JPS6057253B2 - Signal transmission method using power lines - Google Patents

Signal transmission method using power lines

Info

Publication number
JPS6057253B2
JPS6057253B2 JP5014776A JP5014776A JPS6057253B2 JP S6057253 B2 JPS6057253 B2 JP S6057253B2 JP 5014776 A JP5014776 A JP 5014776A JP 5014776 A JP5014776 A JP 5014776A JP S6057253 B2 JPS6057253 B2 JP S6057253B2
Authority
JP
Japan
Prior art keywords
signal
power
line
lines
core wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5014776A
Other languages
Japanese (ja)
Other versions
JPS52132716A (en
Inventor
勲 島田
晋典 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5014776A priority Critical patent/JPS6057253B2/en
Publication of JPS52132716A publication Critical patent/JPS52132716A/en
Publication of JPS6057253B2 publication Critical patent/JPS6057253B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5466Systems for power line communications using three phases conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 本発明は、電力路線を用いた信号伝送方式に係り、そ
の目的とするところは信号漏洩防止フィルタを小型化し
て構成することができ、しかも信号伝送系のSN比を高
くとることがてき、系の信頼性を向上することができる
電力路線を用いた信号伝送方式を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal transmission system using a power line, and its purpose is to miniaturize and configure a signal leakage prevention filter, and to reduce the SN ratio of the signal transmission system. It is an object of the present invention to provide a signal transmission method using a power line that can reduce power consumption and improve system reliability.

従来の電力線搬送による信号伝送の例を第11図に示
す。
FIG. 11 shows an example of signal transmission using conventional power line carriers.

第11図に於て10は引込単三ケーブル、Boはリミッ
ター、Fは信号漏洩防止用単三フィルター、Aは分電盤
、玖〜B5はそれぞれ分岐回路1、、1、の保護用ブレ
ーカーで、この従来例にあつては、11、15は照明回
路、12、14は100Vコンセント分岐回路、1aは
200V専用コンセント分岐回路である。又、さらに第
11図においてR、、、R、3、R2、、R。、、R。
2、R、Oは搬送信号送信器、T22、T。
In Figure 11, 10 is the lead-in AA cable, Bo is the limiter, F is the AA filter for preventing signal leakage, A is the distribution board, and Ku to B5 are the protective breakers for branch circuits 1, 1, and 1, respectively. In this conventional example, 11 and 15 are lighting circuits, 12 and 14 are 100V outlet branch circuits, and 1a is a 200V exclusive outlet branch circuit. Furthermore, in FIG. 11, R,...,R,3,R2,,R. ,,R.
2, R, O are carrier signal transmitters, T22, T.

、、T52は搬送信号送信器、Cl、C2、、Cs、、
Co、、C。。は差込コンセント部であり、L、、、L
1291439lj219L53は照明負荷、L219
Lf319L42はコンセント負荷である。しカルてこ
のような第11図に示す構成で屋内電力線搬送による信
号伝送を行う場合、2芯線よりなる電力線a、cにより
電力の伝送と信号の伝送とを行うものであるが、この場
合の信号の場合と雑音レベルの関係を第12図により検
討する。第12図において、Sは商用電力供給源、Tj
は送信器、Rkは受信器、CtJ、Crkは夫々結合コ
ンデンサ(LC共振型結合器でも良い)、Ltj、Lr
kは結合トランスを示し、Liは電力線a、c間に接続
された高雑音の低インピーダンス負荷である。又、線路
上の矢印は高周波電流の流れる方向を示し、実線及び破
線はそれぞれ雑音電流及び信号電流を示すものである。
この第12図の従来配線系では、図の如く雑音電流と信
号電流とがそれぞれ干渉し合うよう流れると共に、低イ
ンピーダンス負荷Liに信号電流が流れ込むため、受信
器Rkへの信号が減衰し、以下第14図で説明するよう
なレベル関係となる。すなわち電気設備技術基準あ条又
は、内線規程第1章186節によつて330KH2以下
の周波帯で第13図のような測定方法に基づき、他の電
線路に漏洩する高周波電流の許容限度は、1mwを0d
Bとして−3(ロ)(1μw)以下となるよう定められ
ている。第13図において、Wは高周波を利用した電気
機械器具、Lは高周波帯でハイインピーダンスとなる装
置として用いたチョークコイル、HPFは60Hz又は
50Hz阻止用の高域p波器、LMはインピーダンス7
5Ωの選択レベル計、MTは1次16Ω、2次75Ωの
整合変成器であり、電力線路A,cに他の高周波利用設
備を接続したとき、線間の信号漏洩レベルがLp以下に
なれば良い。すなわち第13図のLpレベルが、この値
以下を満足するよう適当な信号漏洩防止フィルタFが必
要となるわけである。今、送信器(第11図回路におい
てT22,T,l,T52、第12図回路においてTJ
等)から送出される信号レベルをSPl受信器(第11
図回路においてRll,Rl3・・・・・・第12図回
路においてRk等)の受信レベルをRPl屋内電力線の
負荷機器Li等から発生する雑音レベルをNPとすると
、一般に屋内電力線では、低インピーダンスを示す負荷
機器が、数多く存在するため、送信器Tjから受信器R
kに到る信号経路内での信号減衰が大きく、又高い雑音
レベルの雑音発生負荷Liが数多くあるため雑音レベル
Npはかなり高い。このような関係を示す例が第14図
であるが、以上のことから信号受信レベルRp〉雑音レ
ベルNpを満足させるためには、受信レベルSpはかな
り高い値が要求される。従つて高レベルの送信信号を、
規制値レベルLpレベルに下げるために第14図に示す
(Sp上p)レベルのような大きな信号漏洩防止特性を
持つフィルターFが必要となる。ところがこのようなフ
ィルターFの形状は、この(Sp上p)レベルが大きけ
れば大きい程極端に形状が大きくなり、分電盤A内に於
て広いスペースを必要として全体のコストも高くなる他
、広い周波帯域で伝送しようとする場合は、広帯.域、
高減衰度のフィルター特性が要求されるがフィルターF
に流れる商用周波電流値が、例えば単三60A等と大き
いためにラインに挿入されるコイル等が大きくなり、実
用的な形状寸法で設計できなくなつてしまうのが現状で
ある。本発明は上述の点に鑑みて提供せるものであつて
、従来の屋内電力線搬送による信号伝送方式の欠点をカ
バーすると共に同一電気工事レベルで配線を可能にした
新しい屋内信号伝送方式を提供しようとするものであり
、その構成例を第1図に示す。
, , T52 is a carrier signal transmitter, Cl, C2, , Cs, .
Co,,C. . is the plug outlet part, L, , L
1291439lj219L53 is lighting load, L219
Lf319L42 is an outlet load. In the case of signal transmission using indoor power line carrier with the configuration shown in Fig. 11, power transmission and signal transmission are carried out using two-core power lines a and c. The relationship between the signal and the noise level will be discussed with reference to FIG. In FIG. 12, S is a commercial power supply source, Tj
is a transmitter, Rk is a receiver, CtJ and Crk are coupling capacitors (LC resonant couplers may also be used), Ltj, Lr
k indicates a coupling transformer, and Li is a high-noise, low-impedance load connected between power lines a and c. Further, arrows on the line indicate the direction in which high-frequency current flows, and solid lines and broken lines indicate noise current and signal current, respectively.
In the conventional wiring system shown in Fig. 12, the noise current and the signal current flow so as to interfere with each other as shown in the figure, and the signal current flows into the low impedance load Li, so the signal to the receiver Rk is attenuated, and as follows: The level relationship is as explained in FIG. 14. In other words, according to Chapter 1, Section 186 of the Electrical Equipment Technical Standards and Internal Line Regulations, the permissible limit for high-frequency current leaking into other electrical lines in the frequency band of 330KH2 or less, based on the measurement method shown in Figure 13, is as follows: 1mw to 0d
It is specified that B is -3 (b) (1 μw) or less. In Fig. 13, W is an electrical machine device that uses high frequencies, L is a choke coil used as a device with high impedance in a high frequency band, HPF is a high-frequency p-wave filter for blocking 60Hz or 50Hz, and LM is an impedance of 7.
The 5Ω selection level meter, MT, is a matching transformer with primary 16Ω and secondary 75Ω, and when other high frequency equipment is connected to power lines A and c, if the signal leakage level between the lines is below Lp. good. That is, an appropriate signal leakage prevention filter F is required so that the Lp level shown in FIG. 13 satisfies this value or less. Now, the transmitter (T22, T, l, T52 in the circuit of Figure 11, TJ in the circuit of Figure 12)
etc.), the signal level sent out from the SPl receiver (11th
In the circuit shown in the figure, the reception level of Rll, Rl3... Rk in the circuit shown in Figure 12) is RP1, and the noise level generated from the load equipment Li, etc. of the indoor power line is NP.In general, indoor power lines use low impedance. Since there are a large number of load devices shown in
The noise level Np is quite high because the signal attenuation in the signal path leading to k is large and there are many noise generating loads Li with high noise levels. An example showing such a relationship is shown in FIG. 14. From the above, in order to satisfy the condition that signal reception level Rp>noise level Np, the reception level Sp is required to have a fairly high value. Therefore, the high level transmission signal,
In order to lower the signal to the regulation value level Lp level, a filter F having a large signal leakage prevention characteristic as shown in FIG. 14 (Sp above p) is required. However, the shape of such a filter F becomes extremely large as the (Sp above p) level increases, and a large space is required in the distribution board A, which increases the overall cost. If you want to transmit over a wide frequency band, use broadband. area,
Although filter characteristics with high attenuation are required, Filter F
The current value of the commercial frequency current flowing through the line is large, for example 60A for AA batteries, so the coils inserted into the line become large, making it impossible to design them with practical dimensions. The present invention has been provided in view of the above points, and aims to provide a new indoor signal transmission method that overcomes the drawbacks of the conventional signal transmission method using indoor power line carriers and enables wiring at the same electrical construction level. An example of its configuration is shown in FIG.

第1図に於ける記号はすべて第11図の従来例に対応す
るものであるが、異なる点は、電力ケーブル線が3芯で
構成されている点である。この第1図に示す実施例では
、実線周に電力が供給され、破線が信号線の一つとして
用いられている。3芯の電力供給路の断面図例を第4図
乃至第7図に示す。
All the symbols in FIG. 1 correspond to the conventional example shown in FIG. 11, but the difference is that the power cable line is composed of three cores. In the embodiment shown in FIG. 1, power is supplied along the solid line, and the broken line is used as one of the signal lines. Examples of cross-sectional views of three-core power supply paths are shown in FIGS. 4 to 7.

第4図は、3芯VVFケーブル、第5図は3芯キヤブタ
イヤケーブル、第6図は3芯レーlル状配線ダクト、第
7図はVVFケーブルの1芯b線を信号伝送用として細
くしたもので、2本の電力用芯線A,cを結ぶ線分(X
軸上)の垂直2等分線上(中点0を通るY軸上)に信号
用芯線bを配置しており、第4図乃至第7図の各図にお
いてA,b,c,はそれぞれ導体である。第2図は、こ
のような電力線(3芯A,b,c線)を用いた場合の信
号送受の一例を示すものであつて、この第2図実施例は
第12図の従来例に対応するものであり、以下この第2
図実施例により信号と″雑音とのレベルの関係について
説明する。第2図においてSは商用電力供給源、Tjは
送信器、Rkは受信器、Ctjl,Ctj2及びCrk
2は夫々結合コンデンサで、送信器TJの信号出力端及
び受信器Rkの信号入力端の一方がこれら結合コンデン
サCtjl,Cti,及びCrkl,Crk2を介して
電力用芯線であるところのa線、c線にそれぞれ接続さ
れている。結合部はこれらコンデンサに代えてLC共振
型結合器を用いても良い。また第12図回路の場合と同
様にLiは電力線A,c間に接続された高雑音の高イン
ピーダンス負荷を示し、線路上の矢印は高周波電流の流
れる方向を示すものてあり、同図中実線及び破線はそれ
ぞれ雑音電流及び信号電流の流れを示すものである。か
くて第2図において、A,c線間に商用電力を流し、b
線とA,c線間に結合部を介して信号を流す場合、結合
部を構成する結合コンデンサCtjl,Ctj2及びC
rkl,Crk2をそれぞれ同一値に選ぶことにより、
図示のように、A,c線に略等しい同一方向の信号電流
が流れることになり、A,c線間に高周波信号の漏洩電
位が殆んど発生しない。また、b線をA,c線を結ぶ線
分の垂直二等分線上に配置することにより、A,c線に
流れる互いに逆向きの商用電力電流によるb線へお誘導
雑音電流がキャンセルされて送受信器Tj,Rkの内部
の信号取出経路には雑音電流が流れなくなる。この時の
信号、雑音レベルの関係を第3図に示す。しかして第3
図に於てSpレベルはA,c線とb線との間に加えられ
る受信信号レベル、Rpは受信レベル、Npは電線路の
非対称や結合コンデンサ値の差等によつてA,c線との
間に誘導される雑音レベル、Sp″は同様の理由で、A
,c線間に誘導される信号漏洩レベル、Lpは第14図
と同様の法規制レベルである。ここに本発明に係る伝送
系では、誘導雑音がキャンセルされるようにA,c線と
b線が対称配置(A,c線を結ぶ線の垂直二等分線上に
b線を配置)されており、信号路線における雑音レベル
Npが低くなるので、信号送信レベルSpを低くしても
良く、さらに、電力線路であるA,c線にそれぞれ流れ
る信号電流は略等しい同一方向の電流になつており、線
路インピーダンスによる電圧降下が等しくなるので、A
,c線間に発生する信号漏洩電圧は殆ど0となり、A,
c線は一本の信号線と見なせることになる。したがつて
、電力線路への信号漏洩レベルSp″が極めて小さくな
り、この信号漏洩レベルSp″と法規制レベルLpとの
レベル差(Sp″上p)は非常に小さくなる。上述のよ
うに、信号送信レベルSpを小さくでき、しかも、信号
漏洩レベルSp″を極めて小さくできるため信号漏洩防
止フィルターFの減衰特性は、極めて小型、安価な構成
で得られ、楊合によつては不要となるものであり、又広
い周波帯にわたつて伝送が可能となる。一方このような
3芯ケーブルや3芯レール状配線ダクトの線材コスト及
び配線費用は、2芯のケーブルや2芯配線ダクトに比べ
、それ程多くはかがらず信号漏洩防止フィルターFを含
めた全体的なシステムコストは、2芯系の電力線搬送の
楊合より安く実現できる。又、信号伝送路として電力線
と分離し専用の通信線を配線する場合も多く見受けられ
るが、この場合は通信線の配線工事が、電力線(■VF
?ケーブル等)の配線工事と別に行われ、従つて別の専
用の線材が必要なことから配線コストが本発明の場合に
比べかなり高くなる問題がある。なお上述の説明におい
ては、3芯の電力線を用いる場合について述べたが、4
芯の多芯電力線の場合にも同様の効果が期待てきるもの
である。
Figure 4 shows a 3-core VVF cable, Figure 5 shows a 3-core cab tire cable, Figure 6 shows a 3-core rail-shaped wiring duct, and Figure 7 shows a 1-core B line of the VVF cable used for signal transmission. A line segment connecting two power core wires A and c (X
The signal core wire b is placed on the perpendicular bisector (on the Y-axis passing through the midpoint 0) of It is. Figure 2 shows an example of signal transmission and reception when using such power lines (three-core A, b, and c lines), and the embodiment in Figure 2 corresponds to the conventional example in Figure 12. Below, this second
The relationship between the level of a signal and "noise" will be explained using an example in the figure. In FIG. 2, S is a commercial power supply source, Tj is a transmitter, Rk is a receiver, Ctjl, Ctj2, and Crk.
2 are coupling capacitors, and one of the signal output terminal of the transmitter TJ and the signal input terminal of the receiver Rk is connected to the power core wire a and c through the coupling capacitors Ctjl, Cti, and Crkl, Crk2, respectively. connected to each line. Instead of these capacitors, an LC resonant coupler may be used as the coupling part. Also, as in the case of the circuit in Figure 12, Li indicates a high-noise, high-impedance load connected between power lines A and C, and the arrows on the line indicate the direction in which high-frequency current flows, and the solid line in the figure and broken lines indicate the flow of noise current and signal current, respectively. Thus, in Figure 2, commercial power is passed between lines A and c, and
When a signal is passed through a coupling part between the line and the A, c line, the coupling capacitors Ctjl, Ctj2 and C that constitute the coupling part are
By selecting the same values for rkl and Crk2,
As shown in the figure, substantially equal signal currents in the same direction flow through the A and c lines, and almost no leakage potential of high-frequency signals occurs between the A and c lines. In addition, by placing the b line on the perpendicular bisector of the line connecting the A and c lines, the noise current induced into the b line by the commercial power currents flowing in the A and c lines in opposite directions is canceled. Noise current no longer flows through the signal extraction paths inside the transceivers Tj and Rk. The relationship between the signal and noise level at this time is shown in FIG. However, the third
In the figure, the Sp level is the received signal level applied between the A, C lines and the B line, Rp is the received signal level, and Np is the level of the received signal applied between the A, C lines and the B line due to the asymmetry of the electric line or the difference in coupling capacitor value. For the same reason, the noise level Sp'' induced during A
The signal leakage level Lp induced between the , c lines is the same legal regulation level as shown in FIG. In the transmission system according to the present invention, the A, c and b lines are arranged symmetrically (the b line is arranged on the perpendicular bisector of the line connecting the A and c lines) so that induced noise is canceled. Since the noise level Np in the signal line is lowered, the signal transmission level Sp may be lowered, and furthermore, the signal currents flowing in the A and C lines, which are the power lines, are approximately equal and in the same direction. , the voltage drop due to line impedance is equal, so A
, the signal leakage voltage generated between the C lines becomes almost 0, and the A,
The c line can be regarded as one signal line. Therefore, the signal leakage level Sp'' to the power line becomes extremely small, and the level difference (p above Sp'') between this signal leakage level Sp'' and the legal regulation level Lp becomes extremely small.As described above, Since the signal transmission level Sp can be made small, and the signal leakage level Sp'' can be made extremely small, the attenuation characteristics of the signal leakage prevention filter F can be obtained with an extremely small and inexpensive configuration, and become unnecessary in some cases. Furthermore, transmission over a wide frequency band is possible. On the other hand, the wire cost and wiring cost for such 3-core cables and 3-core rail-shaped wiring ducts are not so much compared to 2-core cables and 2-core wiring ducts, and the overall cost including the signal leakage prevention filter F is The system cost can be realized at a lower cost than that of a two-core power line transmission system. In addition, there are many cases where a dedicated communication line is separated from the power line as a signal transmission path, but in this case, the wiring work for the communication line is
? This method is performed separately from the wiring work for cables, etc.), and requires a separate dedicated wire material, so there is a problem that the wiring cost is considerably higher than in the case of the present invention. In addition, in the above explanation, the case where a 3-core power line is used was described, but 4-core power line is used.
Similar effects can be expected in the case of multi-core power lines.

即ち第8図は4芯電力線路の例を示すもので、同図aは
平形VVFケーブル、同図bは芯キヤプタイヤケーブル
、同図Cは4芯ダクトである。第9図の実施例回路はA
,d芯線関に電源S1より電力を供給し、B,c芯線間
に別の電源S2より電力を供給しつつ(Ad)−(Bc
)間で結合コンデンサを介して信号の送受を行つた例で
ある。又第10図は、(Ad)一(Bc)間で信号の送
受を行いながら、独立の通信路であるB,c芯線間でも
送信器Tdjと受信器Rdkとの間で信号の送受を行つ
た実施例であり、この場合独立二系統の信号伝送が可能
である。このように4芯系では3芯系よりさらに多くの
機能を有することもできる。ところで、第8図B,cの
実施例は信号伝送路を形成する2線路をそれぞれA,d
線、B,c線を用いて構成したものであり、第1図乃至
第7図実施例と同様の動作となる。
That is, FIG. 8 shows an example of a four-core power line, where a shows a flat VVF cable, b shows a core captire cable, and C shows a four-core duct. The example circuit in FIG. 9 is A
, d-core wires from the power source S1, and another power source S2 between the B and c-core wires (Ad)-(Bc
) is an example in which signals are sent and received via a coupling capacitor. Further, FIG. 10 shows that while signals are transmitted and received between (Ad) and (Bc), signals are also transmitted and received between the transmitter Tdj and the receiver Rdk between the B and C core wires, which are independent communication paths. In this embodiment, two independent systems of signal transmission are possible. In this way, a 4-core system can have more functions than a 3-core system. By the way, in the embodiment shown in FIG. 8B and c, the two lines forming the signal transmission path are connected to A and d, respectively.
It is constructed using lines B, C, and C, and operates in the same way as the embodiments shown in FIGS. 1 to 7.

例えば第8図cの4芯ダクトを用いて第9図回路を実現
している場合において、電力線路A,d線、B,c線に
送受信器Tj,Rkがそれぞれ略同一の結合部を介して
接続されているので、対をなすA,b線及びB,c線に
はそれぞれ略等しい同一方向の信号電流が流れることに
なり、線路インピーダンスによる電圧降下が等しくなつ
て各電力用線路A,d線、B,c線には信号電流の漏洩
が殆んど発生しない。一方、A,d線にはB,c線に流
れる商用電力電流による誘導雑音が発生し、B,c線に
はA,d線に流れる商用電力電流による誘導雑音が発生
するが、対をなすA,d線及びB,c線は信号線路とし
て見ればそれぞれの中心線(0及びO″)に存在する1
本の線路と見なすことができ、A,d線、B,c線に発
生する商用電力電流による誘導雑音は第1図乃至第7図
実施例の場合と同様にキャンセルされることになる。す
なわちa線とd線及びb線とc線はそれぞれ等価な信号
線(略同一の結合部を介して送受信器Tj,Rkが接続
されている)であるためA,d線及びB,c線を1本の
線路と見なすことができるわけである。図中x軸はA,
d線を通る軸、x″軸はB,c線を通る軸、Y軸はA,
d線、B,c線を結ぶ線分の垂直二等分線てある。本発
明は上述のように、3芯以上の多芯電力ケーブルや多芯
レール状配線ダクトを用いた電力路線の少くとも2芯を
一級負荷用の電力供給線として用い、他の芯線と電力用
芯線とを利用して高周波信号の送受信を行なうようにし
、送信器の信号出力端及び受信器の信号入力端の一方を
略同一の結合部を介して両電力用芯線にそれぞれ接続す
ることにより両電力用芯線に略等しい同一方向の信号電
流が流れるようにするとともに、両電力用芯線を結ぶ線
分の垂直二等分線上に前記他の芯線を配置することによ
り、電力系統と信号系統とを互いに干渉しないようにし
たものであるので、従来の電力電気工事と同じレベルで
工事が行なえ、専用の通信線を必要とせずにシステムコ
ストの安価な信号伝送系が得られるものであり、また、
送信器の信号出力端及ひ受信器の信号入力端の一方を略
同一の結合部を介して両電力用芯線にそれぞれ接続し、
両電力用芯線にて信号伝送路の一方の線路を形成してい
るので、芯線を有効に利用できコストが安くなるという
効果があり、さらにまた送受信器にて送受信される信号
電流を略同一の結合部を介して両電力用芯線に流すよう
にし、両電力用芯線に略等しい同一方向の信号電流が流
れるようにしているので、両電力用芯線に信号電流によ
る漏洩電位が発生しないことにより、信号漏洩防止フィ
ルタの小型化、低コスト化が図れるという効果があり、
さらにまた、両電力用芯線を結ぶ線分の垂直二等分線上
に信号用芯線を配置しているので、電力線路に対して信
号線路が平衡に形成されることになつて電力系から信号
伝送系への誘導雑音がキャンセルされ信号伝送系のSN
比が高くとれ、信頼性が高くなり、広帯域の伝送ができ
るという効果がある。
For example, when the circuit shown in Figure 9 is implemented using the 4-core duct shown in Figure 8c, the transceivers Tj and Rk are connected to the power lines A, d, B, and c through substantially the same coupling parts, respectively. Therefore, substantially equal signal currents in the same direction flow through the pair of A, b lines and B, c line, respectively, and the voltage drop due to line impedance becomes equal, so that each power line A, Almost no signal current leakage occurs to the d line, B line, and c line. On the other hand, inductive noise occurs in the A and d lines due to the commercial power current flowing in the B and c lines, and inductive noise occurs in the B and c lines due to the commercial power current flowing in the A and d lines. When viewed as signal lines, the A, d lines and B, c lines exist at their respective center lines (0 and O'').
It can be regarded as a real line, and the induced noise caused by the commercial power current generated in the A, d, B, and c lines is canceled in the same way as in the embodiments of FIGS. 1 to 7. In other words, since the a and d lines and the b and c lines are equivalent signal lines (the transceivers Tj and Rk are connected through approximately the same coupling part), the A, d lines and the B, c lines can be considered as one track. In the figure, the x-axis is A,
The axis passing through the d line, the x″ axis is B, the axis passing through the c line, the Y axis is A,
There is a perpendicular bisector of the line segment connecting the d line, B line, and c line. As described above, the present invention uses at least two cores of a power line using a multicore power cable with three or more cores or a multicore rail-like wiring duct as a power supply line for first-class loads, and connects other core wires and By connecting one of the signal output end of the transmitter and the signal input end of the receiver to both power core wires through substantially the same coupling part, both The power system and the signal system can be connected by allowing substantially equal signal currents in the same direction to flow through the power core wires, and by arranging the other core wires on the perpendicular bisector of the line connecting both power core wires. Since they do not interfere with each other, construction can be performed at the same level as conventional power and electrical work, and a signal transmission system with low system cost can be obtained without the need for dedicated communication lines.
Connect one of the signal output end of the transmitter and the signal input end of the receiver to both power core wires through substantially the same coupling part,
Since both power core wires form one line of the signal transmission path, the core wires can be used effectively and costs can be reduced.Furthermore, the signal currents sent and received by the transceiver can be transmitted and received at approximately the same level. Since the signal current is made to flow through both power core wires through the coupling part, and the signal current is approximately equal and in the same direction through both power core wires, a leakage potential due to the signal current does not occur in both power core wires. This has the effect of reducing the size and cost of the signal leakage prevention filter.
Furthermore, since the signal core wire is placed on the perpendicular bisector of the line that connects both power core wires, the signal line is formed in equilibrium with the power line, allowing signal transmission from the power system. The noise induced into the system is canceled and the SN of the signal transmission system is reduced.
The advantages are that the ratio is high, reliability is high, and broadband transmission is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例のブロック回路図、第2図は同
上の動作説明のための要部ブロック回路図、第3図は同
上の信号、雑音レベルの特性図、第4図乃至第7図は本
発明に用いる3芯電力線路の夫々異なる例を示す断面図
、第8図A,b,cは本発明に用いる4芯電力線路の夫
々異なる例を示す断面図、第9図及び第10図は本発明
の4芯電力線路を用いた場合の配線例のブロック回路図
、第11図は従来例のブロック回路図、第12図は同上
の動作説明のための要部ブロック回路図、第13図は線
路上の高周波信号レベル測定方法の説明図、第14図は
上記従来例の信号、雑音レベルの特性図である。
Fig. 1 is a block circuit diagram of an embodiment of the present invention, Fig. 2 is a main block circuit diagram for explaining the operation of the same as above, Fig. 3 is a characteristic diagram of signal and noise levels in the same as above, and Figs. 7 is a cross-sectional view showing different examples of the three-core power line used in the present invention, FIGS. 8A, b, and c are cross-sectional views showing different examples of the four-core power line used in the present invention, and FIGS. Fig. 10 is a block circuit diagram of a wiring example when using the 4-core power line of the present invention, Fig. 11 is a block circuit diagram of a conventional example, and Fig. 12 is a main part block circuit diagram for explaining the operation of the same. , FIG. 13 is an explanatory diagram of a high frequency signal level measurement method on a line, and FIG. 14 is a characteristic diagram of signal and noise levels in the conventional example.

Claims (1)

【特許請求の範囲】[Claims] 1 3芯以上の多芯電力ケーケーブルや多芯レール状配
線ダクトを用いた電力路線の少くとも2芯を一般負荷用
の電力供給源として用い、他の芯線と電力用芯線とを利
用して高周波信号の送受信を行なうようにし、送信器の
信号出力端及び受信器の信号入力端の一方を略同一の結
合部を介して両電力用芯線にそれぞれ接続することによ
り両電力用芯線に略等しい同一方向の信号電流が流れる
ようにするとともに、両電力用芯線を結ぶ線分の垂直二
等分線上に前記他の芯線を配置することにより、電力系
統と信号系統とを互いに干渉しないようにしたことを特
徴とする電力路線を用いた信号伝送方式。
1. Use at least two cores of a power line using a multicore power cable or multicore rail-like wiring duct with three or more cores as a power supply source for general loads, and use other core wires and power core wires. Transmission and reception of high-frequency signals is performed, and one of the signal output end of the transmitter and the signal input end of the receiver is connected to the two power core wires through substantially the same coupling part, so that the core wires are almost equal to the two power core wires. The power system and the signal system are prevented from interfering with each other by ensuring that signal currents flow in the same direction and by arranging the other core wire on the perpendicular bisector of the line connecting both power core wires. A signal transmission method using power lines that is characterized by:
JP5014776A 1976-04-30 1976-04-30 Signal transmission method using power lines Expired JPS6057253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5014776A JPS6057253B2 (en) 1976-04-30 1976-04-30 Signal transmission method using power lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5014776A JPS6057253B2 (en) 1976-04-30 1976-04-30 Signal transmission method using power lines

Publications (2)

Publication Number Publication Date
JPS52132716A JPS52132716A (en) 1977-11-07
JPS6057253B2 true JPS6057253B2 (en) 1985-12-13

Family

ID=12851053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5014776A Expired JPS6057253B2 (en) 1976-04-30 1976-04-30 Signal transmission method using power lines

Country Status (1)

Country Link
JP (1) JPS6057253B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140958U (en) * 1982-03-15 1983-09-22 三菱電機株式会社 Elevator cable wiring structure

Also Published As

Publication number Publication date
JPS52132716A (en) 1977-11-07

Similar Documents

Publication Publication Date Title
CA1081815A (en) Polyphase distribution network power line carrier communication system
US4142178A (en) High voltage signal coupler for a distribution network power line carrier communication system
KR100755145B1 (en) Inductive coupling of a data signal to a power transmission cable
US3731234A (en) Combined voice frequency transmission and dc signaling circuit
US5684450A (en) Electricity distribution and/or power transmission network and filter for telecommunication over power lines
US1762775A (en) Inductance device
AU694263B2 (en) Coupling of telecommunications signals to a balanced power distribution network
JP4757123B2 (en) Transmission equipment for power line carrier communication, outlet plug, outlet plug box, table tap, coupling device, communication device, and communication system
US4170761A (en) Remotely powered intermediate amplifier for communications transmission
EP0756785B1 (en) Hybrid electricity and telecommunications distribution network
US3753189A (en) Combined isolating and neutralizing transformer
JPS6057253B2 (en) Signal transmission method using power lines
US4099036A (en) Remote power supply system for a coaxial line with repeaters subjected to the influence of external electric fields
GB2243038A (en) Balance unbalance interface
US1759332A (en) Wave transmission circuit
US2026308A (en) Balanced inductance device
EP1603249A1 (en) High frequency bypass unit
CA1078460A (en) Transmission system between two terminal stations through a transmission line including low-frequency cross-talk supression circuits
US2235018A (en) Electric filter arrangement
US1672940A (en) Carrier transmission over power circuits
JPS6358415B2 (en)
KR100471614B1 (en) Power line communication device for signal blocking and signal transfer function
ES2217321T3 (en) SYSTEM AND COUPLING CIRCUIT FOR COMMUNICATIONS BY ENERGY TRANSPORT LINE.
US2069838A (en) Communication system
US1721572A (en) Carrier-current system superposed on side circuit of phantom system