capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の架空電線に用いる有機質抗張力線材A
1を示す断面図である。
FIG. 1 shows an organic tensile strength wire A used for an overhead electric wire according to the present invention.
FIG. 2 is a sectional view showing 1 .

【図2】別の有機質抗張力線材A2の例を示す断面図で
ある。
Is a sectional view showing an example of Figure 2 another organic tensile strength wire A 2.

【図3】本発明の架空電線に用いるテンションメンバB
を示す断面図である。
FIG. 3 shows a tension member B used for an overhead electric wire according to the present invention.
FIG.

【図4】本発明の軽量低弛度架空電線C1,C2を示す断
面図である。
FIG. 4 is a cross-sectional view showing the lightweight low-sagging overhead electric wires C 1 and C 2 of the present invention.

【図5】本発明の別の軽量低弛度架空電線C3を示す断
面図である。
5 is a cross-sectional view showing another light weight low sag overhead conductors C 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 PBO繊維 1’ PBO繊維1の集束体 2 耐熱樹脂の層 3 アルミニウム導体 4 樹脂の被覆層 DESCRIPTION OF SYMBOLS 1 PBO fiber 1 'Bundle of PBO fiber 1 2 Layer of heat resistant resin 3 Aluminum conductor 4 Resin coating layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリパラフェニレンベンゾビスオキサゾ
ール繊維の表面が耐熱樹脂層で被覆された有機質抗張力
線材を複数本撚り合わせて成るテンションメンバの外側
に、複数本の導体を配置したことを特徴とする軽量低弛
度架空電線。
1. A plurality of conductors are arranged outside a tension member formed by twisting a plurality of organic tensile strength wires each having a surface of a polyparaphenylene benzobisoxazole fiber covered with a heat resistant resin layer. Lightweight, low sag overhead wire.
【請求項2】 前記テンションメンバを、複数本撚り合
わせて芯材とし、その外側に複数本の導体を配置したこ
とを特徴とする軽量低弛度架空電線。
2. A lightweight low-loose overhead electric wire, wherein a plurality of the tension members are twisted to form a core material, and a plurality of conductors are arranged outside the core member.
【請求項3】 前記導体がアルミニウムまたはアルミニ
ウム合金から成る請求項1または2の軽量低弛度架空電
線。
3. The light-weight, low-sagging overhead electric wire according to claim 1, wherein the conductor is made of aluminum or an aluminum alloy.
【請求項4】 前記テンションメンバと前記導体とが非
接触状態で略平行に配列され、全体は樹脂で被覆されて
一体化している請求項1〜3の軽量低弛度架空電線。
4. The light-weight, low-sagging overhead electric wire according to claim 1, wherein the tension member and the conductor are arranged substantially in parallel in a non-contact state, and are entirely covered with resin to be integrated.
【請求項5】 前記耐熱樹脂層が、ポリイミド樹脂の焼
付け層である請求項1〜4の軽量低弛度架空電線。
5. The lightweight, low-loose overhead wire according to claim 1, wherein the heat-resistant resin layer is a baked layer of a polyimide resin.
【請求項6】 前記耐熱樹脂層が、熱可塑性ポリイミド
樹脂、フッ素系樹脂、ポリエーテルエーテルケトン、ポ
リフェニレンスルフィドの群から選ばれるいずれか1種
の熱可塑性樹脂の押出被覆層である請求項1〜4の軽量
低弛度架空電線。
6. The heat-resistant resin layer is an extrusion coating layer of any one of thermoplastic resins selected from the group consisting of thermoplastic polyimide resin, fluorine resin, polyetheretherketone, and polyphenylene sulfide. 4. Lightweight, low sag overhead wire.
JP12738197A 1997-05-16 1997-05-16 Lightweight, low dip overhead wire Pending JPH10321051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12738197A JPH10321051A (en) 1997-05-16 1997-05-16 Lightweight, low dip overhead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12738197A JPH10321051A (en) 1997-05-16 1997-05-16 Lightweight, low dip overhead wire

Publications (1)

Publication Number Publication Date
JPH10321051A true JPH10321051A (en) 1998-12-04

Family

ID=14958590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12738197A Pending JPH10321051A (en) 1997-05-16 1997-05-16 Lightweight, low dip overhead wire

Country Status (1)

Country Link
JP (1) JPH10321051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338799B1 (en) 1998-11-11 2002-01-15 Mitsubishi Materials Corporation Method for recovering phosphate from sludge and system therefor
WO2007129624A1 (en) * 2006-05-01 2007-11-15 Nippon Sheet Glass Company, Limited Reinforcing cord, method for producing the same, and product using the reinforcing cord
CN109142080A (en) * 2018-10-10 2019-01-04 张维国 Silk thread on-line measuring device and online test method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338799B1 (en) 1998-11-11 2002-01-15 Mitsubishi Materials Corporation Method for recovering phosphate from sludge and system therefor
WO2007129624A1 (en) * 2006-05-01 2007-11-15 Nippon Sheet Glass Company, Limited Reinforcing cord, method for producing the same, and product using the reinforcing cord
JP4843032B2 (en) * 2006-05-01 2011-12-21 日本板硝子株式会社 Reinforcing cord, manufacturing method thereof, and product using the reinforcing cord
CN109142080A (en) * 2018-10-10 2019-01-04 张维国 Silk thread on-line measuring device and online test method
CN109142080B (en) * 2018-10-10 2023-12-29 张维国 Silk thread on-line detection device and on-line detection method

Similar Documents

Publication Publication Date Title
AU2007200369B2 (en) An Electricity Transport Conductor for Overhead Lines
EP1506085B1 (en) Aluminum conductor composite core reinforced cable and method of manufacture
US3980808A (en) Electric cable
US20050129942A1 (en) Aluminum conductor composite core reinforced cable and method of manufacture
US4944570A (en) Fiber optic cable having an extended elongation window
US20070128435A1 (en) Aluminum conductor composite core reinforced cable and method of manufacture
JPS6057305A (en) Optical fiber cable
US20120170900A1 (en) Aluminum Alloy Conductor Composite Reinforced for High Voltage Overhead Power Lines
CN105788738A (en) Energy efficient wire with reduced thermal knee points and the method of manufacture thereof
US20180090241A1 (en) Flexible fiber and resin composite core overhead wire and production method thereof
US20050205287A1 (en) Electrical conductor cable and method for forming the same
JPH10321047A (en) High tension wire material, and lightweight, low dip overhead wire using the same
CN105702352A (en) High efficiency lead for reducing heat inflection point and manufacture method
JPH10321048A (en) Tension member and lightweight/low slackness overhead wire using the tension member
JP3845175B2 (en) Composite wire and lightweight low-sag overhead electric wire using the same
JPH10321051A (en) Lightweight, low dip overhead wire
US20200411210A1 (en) Overhead electrical cables and method for fabricating same
JPH10321049A (en) Composite strand and manufacture thereof and lightweight/low slackness overhead wire using the compound stand
CN105589156A (en) Optical fiber equipped transmission cable
CN220252921U (en) Photoelectric composite overhead cable
JPH10321046A (en) Composite strand and manufacture thereof and lightweight/low slackness overhead wire using composite strand
RU226362U1 (en) Insulated carrying cable for overhead contact network
CN217468052U (en) High and low temperature resistant cable for unmanned aerial vehicle
CN218729956U (en) Electromagnetic wire for DHS hybrid system
CN220709984U (en) High-temperature-resistant high-pressure-resistant crosslinked cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

RD03 Notification of appointment of power of attorney

Effective date: 20050916

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Effective date: 20051128

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Effective date: 20060522

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613