JPS6057196B2 - Manufacturing method of spiral ceramic heating element - Google Patents

Manufacturing method of spiral ceramic heating element

Info

Publication number
JPS6057196B2
JPS6057196B2 JP5716578A JP5716578A JPS6057196B2 JP S6057196 B2 JPS6057196 B2 JP S6057196B2 JP 5716578 A JP5716578 A JP 5716578A JP 5716578 A JP5716578 A JP 5716578A JP S6057196 B2 JPS6057196 B2 JP S6057196B2
Authority
JP
Japan
Prior art keywords
spiral
ceramic
heating element
green sheet
resistive coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5716578A
Other languages
Japanese (ja)
Other versions
JPS54149951A (en
Inventor
忠尚 平尾
肇 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP5716578A priority Critical patent/JPS6057196B2/en
Publication of JPS54149951A publication Critical patent/JPS54149951A/en
Publication of JPS6057196B2 publication Critical patent/JPS6057196B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は、円筒状、柱状又は類似形状のセラミック発熱
体に係り、特に反復急熱可能な上記形状のセラミック発
熱体を提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic heating element having a cylindrical, columnar or similar shape, and particularly provides a ceramic heating element having the above shape that can be rapidly heated repeatedly.

従来公知の柱状セラミック発熱体は、セラミック芯キ前
こ抵抗被膜を設けさらにセラミック質保護外皮層を有す
るもの(実開昭51−96638)があり、また公知の
円筒状セラミック発熱体としてはセラミックグリーンシ
ートの片面に無機導電材料パターンを形成後、該パター
ンを外側としその反対側(無パターン側)をパイプに巻
きその対向両端面をつき合わせて円筒形とし、さらに別
のグリーンシートを巻きつけて保護外皮として焼成して
なるもの(特公昭51−22659)がある。
Conventionally known columnar ceramic heating elements include one that has a ceramic core with a resistive coating on the front and a ceramic protective outer layer (Utility Model Application Publication No. 51-96638); After forming an inorganic conductive material pattern on one side of the sheet, the pattern is placed outside and the opposite side (non-patterned side) is wrapped around a pipe with both opposing end surfaces brought together to form a cylindrical shape, and then another green sheet is wrapped around it. There is one made by baking it as a protective outer shell (Japanese Patent Publication No. 51-22659).

これらの棒状又は筒状セラミック発熱体は、抵抗被膜を
セラミック外皮層で保護することにおいてそれ以前の、
無被覆、合成樹脂被覆又はほうろう被覆等に比して抵抗
被膜自体の耐熱性及び抵抗値経時変化の防止においては
改善されている。しかし、なお反復急熱を必要とされる
場合、例えばディーゼルエンジンのグロープラグ用の棒
状セラミック発熱体として用いたとき、発熱部と棒保持
部(非発熱・部)との境界にリング割れが生じ易いとい
う欠点を有する。本発明はこの欠点を除去した、円筒状
、柱状又は類似形状のセラミック質発熱体及びその製造
法を提供することを目的とする。
These rod-shaped or cylindrical ceramic heating elements differ from previous ones in that the resistive coating is protected by a ceramic outer layer.
Compared to uncoated, synthetic resin coated, enamel coated, etc., the heat resistance of the resistive coating itself and prevention of changes in resistance value over time are improved. However, if repeated rapid heating is still required, for example when used as a rod-shaped ceramic heating element for a glow plug in a diesel engine, ring cracking may occur at the boundary between the heating part and the rod holding part (non-heating part). It has the disadvantage of being easy to use. The object of the present invention is to provide a ceramic heating element having a cylindrical, columnar or similar shape and a method for manufacturing the same, which eliminates this drawback.

即ち本発明は、セ、ラミツクグリーンシートを渦巻状に
巻上焼成した渦巻型セラミック体の外周端から渦巻1巻
以上に、該セラミックグリーンシートの内側に形成され
た抵抗被膜を有し、かつ該抵抗被膜内面から渦巻中心ま
での中心部セラミック渦巻の厚みは該抵抗被膜保護外皮
層の厚みよりも大てあることを特徴とする渦巻型セラミ
ック発熱体である。さらに本発明は上記渦巻型セラミッ
ク発熱体の新規な製造法をも併せて提供する。
That is, the present invention has a resistive coating formed on the inside of the ceramic green sheet in one or more turns from the outer circumferential edge of a spiral-shaped ceramic body obtained by winding and firing a ceramic green sheet in a spiral shape, and The spiral ceramic heating element is characterized in that the thickness of the central ceramic spiral from the inner surface of the resistive coating to the center of the spiral is greater than the thickness of the protective outer layer of the resistive coating. Furthermore, the present invention also provides a novel method for manufacturing the spiral ceramic heating element.

即ち、本発明における渦巻型セラミック発熱体の製造法
は、セラミックグリーンシートの一表面の一部分に無機
導電材料膜パターンを形成し、余白部分側の一辺を起点
としてかつ該無機導電材料膜パターンを内側となるよう
に該セラミックグリーンシートを渦巻状に巻上け焼成す
ることを特徴とする。以下、本発明について詳述する。
That is, the method for manufacturing the spiral ceramic heating element of the present invention involves forming an inorganic conductive material film pattern on a portion of one surface of a ceramic green sheet, and starting from one side of the margin area and forming the inorganic conductive material film pattern on the inner side. It is characterized in that the ceramic green sheet is rolled up in a spiral shape and fired. The present invention will be explained in detail below.

本発明の渦巻型セラミック発熱体は、セラミックグリー
ンシートを渦巻状に巻上焼成した渦巻型セラミック体1
を本体構造とし、その渦巻層の間に抵抗被膜3を有する
The spiral-shaped ceramic heating element of the present invention is a spiral-shaped ceramic body 1 in which a ceramic green sheet is rolled up and fired in a spiral shape.
has a main body structure, and has a resistive coating 3 between the spiral layers.

この際、抵抗被膜は渦巻層の外周端から1巻以上、好ま
しくは1巻ないし2巻中心部へ向つて上記渦巻層間に形
成される。この抵抗被膜の内側には、抵抗被膜を層間に
有しない中心部セラミック渦巻が渦巻中心端に至るまで
存在する。この中心部セラミック渦巻の肉厚は、本発明
によれば、前記抵抗被膜保護外皮層の厚みよりも厚いも
のとする。本発明の一実施態様としては、前記渦巻状セ
ラミック体はセラミックグリーンシートを巻上げて形成
される。また抵抗被膜はセラミックグリーンシートの片
面一部に、巻上の前に予め公知の、例えばメタライズペ
ーストにより抵抗被膜パターン(任意形状)として形成
し、該抵抗被膜をグリーンシートの内側になるようにか
つ該抵抗被膜のない余白部分側のグリーンシートの一辺
を起点として、グリーンシートを渦巻状に巻上げて形成
される。従つて中心部セラミック渦巻の厚みを保護外皮
層の厚みより大とすることは、中心部の渦巻の巻数を2
巻き以上とすることにより容易に実現される。ここに保
護外皮層の厚みとは、ある一つの層間の抵抗被膜の直接
の保護外皮層(1層)の厚みを言い上記実施態様におい
ては、渦巻シートの厚みに相当する。但し、渦巻の最外
周たる保護外皮層を必要に応じ機械加工して適宜薄くす
ることを必ずしも除外しないし、また渦巻外周端のセラ
ミックグリーンシート端をテーパー加工するか又は先端
を薄く斜めにカットして渦巻外周端段落を除去すること
も好ましい。本発明の渦巻に形成、焼成されるセラミッ
クグリーンシートとしては公知のもの、例えば、アルミ
ナに媒溶剤としてマグネシア1%、カルシア1%及びシ
リカ2%を含むもの、ベリリアから成るもの、アルミナ
96%、シリカ2%、ドロマイト2%の組成を有するも
の、アルミナ99.5%、マグネシア0.5%の組成の
もの、フォルステライト等がある。
At this time, the resistive coating is formed between the spiral layers from the outer peripheral end of the spiral layer toward the center of one or more turns, preferably the first or second turn. Inside this resistive coating, a central ceramic spiral without a resistive coating between layers exists up to the central edge of the spiral. According to the invention, the thickness of the central ceramic spiral is greater than the thickness of the protective outer skin layer of the resistive coating. In one embodiment of the present invention, the spiral ceramic body is formed by winding up a ceramic green sheet. In addition, the resistive coating is formed on a part of one side of the ceramic green sheet as a resistive coating pattern (arbitrary shape) using a known method such as metallization paste before winding up, and the resistive coating is placed on the inside of the green sheet and It is formed by winding up the green sheet in a spiral shape starting from one side of the green sheet on the side of the margin where the resistive coating is not present. Therefore, making the thickness of the central ceramic spiral larger than the thickness of the protective outer layer means that the number of turns of the central ceramic spiral is 2.
This can be easily achieved by making it more than a roll. The thickness of the protective outer skin layer herein refers to the thickness of the protective outer skin layer (one layer) directly between a certain one layer of the resistive coating, and in the above embodiment, corresponds to the thickness of the spiral sheet. However, it is not necessarily excluded that the protective outer layer, which is the outermost periphery of the spiral, may be machined to make it thinner as necessary, and the edge of the ceramic green sheet at the outer edge of the spiral may be tapered or the tip may be cut thinly and diagonally. It is also preferable to remove the spiral outer peripheral end stage. Ceramic green sheets to be formed and fired into spirals according to the present invention include known ones, such as ones containing alumina with 1% magnesia, 1% calcia and 2% silica as a solvent, ones made of beryllia, 96% alumina, There are those having a composition of 2% silica and 2% dolomite, those having a composition of 99.5% alumina and 0.5% magnesia, and forsterite.

特に好ましくは、アルミナ90〜94%に残りを媒溶剤
としてシリカ、カルシア、マグネシアを”3〜6:0.
5〜2:0.5〜2の比率で加えたもの。セラミックグ
リーンシートは上記の粉末材料を配合後さらに粉砕混合
処理し、公知の有機溶剤で稀めた有機結合剤を加えてス
ラリー化し、公知の方法(例えば押出し成型法、ドクタ
ーブレード法等)によりシート化しさらに、通例徐熱し
て溶剤を揮発させて得られる。このようにして得たグリ
ーンシートに、第2図に示す如く、その一部表面上に無
機導電材料膜例えばタングステンを主成分とするペース
ト膜を公知方法て形成する(焼成されると抵抗被膜とな
る)。
Particularly preferably, silica, calcia, and magnesia are mixed in a ratio of 90 to 94% alumina and the remainder as a solvent in a ratio of 3 to 6:0.
Added at a ratio of 5-2:0.5-2. Ceramic green sheets are made by blending the above powder materials, then pulverizing and mixing them, adding an organic binder diluted with a known organic solvent to form a slurry, and forming the sheets into sheets using known methods (e.g. extrusion molding method, doctor blade method, etc.). It is obtained by evaporating the solvent, usually by slow heating. As shown in Fig. 2, an inorganic conductive material film, such as a paste film mainly composed of tungsten, is formed on a part of the surface of the green sheet obtained in this way by a known method (when fired, it forms a resistive film). Become).

この際、前述の如く該無機導電材料膜は、グリーンシー
トの片面に形成し、また該膜がシートの内側に巻込まれ
るように渦巻を巻上げる。この措置により巻上時にペー
スト膜が引張られることによる切断及び巻上操作による
ペースト膜損障は効果的に防止でき、従つて焼成後の抵
抗被膜の耐用性をも増大する。なおこゐ際、前述の公知
方法の如く、セラミックグリーンシートの外側に抵抗被
膜がなるように巻上げることは、巻上時に無機導電材料
膜、例えは同ペースト膜に引張り応力及び、膨張が生ず
るのて焼成後の抵抗被膜は断線に至る確率が高いという
欠点を有することが本発明により明らかとなつた。この
ペースト膜は、展開図(第3図)に例示する如く、一枚
のグリーンシートの表面の一端(外周端辺)から丁度必
要な長さと巾だけかつ任意のパターンにおいて形成する
At this time, as described above, the inorganic conductive material film is formed on one side of the green sheet, and the film is spirally wound so as to be wound inside the sheet. This measure effectively prevents damage to the paste film due to cutting and winding operations due to the paste film being stretched during winding, and therefore also increases the durability of the resistive film after firing. In this case, as in the above-mentioned known method, winding the ceramic green sheet so that the resistance film is formed on the outside may cause tensile stress and expansion in the inorganic conductive material film, such as the paste film, during winding. It has become clear from the present invention that the resistive coating after firing has a drawback that there is a high probability of wire breakage. As illustrated in the developed view (FIG. 3), this paste film is formed from one end (outer peripheral edge) of the surface of one green sheet to just the required length and width and in an arbitrary pattern.

本発明の好ましい実施態様としては外周端辺とほS゛平
行に抵抗回路を多数並行して形成しその両端部を夫々リ
ード部で並列接続したパターンである(このパターンで
は、抵抗被膜回路は全体として渦巻軸と平行に形成され
、渦巻巻上げによる変形影響が少なく、また一部の単位
抵抗被膜の断線があつても使用に耐える)。また渦巻外
周端0の近傍は、抵抗被膜保護のため適宜余白を残すこ
とが好ましい。本発明の好適な実施態様としては、抵抗
被膜は、渦巻型ヒーターの長さの一部、また一端側に形
成される。
A preferred embodiment of the present invention is a pattern in which a large number of resistor circuits are formed in parallel approximately S parallel to the outer peripheral edge, and both ends are connected in parallel with each other through lead portions (in this pattern, the entire resistive film circuit is It is formed parallel to the spiral axis, is less affected by deformation due to spiral winding, and can withstand use even if some unit resistor coatings are broken). Further, it is preferable to leave an appropriate margin near the spiral outer peripheral end 0 to protect the resistive coating. In a preferred embodiment of the invention, the resistive coating is formed on a portion of the length of the spiral heater and on one end thereof.

例えばディーゼルエンジン用グロープラグのヒーターと
して用いる場合には一端側が好ましく、またタンマン管
の場合中央部を発熱部とすることが好ましい。この場合
の展開グリーンシートには例えば第3図に示すように、
外周端側(0側)でかつ、外周辺に直交する辺の一方の
下半部分に寄せて無機導電材料膜パターンは形成される
。これを渦巻内側起点1から抵抗被膜を内側とするよう
に巻上げて第1図及び第2図に示す渦巻型セラミックヒ
ーターを得る。なおリード部4は適当な間隔をおいて渦
巻型セラミック発熱体の非発熱端へ導き端子8とするこ
とが出来る。
For example, when used as a heater for a glow plug for a diesel engine, one end side is preferable, and in the case of a Tammann tube, the central part is preferably used as the heat generating part. In this case, the developed green sheet has, for example, as shown in Figure 3.
The inorganic conductive material film pattern is formed near the lower half of one of the sides perpendicular to the outer periphery on the outer periphery end side (0 side). This is wound up from the spiral inner starting point 1 so that the resistive coating is on the inside to obtain the spiral ceramic heater shown in FIGS. 1 and 2. Note that the lead portion 4 can be led to the non-heat generating end of the spiral ceramic heating element at an appropriate interval and used as a terminal 8.

本発明の利点は、特に発熱体の一部を発熱部とする場合
、及び急熱を必要とする場合に明瞭に現われる。
The advantages of the present invention are particularly apparent when a part of the heating element is used as a heat generating part and when rapid heating is required.

即ち、本発明の渦巻型セラミック発熱体ては、発熱部は
渦巻外周部でかつその一鏡端側にある。発熱部が急熱さ
れた場合発熱部だけは熱膨張しようとするが、非発熱部
は低温に止まる。従つて非発熱部側に引張り応力が作用
する。公知の柱状又は円筒状セラミックヒーターにおい
てはこの引張り応力は、直接低温部に作用しどこにも緩
衝されないため輪状破壊が不可避であつた。蓋し、セラ
ミックスは圧縮応力には強いが引張応力には弱いからで
ある。本発明の渦巻型発熱体においては、この引張応力
は渦巻層間の応力として一部緩衝されるものと推定され
る。即ち熱膨脹力はある渦巻層と隣接の層から受ける拘
束力と拮抗するが、層間の結合力はシート自体のそれと
微妙な差を有して弱い結果、その層間に応力がかなり集
中すると考えられる。その結果、渦巻型により急熱に耐
えるセラミック発熱体が得られるものと推定される。な
お、本発明においては、渦巻型セラミック発熱体の中心
部セラミック渦巻(グリーンシート余白部に相当)の厚
みは、抵抗被膜保護外皮層(例えば、第2図の実施例で
は最外周のセラミック渦巻シートに相当)の厚みよりも
大とする。
That is, in the spiral ceramic heating element of the present invention, the heating portion is located at the outer periphery of the spiral and at one end of the spiral. When a heat generating part is rapidly heated, only the heat generating part tries to thermally expand, but the non-heat generating part stays at a low temperature. Therefore, tensile stress acts on the non-heat generating portion side. In known columnar or cylindrical ceramic heaters, this tensile stress acts directly on the low-temperature part and is not buffered anywhere, so ring-shaped fracture is inevitable. This is because ceramics are strong against compressive stress but weak against tensile stress. In the spiral heating element of the present invention, it is presumed that this tensile stress is partially buffered as stress between the spiral layers. That is, the thermal expansion force counteracts the restraining force exerted by one spiral layer and the adjacent layer, but the bonding force between the layers is slightly different from that of the sheet itself and is therefore weak, resulting in a considerable concentration of stress between the layers. As a result, it is presumed that a ceramic heating element that can withstand rapid heat due to its spiral shape can be obtained. In the present invention, the thickness of the central ceramic spiral (corresponding to the green sheet margin) of the spiral ceramic heating element is equal to the thickness of the resistive coating protective outer layer (for example, in the embodiment shown in FIG. (equivalent to).

この場合に、本発明の渦巻型セラミック発熱体は、急熱
に最もよく耐えうる。このことは、第1表に対照する如
く、比較例1,2が実施例1に比し耐繰返急熱性におい
て劣ることから明らかにみられる。その理由は以下の如
くであると思考される。即ち、発熱部の急熱により先づ
発熱部近接のセラミック体(高温部)に圧縮応力を生じ
、近接しないセラミック体(低温部)には引張り応力を
生ずる。このため比較例1又は比較例2の如く、渦巻内
部に発熱部を有するものは、渦巻型内深部に於いて熱膨
張が生じ、外周部に於いては引張り応力を生ずるので、
セラミック体の低い抗張力のため破損を生じ易い。これ
に対し実施例1の如く、外周部に発熱部を配した場合、
内深部には引張り応力を生ずるが、この引張り応力は当
該部分(中心部セラミック渦巻)の層間で緩和され、破
壊を免がれるものと考えられる。このために、中心部セ
ラミック渦巻は2巻以上必要となる。勿論渦巻の層間も
焼結されているため、渦巻ばねの如く層間隔は拡張され
ないが、層間の結合力は層内の結合力よりも、その形成
履歴に基き、弱いので渦巻バネと類似の応力分布を想定
できる。この点において、渦巻内深部に発熱体を配した
場合とは、異つた効果が生ずると考えられる。要するに
、渦巻きの中層部、内深部に発熱部を配することは、渦
巻構成の効果を十分に発揮し得ないので、本発明におい
ては発熱部は渦巻型セラミック体の外周部に形成されか
つ中心部セラミック体の渦巻は引張り応力の分散、緩衝
に必要なだけの厚み又は巻数を必要とされる。
In this case, the spiral-wound ceramic heating element of the present invention can best withstand rapid heating. This is clearly seen from the fact that Comparative Examples 1 and 2 are inferior to Example 1 in repeated rapid heating resistance, as shown in Table 1. The reason for this is thought to be as follows. That is, due to the rapid heating of the heat generating part, compressive stress is first generated in the ceramic body (high temperature part) near the heat generating part, and tensile stress is generated in the ceramic body (low temperature part) that is not close to the heat generating part. For this reason, in the case of Comparative Example 1 or Comparative Example 2, which has a heat generating part inside the spiral, thermal expansion occurs deep inside the spiral, and tensile stress is generated at the outer periphery.
Due to the low tensile strength of the ceramic body, it is prone to breakage. On the other hand, when the heat generating part is arranged on the outer periphery as in Example 1,
Although tensile stress is generated deep inside, it is thought that this tensile stress is relaxed between the layers of the relevant portion (the central ceramic spiral) and is thus prevented from breaking. For this reason, two or more turns of the central ceramic spiral are required. Of course, since the interlayers of the spiral are also sintered, the spacing between the layers is not expanded like in a spiral spring, but the bonding force between the layers is weaker than the bonding force within the layers, based on their formation history, so the stress is similar to that of a spiral spring. distribution can be assumed. In this respect, it is thought that a different effect will be produced than when the heating element is placed deep inside the spiral. In short, arranging the heat generating part in the middle or deep part of the spiral does not fully exhibit the effect of the spiral structure. Therefore, in the present invention, the heat generating part is formed on the outer periphery of the spiral ceramic body and at the center. The spiral of the ceramic body is required to have a sufficient thickness or number of turns to disperse and buffer tensile stress.

本発明の以上の構成及ひ効果は以下の実施例及び比較例
により明瞭になる。以下に実施例を記述する。
The above structure and effects of the present invention will become clearer from the following Examples and Comparative Examples. Examples are described below.

実施例1 アルミナにマグネシア及びカルシア各1%(以下重量%
)、及びシリカ2%を配合し、ボールミルで7(転)間
湿式粉砕した後脱水乾燥した。
Example 1 Alumina with 1% each of magnesia and calcia (hereinafter referred to as weight%)
) and 2% silica were mixed, wet-pulverized for 7 (turns) in a ball mill, and then dehydrated and dried.

この紛・末にメタアクリル酸イソブチルエステル3%、
ニトロセルローズ1%、ジオクチルフタレート0.5%
を加えさらにトリクロールエチレン及びn−ブタノール
を添加しボールミルで混合してスラリーとした。このス
ラリーを減圧脱泡後平板上に流しノ出して厚さ0.3順
のグリーンシートを得た。溶液がほ)蒸発した所でこの
グリーンシートを第1図に示すように巾30mの長方形
に切断して、その一表面の右側部分に、タングステンを
主成分とするメタライズインクにより発熱抵抗体パター
ン及びリード部を形成した。その後グリーンシートの左
側端辺1を起点とし、かつ前記パターンがシートの内側
になるように渦巻状に巻上げた。この際グリーンシート
のパターン反対面に溶剤を塗布しつつ巻上げた。かくし
て中心部セラミック渦巻5巻、パターン部分渦巻1巻と
して焼成用渦巻を得た。この渦巻を徐熱し有機物除去後
水素雰囲気中において1550℃で13時間焼成して外
径5.2mφ、内径2wfmφ、全長30wn発熱部長
さ1『の渦巻型セラミック発熱体を得た。なおリード部
先端に金ペーストて端子を別途形成した。この発熱体の
急熱特性は第1表に示す通りであつた。
This powder/powder contains 3% isobutyl methacrylate.
Nitrocellulose 1%, dioctyl phthalate 0.5%
Further, trichlorethylene and n-butanol were added and mixed in a ball mill to form a slurry. This slurry was degassed under reduced pressure and poured out onto a flat plate to obtain a green sheet with a thickness of 0.3 mm. After the solution has evaporated, this green sheet is cut into a rectangle with a width of 30 m as shown in Figure 1, and a heating resistor pattern and a heating resistor pattern are inscribed on the right side of one surface using metallizing ink mainly composed of tungsten. A lead portion was formed. Thereafter, the green sheet was spirally rolled up starting from the left side edge 1 and with the pattern on the inside of the sheet. At this time, the green sheet was rolled up while applying a solvent to the opposite side of the pattern. In this way, a firing spiral was obtained with five ceramic spirals in the center and one spiral in the pattern portion. This spiral was slowly heated to remove organic matter, and then fired at 1550° C. for 13 hours in a hydrogen atmosphere to obtain a spiral ceramic heating element having an outer diameter of 5.2 mφ, an inner diameter of 2 wfmφ, a total length of 30 wn, and a heating part length of 1''. Note that a terminal was separately formed at the tip of the lead part using gold paste. The rapid heating characteristics of this heating element were as shown in Table 1.

即ち、実施例1は、比較例1,2に比して限界温度が高
く、また100回以上の反復急熱に耐えた。比較例1 発熱部抵抗体パターンを第4図の如くグリーンシート中
央(渦巻中層部)に設けた以外は実施例1と同様にして
渦巻型セラミック発熱体を製作した。
That is, Example 1 had a higher limit temperature than Comparative Examples 1 and 2, and could withstand repeated rapid heating over 100 times. Comparative Example 1 A spiral ceramic heating element was manufactured in the same manner as in Example 1, except that the heating element resistor pattern was provided at the center of the green sheet (in the middle layer of the spiral) as shown in FIG.

その比較急熱試験結果を第1表に示す。比較例2発熱部
抵抗体パターンを第5図に示す如く実施例1と反対側の
グリーンシート上に形成した以外は実施例1と同様にし
て渦巻型セラミック発熱体を製作した。
The comparative rapid heating test results are shown in Table 1. Comparative Example 2 A spiral ceramic heating element was manufactured in the same manner as in Example 1, except that the heat generating part resistor pattern was formed on the green sheet on the opposite side from Example 1, as shown in FIG.

その比較急熱試験結果を第1表に示す。実施例2 実施例1と同様にして厚さ0.6Tfr1nのセラミッ
クグリーンシートを作り、長さ30h1外径10i1内
径90m、抵抗体パターン部の巻数1巻、中心部セラミ
ック渦巻の巻数8巻の渦巻型円筒状発熱体を得た。
The comparative rapid heating test results are shown in Table 1. Example 2 A ceramic green sheet with a thickness of 0.6 Tfr1n was made in the same manner as in Example 1, and had a length of 30 h, an outer diameter of 10 i, and an inner diameter of 90 m, the number of turns of the resistor pattern part was 1 turn, and the number of turns of the ceramic spiral in the center was 8 turns. A type cylindrical heating element was obtained.

但し抵抗体パターンは円筒の中央部に100wnの長さ
で形成した。このものはタンマン管として用いることが
でき、特に急熱特性に優れている。
However, the resistor pattern was formed at the center of the cylinder with a length of 100wn. This product can be used as a Tammann tube and has particularly excellent rapid heating properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図を示す。 第2図は第1図に示す発熱体の発熱部や)拡大した断面
図を示す(ハッチ省略)。第3図は第1図、第2図に示
す実施例のセラミックグリーンシート展開図を示す。第
4図、第5図はそれぞれ比較例1および2の展開図を示
す。1・・・・・・渦巻型セラミック体、2・・・・・
・セラミックグリーンシート、3・・・・・・抵抗発熱
体パターン、4・・・リード部、5・・・・・・中心余
白部、6,7・・・・・・発熱部、8・・・・・・抵抗
発熱体保護外皮層、9・・・・・・中心部セラミック渦
巻、I・・・・・・渦巻中心側起点端辺、0・・・・・
・渦巻外周側終点端辺、W・・・・・・渦巻巻上方向矢
印。
FIG. 1 shows a side view of one embodiment of the invention. FIG. 2 shows an enlarged sectional view of the heat generating portion of the heat generating element shown in FIG. 1 (hatching is omitted). FIG. 3 shows a developed view of the ceramic green sheet of the embodiment shown in FIGS. 1 and 2. FIGS. 4 and 5 show developed views of Comparative Examples 1 and 2, respectively. 1... Spiral shaped ceramic body, 2...
・Ceramic green sheet, 3... Resistance heating element pattern, 4... Lead part, 5... Center margin, 6, 7... Heat generating part, 8... ...Resistive heating element protective outer skin layer, 9...Central ceramic spiral, I...Start end edge on spiral center side, 0...
・End point edge on the outer circumference of the spiral, W...Upward arrow of the spiral.

Claims (1)

【特許請求の範囲】 1 セラミックグリーンシートを渦巻状に巻上げ焼成し
た渦巻型セラミック体の外周端から渦巻1巻以上に、該
セラミックグリーンシートの内側に形成された抵抗被膜
を有し、かつ該抵抗被膜内面から渦巻中心までの中心部
セラミック渦巻の厚みは該抵抗被膜保護外皮層の厚みよ
りも大であることを特徴とする渦巻型セラミック発熱体
。 2 前記抵抗被膜が渦巻型発熱体の全長又はその一部分
に形成されることを特徴とする特許請求の範囲第1項記
載の渦巻型セラミック発熱体。 3 セラミックグリーンシートの一表面の一部に無機導
電材料膜パターンを形成し、余白部分側の一辺を起点と
してかつ該無機導電材料膜パターンを内側となるように
該セラミックグリーンシートを渦巻状に巻上げ焼成する
ことを特徴とする渦巻型セラミック発熱体の製造法。 4 中心部渦巻をなす前記余白部分を少くとも2巻以上
有することを特徴とする特許請求の範囲第3項記載の渦
巻型セラミック発熱体の製造法。 5 前記セラミックグリーンシートの一表面に前記無機
導電材料膜パターンを渦巻外周端から1巻以上の相当長
に形成することを特徴とする特許請求の範囲第3項又は
第4項記載の渦巻型セラミック発熱体の製造法。
[Scope of Claims] 1. A spiral-shaped ceramic body obtained by spirally winding and firing a ceramic green sheet, which has a resistive coating formed on the inside of the ceramic green sheet in one or more spirals from the outer peripheral end, and the resistor A spiral ceramic heating element characterized in that the thickness of the central ceramic spiral from the inner surface of the coating to the center of the spiral is greater than the thickness of the protective outer layer of the resistive coating. 2. The spiral ceramic heating element according to claim 1, wherein the resistive coating is formed over the entire length of the spiral heating element or a portion thereof. 3 Form an inorganic conductive material film pattern on a part of one surface of the ceramic green sheet, and wind up the ceramic green sheet in a spiral shape starting from one side on the margin side and with the inorganic conductive material film pattern on the inside. A method for manufacturing a spiral ceramic heating element characterized by firing. 4. The method for manufacturing a spiral ceramic heating element according to claim 3, wherein the blank space forming a central spiral has at least two turns. 5. The spiral-shaped ceramic according to claim 3 or 4, wherein the inorganic conductive material film pattern is formed on one surface of the ceramic green sheet to have a length of one or more turns from the outer peripheral edge of the spiral. Method of manufacturing heating elements.
JP5716578A 1978-05-16 1978-05-16 Manufacturing method of spiral ceramic heating element Expired JPS6057196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5716578A JPS6057196B2 (en) 1978-05-16 1978-05-16 Manufacturing method of spiral ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5716578A JPS6057196B2 (en) 1978-05-16 1978-05-16 Manufacturing method of spiral ceramic heating element

Publications (2)

Publication Number Publication Date
JPS54149951A JPS54149951A (en) 1979-11-24
JPS6057196B2 true JPS6057196B2 (en) 1985-12-13

Family

ID=13047938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5716578A Expired JPS6057196B2 (en) 1978-05-16 1978-05-16 Manufacturing method of spiral ceramic heating element

Country Status (1)

Country Link
JP (1) JPS6057196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342715B2 (en) * 1986-07-30 1991-06-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827120B1 (en) 2001-07-16 2004-02-13 Maurice Amsellem INDIVIDUAL WATERING DEVICE FOR PLANTS
CN111997808B (en) * 2020-08-20 2021-11-02 北京理工大学 Diesel engine and flame preheating plug thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342715B2 (en) * 1986-07-30 1991-06-28

Also Published As

Publication number Publication date
JPS54149951A (en) 1979-11-24

Similar Documents

Publication Publication Date Title
WO2020029801A1 (en) Heater applied to low-temperature cigarette and method for preparing heater
JPS6057196B2 (en) Manufacturing method of spiral ceramic heating element
JPH0452866B2 (en)
JPS635847B2 (en)
JPS6059721B2 (en) Manufacturing method of ceramic resistor
US2322988A (en) Electric heating
US5790011A (en) Positive characteristics thermistor device with a porosity occupying rate in an outer region higher than that of an inner region
JP2019164941A (en) Ceramic heater
JPH031580B2 (en)
DE612533C (en) Glow plug
JPS6351356B2 (en)
US2112729A (en) Electric heater
US1975623A (en) Electrical resistance unit
JPS59199586A (en) Ceramic honeycomb structure
JPS6222384A (en) Ignition plug
JPH0410717B2 (en)
US2060644A (en) Electric immersion heater
JP2019067698A (en) Ceramic heater
JP2019067697A (en) Ceramic heater
US2674678A (en) Resistor
KR960028690A (en) Manufacturing method of rod or tubular ceramic heater
JPH1197158A (en) Ceramic heater and manufacture thereof
JP3366546B2 (en) Ceramic heater
JP2019067696A (en) Ceramic heater
JPH04502504A (en) seeded plug